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METAL CHALCOGENIDES USING ACTIVATED REACTANT SOURCES

By

Billy Jack Stanbery

May 2001

Chairman:  Timothy J. Anderson
Major Department:  Chemical Engineering

A novel rotating-disc reactor has been designed and built to enable

modulated flux deposition of CuInSe2 and its related binary compounds. The

reactor incorporates both a thermally activated and a novel plasma activated

sources of selenium vapor, which have been utilized for the growth of epitaxial

and polycrystalline thin-film layers of CuInSe2. A comparison of the different

selenium reactant sources has shown evidence of increases in its incorporation

when using the plasma source, but no measurable change when the thermally

activated source was used. It is concluded that the chemical reactivity of
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selenium vapor from the plasma source is significantly greater than that

provided by the other sources studied.

Epitaxially grown CuInSe2 layers on GaAs, ZnTe, and SrF2 demonstrate

the importance of nucleation effects on the morphology and crystallographic

structure of the resulting materials. These studies have resulted in the first

reported growth of the CuAu type-I crystallographic polytype of CuInSe2, and

the first reported epitaxial growth of CuInSe2 on ZnTe.

Polycrystalline binary (Cu,Se) and (In,Se) thin films have been grown and

the molar flux ratio of selenium to metals varied. It is shown that all of the

reported binary compounds in each of the corresponding binary phase fields can

be synthesized by the modulated flux deposition technique implemented in the

reactor by controlling this ratio and the substrate temperature. These results

were employed to deposit bilayer thin films of specific (Cu,Se) and (In,Se)

compounds with low melting point temperature, which were used to verify the

feasibility of synthesizing CuInSe2 by subsequent rapid-thermal processing, a

novel approach developed in the course of this research.

The studies of the influence of sodium during the initial stages of epitaxy

have led to a new model to explain its influences based on the hypothesis that it

behaves as a surfactant in the Cu–In–Se material system. This represents the first

unified theory on the role of sodium that explains all of sodium’s principal

effects on the growth and properties of CuInSe2 that have been reported in the

prior scientific literature.
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Finally, statistical mechanical calculations have been combined with

published phase diagrams and results of ab-initio quantum mechanical

calculations of defect formation enthalpies from the literature to develop the first

free energy defect model for CuInSe2 that includes the effects of defect associates

(complexes). This model correctly predicts the α/β ternary phase boundary.
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CHAPTER 1 
REVIEW OF PRIOR RESEARCH:

CIS MATERIALS FOR PHOTOVOLTAIC DEVICES

Any legitimate review of the prior research in this long-studied field must

of necessity reference a number of excellent reviews already published in the

literature. Nevertheless, the field is rapidly progressing and this critical review

strives to highlight from this author's perspective both some of those research

results that have been previously reviewed and those too recent to have been

available to prior authors. The earliest comprehensive review of chalcopyrite

semiconducting materials [1] by Shay and Wernick is a classic reference in this

field. It focused primarily on the physical and opto-electronic properties of the

general class of I–III–VI2 and II–IV–V2 compound semiconductors. More recent

reviews specifically oriented towards CIS materials and electronic properties [2-6]

are also recommended reading for those seeking to familiarize themselves with

key research results in this field.

There are also a number of excellent books and reviews on photovoltaic

device physics [7,8], on the general subject of solar cells and their applications

[9,10], and others specifically oriented towards thin-film solar cells [11,12], the
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class to which CIS solar cells belong. Finally, a non-technical but concise and

current overview of solar cell technology was recently published by Benner and

Kazmerski [13].

The first solid-state photovoltaic (PV) device was demonstrated in 1876

and consisted of a sheet of selenium mechanically sandwiched between two

metal electrodes [14]. The addition of copper and indium and creation of the first

CIS PV device occurred almost 100 years later in 1973 [15], when a research team

at Salford University annealed a single-crystal of the ternary compound

semiconductor CuInSe2 in indium. Almost all subsequent Cu–In–Se thin-film

deposition process development for PV device applications have sought to make

the compound CuInSe2 or alloys thereof, but in fact generally result in a

multiphase mixture [16], incorporating small amounts of other phases.

Researchers have not always been careful to reserve the use of the compound

designation CuInSe2 for single-phase material of the designated stoichiometry,

an imprecision that is understandable in view of the difficulty in discriminating

CuInSe2 from some other compounds in this material system, as will be

discussed in detail elsewhere in this treatise. The compound designations such as

CuInSe2 will be reserved herein for reference to single-phase material of finite

solid solution extent, and multiphasic or materials of indeterminate structure

composed of copper, indium, and selenium will be referred to by the customary

acronym, in this case CIS.
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This review begins with an overview of the physical properties of the

principal copper ternary chalcogenides utilized for PV devices, including their

thermochemistry, crystallography, and opto-electronic properties. All state-of-

the-art devices rely on alloys of these ternary compounds and employ alkali

impurities, so the physical properties and effects of these additives will be

presented, with an emphasis on their relevance to electronic carrier transport

properties. This foundation will provide a basis from which to address the

additional complexities and variability resulting from the plethora of materials

processing methods and device structures which have been successfully

employed to fabricate high efficiency PV devices utilizing absorbers belonging to

this class of materials.

