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Abstract—Hydropower operators and energy storage providers
are increasingly interested in participating in frequency regula-
tion services, driven by the incentives offered by independent
system operators, such as the PJM Interconnection. This tran-
sition, however, unfolds against the backdrop of a modernizing
and rapidly digitizing power grid, exposing the integrated legacy
infrastructure to a multitude of cybersecurity threats. This work
presents an approach for developing an anomaly detection and
mitigation system to address cybersecurity challenges during
the participation of a hydropower-integrated battery energy
storage system (BESS) in a frequency regulation market. The
applied anomaly detector utilizes machine learning algorithms to
provide detailed classification of cyber-physical events. Later, the
applied mitigation system triggers predefined corrective actions
to minimize the impact of data integrity attacks on the regulation
market and system stability. We evaluated the proposed approach
on a hydropower-integrated BESS topology, specifically analyzing
the slow regulation signal (Reg A) coming from the PJM market.
Our simulation results demonstrate that the proposed approach
performs well in detecting data integrity attacks within the
allocated time frame and also minimizes the system’s transient
instability during the participation of hydropower and BESS in
the regulation market.

Index Terms—battery energy storage system, hydropower,
regulation market, cybersecurity, machine learning.

I. INTRODUCTION

The traditional power grid comprises centralized power
generation facilities that supply enough electricity and related
services to satisfy grid demands. However, as the grid evolves
toward incorporating more smaller-scale power sources, espe-
cially wind and solar installations, there is a growing need for
additional resources to enhance flexibility and meet ancillary
service requirements. Many hydropower owners and energy
storage providers are interested in participating in regula-
tion services markets because of the additional incentives
provided by independent system operators. For example, the
PJM market utilizes hydropower with other distributed energy

1Acknowledgement: This work was authored by the National Renewable
Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the
U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.
Funding provided U.S. Department of Energy Office of Energy Efficiency and
Renewable Energy Water Power Technologies Office. The views expressed in
the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by accepting
the article for publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this work, or allow others to do so, for U.S. Government
purposes.

resources, such as battery energy storage systems (BESS),
to provide frequency regulation in a competitive electricity
market by minimizing small mismatches between load and
generation [1]. This allows PJM to ensure the availability
of adequate capacity at the most economic price point. In
particular, the PJM regulation market generates two types
of regulation signals: (1) Regulation A (Reg A) signal and
(2) Regulation D (Reg D) signal, which are computed from
the area control error (ACE). The Reg A is a slower signal
that is generally met by conventional diesel generators and
hydropower plants with limited ramping capability to recover
from larger fluctuations in power grid. However, the Reg D sig-
nal is fast, dynamic, and requires energy storage systems, such
as batteries and ultracapacitors, which can respond rapidly as
needed to regulate frequency [2].

These regulation signals rely on the Distributed Network
Protocol (DNP3), for exchanging information between PJM’s
control center and generation units, which is a clear text proto-
col and is protected using the Transport Layer Security (TLS)
encryption [3]. The authors of [4] discussed nine common
types of cyber-physical configurations of legacy hydroelectric
plants that could be targeted by adversaries as the advanced
operational capabilities are developed for managing and op-
erating these hydropower facilities. Several machine learning
algorithms were proposed in the past with the aim of detecting
and classifying cyber-attacks within the grid network [5],
[6]. A path mining-based classification approach is proposed
in [5] that leveraged system parameters, including voltage,
power, and frequency, to identify and categorize cyber threats.
Further, the study presented in [6] highlights the efficacy of a
supervised learning approach, specifically employing decision
trees, in proficiently discerning cyber-attacks, physical events,
and normal operation within the power grid.

This paper presents a novel approach for developing
an anomaly detection and mitigation system (ADMS) for
hydropower-integrated BESS that can detect data integrity
attacks on a regulation signal (Reg A) in real time. Once these
attacks are detected, corrective actions are triggered based
on the duration of these attacks to minimize their impact
on grid operation. We tested the proposed approach using an
IEEE 2-bus test system in which the incoming Reg A signal
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is split into two input power signals, one for hydropower
and another for battery resources. Finally, we have evaluated
the performance of the proposed approach using performance
metrics, processing time, and dynamic power flow simulations.

II. RELATED WORKS AND OVERVIEW

In [7], the Pacific Northwest National Laboratory discussed
a road map to improve the cybersecurity of U.S. hydropower
fleets and identified existing challenges related to peer-to-peer
information sharing between facility owners, asset manage-
ment, and patch management. The authors of [8] presented
the impact of false data injection and denial-of-service attacks
on hydropower plants by modifying local signals that impacted
system stability through increased oscillation. The authors of
[9] developed a cybersecurity platform that detects network-
specific attacks and deploys honeypots, which simulate the
vulnerable programmable logic controller and Internet of
Things devices to disguise these devices from potential threats.
Although great efforts, the platform presented in [9] might fail
to detect stealthy cyberattacks that could have initiated through
internal threats, malware injection, and other evasion tech-
niques. This paper presents the potential solution to address
internal threats that will not be detected by the aforementioned
approach.
A. Frequency Regulation Market

Fig. 1 shows a high-level architecture that closely fits into
the PJM-based frequency regulation market, which utilizes a
Reg A signal and provides an efficient participation of BESS
and hydropower to meet the required power response. It is
divided into three major steps, as discussed here:

Step 1 (Reg A communication): The normalized Reg A,
(r1(t)), calculated from the ACE, is forwarded to the field
site using the DNP3 communication. Also, we assume that the
DNP3 traffic is secured with the TLS virtual private network
tunnel, as discussed in [3].

Step 2 (Allocate input-power response to hydropower):
Within the substation network, r1(t) is decrypted, and the
actual regulation power signal, R(t), is computed by multi-
plying r1(t) with a regulation participation factor (k). The
input power allocation for the hydropower, Phi(t), is computed
based on the assigned weight, w, as shown in Eq. (1). Note
that w is decided based on the capacity and power limits
of hydropower and BESS. Later, the power error, er(t), is
computed based on the difference between the hydropower
output, Pho(t), and hydropower input, Phi(t).

Phi(t) = w ×R(t) (1)

er(t) = Phi(t)− Pho(t) (2)

Step 3 (Allocate input-power response to BESS): The total
input power, Pbi(t), for the BESS is computed in Eq. (3) by
adding er(t) and the remaining Reg A component, (1−w)×
R(t).

Pbi(t) = er(t) + (1− w)×R(t) (3)
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Fig. 1: High-level architecture

B. Cyberattack Vectors

Considering the integration of TLS encryption-based secure
DNP3 traffic and the intent to execute stealthy attacks, we
assume that the attacker is able to access the control center
network and perform either of two types of data integrity
attacks:

1) Load/line tripping attack: This attack vector includes
unauthorized tripping of a physical relay to disconnect the
transmission line or load [6].

2) Signal-altering attack: This attack vector involves mod-
ifying the incoming Reg A signals using attack templates,
including pulse, ramp, and scaling attacks [6].

III. PROPOSED METHODOLOGY

A. Anomaly Detection Methodology

The proposed anomaly detector, deployed in the substation
(see Fig. 1), utilizes measurements collected from the plant
facility, which include time series of hydro output power,
battery output power, active power of bus 1, active power of
bus 2, and battery state of charge (SOC), to train classification
models (see Fig. 2). Different types of machine learning algo-
rithms, including support vector classifier (SVC), decision tree
(DT), random forest (RF), logistic regression (LR), k-nearest
neighbors (KNN), and artificial neural network (ANN), were
applied to develop classification models. We have generated
a dataset encompassing cyberattacks and normal operation
and labeled it during the offline process to improve computa-
tional efficiency of the applied supervised machine learning
algorithms. The labeled dataset is preprocessed to support
data cleaning and normalization, and 70% of the dataset is
utilized for training different machine learning algorithms.
During the offline testing of the remaining 30% dataset, the
most efficient machine learning algorithm is selected based on
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its performance and is integrated with rules-based mitigation
system (RBMS) during real-time testing.
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Fig. 2: Proposed anomaly detection and mitigation approach
B. RBMS

The RBMS applies corrective actions depending on the
duration of signal-altering attacks detected by the anomaly
detector. Note that we assume that the system can withstand
a N − 1 contingency, which could happen during a load or
tripping attack, obviating the need for mitigation actions in
such cases. Meanwhile, it is crucial for the anomaly detector
to accurately differentiate between signal-altering attacks and
other types of events for developing a robust multiclass clas-
sification model. For signal-altering attacks, we have defined
an attack duration threshold, λ, that could be defined by grid
operators or substation engineers during offline analysis based
on grid topology, operation devices, and other factors. Based
on λ, we have considered two types of mitigation.