Phase Chemistry of Cu–III–VI Material Systems

Significant technological applications exist for Ag–III–VI2 compounds as

non-linear optical materials [17], but almost all PV devices being developed for

solar energy conversion that utilize ternary chalcogenides are based on the Cu–

III–VI material system. Although the reasons for this may have been initially

historical, this review will demonstrate that fundamental physical properties of

these materials render them uniquely well suited, and underlie the research

community's continuing development of them, for PV applications.
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The Cu–In–Se (CIS) Material System

The thermochemistry of the Cu–In–Se ternary material system has been

intensely studied, but significant inconsistencies abound and the incompleteness

of the extant scientific literature will become apparent to the reader. One

superficial inconsistency is in the Greek letter designations employed to describe

the various phases, but even today there persist more substantive disagreements,

for example, on the number of phases found in the ternary phase field. To avoid

confusion all discussions herein that employ Greek letter designations to identify

thermodynamic phases will use the identifiers from the work by Boehnke and

Kühn [18].

Experimental studies that require bulk synthesis are extraordinarily

difficult because of the high vapor pressure of selenium and reactivity of copper

with quartz ampoules typically used [19]. It is therefore difficult to insure that

the thermodynamic system remains closed during synthesis and that the

resulting constitution accurately reflects the starting material ratios. Thus it is

difficult to judge whether syntheses intended to lie on the Cu2Se – In2Se3

pseudobinary section remain so, hence whether that section is actually an

equilibrium tie-line. Although considerable progress has been made in the bulk

synthesis of these compounds [5], uncertainties such as these persist to this day

in efforts to assess the phase diagram.

The earliest published study of the Cu–In–Se phase diagram [20] was

restricted to a segment of the presumably  pseudobinary section between the
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compounds Cu2Se and In2Se3, and centered on the equimolar composition

corresponding to CuInSe2. Several key features of Palatnik and Rogacheva’s

results have been confirmed in subsequent studies of this system, albeit with

different values of the critical point temperature and compositions. First,

congruent melting of the solid compound with a composition near that of

CuInSe2 at a temperature somewhat less than 1000°C (986°C) is observed.

Second, a congruent first-order solid-solid (α —> δ) phase transition at a lower

temperature (810°C) of that high-temperature phase via a crystallographic order-

disorder transition between the sphalerite structure (δ phase) and the

chalcopyrite structure (α phase) is observed. Third, temperature-dependent

extensions of the phase homogeneity range of the chalcopyrite structure to

somewhat indium-rich compositions, but none towards copper-enrichment is

observed. Fourth, peritectoid decomposition of the sphalerite phase at its lowest

stable temperature into the chalcopyrite and a relatively indium-rich defect-

tetragonal structure is observed.

Extension of the characterization of the Cu–In–Se ternary phase field to

compositions off the Cu2Se–In2Se3 section was finally published in the 1980's by

three groups [18,21,22] although there are significant discrepancies between

them. Boehnke and Kühn find four phases on the indium-rich side of the

pseudobinary section between the compositions of CuInSe2 and In2Se3, whereas

Fearheiley and coworkers report seven phases based primarily on

crystallographic studies by Folmer et al. [23]. Bachmann and coworkers alone
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find a congruently-melting copper-rich compound on this section with a

composition Cu5InSe4 (analogous to the mineral bornite, Cu5FeS4), reported to be

unstable at room temperature [24]. Bachmann and coworkers found two critical

point compositions for congruent melting of the solid phases on the indium-rich

side of this section: at 55% In2Se3 mole fraction (corresponding to about 22 at.%

copper) and at 75% In2Se3 mole fraction (corresponding to the compound

CuIn3Se5), whereas the others find only one. More recent study suggests that

there is only one congruently melting composition on this segment of the

liquidus at 52.5 mole% In2Se3 [25]. These and other studies have been assessed by

Chang and coworkers [26] resulting in the T–X section of the phase diagram

shown in Figure 1-1, which will be referenced in further discussions throughout

this treatise.