1) Mitigation against short-term attack: In this scenario,
we compute the sliding average from the previous l number
of historical measurements that are not corrupted for the Reg
A signal and use the computed average instead of the live,
corrupted signal during the attack duration until the attack is
resolved.

2) Mitigation against long-term attack: This case is
considered when the attack is continued for a long period of
time, exceeding the defined λ. At this point, hydropower and
battery will switch to the local mode of operation that does
not respond to the Reg A signal and ancillary services will
not be provided by them.

IV. SYSTEM MODELING AND DATASETS GENERATION

A. System Modeling
For a case study, we modeled an IEEE two-bus test system

using the Python-integrated open-source Distribution System
Simulator (OpenDSS). In this configuration (see Fig. 3), a
battery of maximum capacity of 3.9 MW and rated voltage of
600 V was connected to a DC/AC boost converter to control

charging and discharging of the battery [10]. The hydropower
model of rating 30 MVA and 13.8 kV initially provided a
total active power of around 15 MW to two static PQ loads
(7.5 MW each) connected at bus 1. Also, a Python-based co-
simulation framework, openDSS-wrapper [11], was utilized to
perform dynamic simulation based on the incoming Reg A
signal, dated May 4, 2014, as provided in [2].

7.5 MW 

ZL

Dynamic 
Load model

Inject
 Preq, Qreq

Bus #1 Bus #2

Active BESS system

DC/AC

7.5 MW 

Reg A signal 

30 MVA, 13.8 kV

Reg A

Hydropower 
System

Cyber Attacks Cyber Attacks Control Signal Control Signal 

LB1 LB2

CB1

CB2

Fig. 3: System configuration

TABLE I: Scenarios for training and testing models
Cyberattacks Parameters Cases

Pulse attacks duty cycle=[1, 2, 3]
time period=[1, 2, 3, 4] 12

Ramp attacks Slope=[1, 2, 3, 4]
[-1, -2, -3, -4] 8

Scaling attacks [-1, 1] 2
Load tripping LB1 1
Line tripping CB2 1

Note that we assumed that the battery had a sufficient power
capacity to provide the required input response in a negligible
ramping time. Further, we assigned k = 10 for the Reg
A signal and w = 7 (70%) during this simulation. In this
configuration, a dynamic PQ load model connected to bus 2
was assigned to mimic the required active power of the Reg
A signal, and hydropower and battery provided output power,
according to the calculated Pho and Pbi.

1) Dataset generation

For generating datasets, we varied the total base load at
bus 1 from 14 MW to 18 MW in a step increase of 0.2 MW
to create 20 operating points while maintaining the balance
of generation and load. During pulse attack, we considered
a pulse signal with a unit magnitude with three duty cycles
(1, 2, 3) and four time periods (1, 2, 3, 4). In case of ramp
attack, four positive and negative ramping steps per second
(slope) were considered to gradually increase or decrease the
incoming Reg A signal. A load-tripping attack was simulated
by disconnecting the circuit breaker, LB1, to remove 7.5
MW of load on bus 1. During a line-tripping attack, the
battery was removed by disconnecting the circuit breaker,
CB2, at bus 2. While utilizing these 24 cases (see Table I),
we performed a binary classification with two labels: attack
and normal. We created six labels for multiclassification that
include normal operation, pulse attack, ramp attack, scaling
attack, load tripping, and line tripping.
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V. RESULTS AND DISCUSSIONS

A. Detection Evaluation
We utilized the Python-based library Scikit-Learn and the

TensorFlow platform for training and testing these machine
learning algorithms. During binary classification (see Fig. 4)
using 6,726 samples, we observed that the applied ANN
showed a better performance with an accuracy of 96.17%,
recall of 86.48%, precision of 97.86%, and F1 score of
91.10%. The RF and KNN showed a similar performance,
with an accuracy of around 95.6% and F1 score of 90%.
We also observed that the LR failed to detect cyberattacks
during the testing phase and exhibited a poor performance
with an accuracy of 85.69%, recall of 49.90%, precision of
42.91%, and F1 score of 46.14%. We also computed the fitting
time during model training and prediction time during testing
of these algorithms for binary classification (see Table II).
Although the ANN takes a longer time, around 412 seconds,
during model training, the computed prediction time is around
0.76 second/sample for the testing dataset. Note that the tested
ANN model was trained for 100 epochs, consisted of 2 hidden
layers with 128 neurons in each hidden, layer, with an initial
learning rate set to 0.005.
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Fig. 4: Performance of machine learning during binary classi-
fication

During multiclass classification (see Fig. 5), the applied RF
outperformed the other algorithms, especially ANN, with an
accuracy of 82.39%, recall of 79.27%, precision of 84.25%,
and F1 score of 81.50%. Note that the prediction time (see
Table III) of the applied machine learning algorithms is within
1 second, except in the case of SVC, which is well within the
timing requirement of Reg A signal coming every 2 seconds
to the hydropower plant and BESS.

TABLE II: Processing time during binary classification
Time (sec) ANN KNN RF DT SVC LR
Prediction

Time 0.764 0.243 .41 0.003 7.55 0.005

Fitting
Time 411.82 0.058 13.42 0.12 96.16 1.976

B. Mitigation Evaluation
In the period prior to the attack, we observed that the

hydropower and battery systems were able to provide the
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Fig. 5: Performance of machine learning during multiclass
classification
TABLE III: Processing time during multiclass classification
Time (sec) ANN KNN RF DT SVC LR
Prediction

Time 0.594 0.29 0.5 0.0029 20.393 0.0054

Fitting
Time 381.32 0.061 16.186 0.18 242.38 1.25

required input power response based on the incoming Reg A
signal. In this case, data integrity attacks were initiated at the
238th second, and the RBMS was triggered in the next cycle
(240th second). Fig. 6 shows the performance of RBMS during
pulse, ramp, and scale attacks for a short-term duration of 14
seconds, between the 238th and 262nd seconds. In this case, we
applied short-term mitigation, as we assumed λ = 15 seconds
and the duration of attacks was within the defined threshold.
In this scenario, the computed sliding average value (l = 10)
was applied until the attack stopped at the 262nd second.
This mitigation strategy minimized the transient instability that
could be injected into the power grid due to these attacks.

During the long-term scenario (see Fig. 7), these attacks
continued throughout the simulation, exceeding the defined
λ. In this case, hydropower and battery provided the same
responses initially, as discussed in the previous scenario, and
later switched to a local mode after the 262nd second and did
not provide any output response to the incoming Reg A signal.
Without mitigation, both hydropower and battery followed the
compromised Reg A signal that can affect the reliability and
economics of localized generation resources.

VI. CONCLUSION

This paper presented the machine-learning-based anomaly
detection system and RBMS to address data integrity attacks
during the participation of a hydropower-integrated battery
system in the PJM-based frequency regulation market. This
research does not include existing security measures employed
by PJM to counter these attacks. The proposed anomaly
detector utilizes incoming measurements from a plant facility
to train different machine learning algorithms for both binary
and multiclass classifications and identify different types of
cyberattacks. The applied RBMS offers short-term and long-
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Fig. 6: Mitigation against pulse, ramp, and scale attacks for
short-term duration

term mitigation actions tailored to the duration of applied
data integrity attacks. Simulation-based testing and evaluation
showed that the applied ANN showed a better performance
during binary classification; however, for multiclass classi-
fication, RF proved to be the more efficient choice. The
integrated mitigation strategies effectively minimize transient
system instability during cyberattacks, ensuring that the hy-
dropower and BESS are no longer able to participate in the
regulation market during prolonged data integrity attacks on
incoming regulation signals. Future efforts include: (1) testing
the proposed methodology in a large-scale power system to
further evaluate its efficiency, and (2) applying unsupervised
approaches to detect unknown attacks and advanced persistent
threats in the grid network.
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