Another important study has been conducted more recently which

focused on a relatively restricted composition and temperature range directly

relevant to typical CIS photovoltaic device materials and processing [27]. Its most

important conclusions were that the composition of the α–δ congruent phase

transition occurs at 24.5 at.% Cu (50.8 mole% In2Se3) rather than the

stoichiometric composition of CuInSe2, and that the Cu2Se – CuInSe2 phase

boundary at room temperature corresponds to this same composition. Their data

also confirm the retrograde phase boundary between the α–phase and β–phase at

temperature below the α+β–>δ eutectoid transition temperature (which they find

to be 550°C, near Rogacheva's but much lower than Boehnke's and Fearheiley's
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results), with this boundary at room temperature at 24.0 at.% Cu (51.6 mole%

In2Se3).

Figure 1-1 Assessed phase diagram along the Cu2Se – In2Se3 pseudobinary
section of the Cu–In–Se chemical system [26].

The Cu–Ga–Se (CGS) Material System

The phase diagram of the Cu–Ga–Se ternary material system remains less

well-characterized and even more controversial than that of Cu–In–Se [28]. The

earliest detailed phase equilibrium study [29], once again restricted to the

presumably pseudobinary Cu2Se – Ga2Se3 section within the ternary phase field,
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reported the existence of one high-temperature disordered phase and 4 room-

temperature stable phases. Two of those latter phases were solid solutions based

on the terminal binary compounds, one was a phase (β) with the CuGaSe2

composition as its copper-rich boundary, and the last was a relatively indium-

rich phase (δ) with a layered structure. The only other comprehensive study of

this ternary phase field [30] failed to confirm the existence of that δ phase or the

associated compound CuGa5Se8.

Both studies, however, found that the stoichiometric compound CuGaSe2

has a chalcopyrite structure and does not melt congruently, but instead

undergoes peritectic decomposition at a temperature of 1050–1030°C. The earlier

study by Palatnik and Belova [29] characterized the resulting gallium-rich solid,

representing the copper-rich boundary of the high-temperature (γ) phase, as the

compound Cu9Ga11Se21 (55 mole% Ga2Se3) possessing a disordered sphalerite

crystal structure. They found the associated liquid composition at the peritectic

to be 38 mole% Ga2Se3.

A more recent study of CuGaSe2 crystal growth by the gradient freeze

technique [28] provides evidence contradictory to the earlier reports that the

compound decomposes peritectically and suggests instead that it decomposes

congruently and that the earlier studies mistook a solid-phase transformation

which they find at 1045°C for peritectic decomposition. Resolution of these

discrepancies will require further scientific inquiry, and a comprehensive

assessment is needed.
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Perhaps most importantly for photovoltaic-related process development is

the consensus between both of these studies of the phase diagram that the

homogeneity range of the chalcopyrite phase extends significantly to indium-rich

compositions along this section as it does in CuInSe2, but not measurably

towards compositions more copper-rich than that of stoichiometric CuGaSe2.

The Cu–In–S (CISU) Material System

Unlike the other two ternary copper chalcopyrites discussed herein,

CuInS2 occurs naturally, as the mineral roquesite. The earliest comprehensive

study of the Cu2S – In2S3 section was conducted by Binsma and coworkers [31].

They found four room-temperature phases, two corresponding to the terminal

binaries and two others containing the compounds CuInS2 (γ) and CuIn5S8 (ε).

They did not report the low-temperature homogeneity range of these phases

other than to note that for CuInS2 it was below their detection limits. An earlier

study, however, reported the homogeneity range of γ–CuInS2 to be 50–52 mole%

In2S3 and that of ε–CuIn5S8 from the stoichometric composition to almost 100%

In2S3 [32]. At higher temperature, but below the chalcopyrite to sphalerite

congruent solid phase order–disorder transition temperature at 980°C, Binsma

found that the homogeneity range of γ–CuInS2 extended to copper-rich

compositions, unlike the ternary phases containing CuInSe2 and CuGaSe2. A

third solid-phase transition of the sphalerite structure was detected at 1045°C,

just below the congruent melting temperature of 1090°C.



10

Much of the thermochemical data published on the Cu–In–S ternary

system prior to 1993 has been incorporated into an assessment published by

Migge and Grzanna [33]. A more recent experimental study of the CuInS2 – In2S3

subsection of the ternary phase field [34] found similar solid phase structures

and transition temperature as those reported by Binsma, including the congruent

melting of the indium-rich phase with a spinel structure and compositions

around that of the compound CuIn5S8. They also found, however, an

intermediate phase with a fairly narrow homogeneity range around the

62.5 mole% In2S3 composition of the compound Cu3In5S9, which was reported to

exhibit a monoclinic structure.

Another recent study extended the Cu–In–S ternary phase field

characterization to the CuS – InS join [35], and confirmed that the Cu2S – In2S3

pseudobinary section appears to be an equilibrium tie-line in this ternary phase

field. They find that the room-temperature homogeneity domain for the

roquesite γ–CuInS2 phase is limited to 52 mole% In2S3 but extends towards CuS

enrichment as much as six mole%. They also find that the two indium-rich

ternary phases on the  pseudobinary section described in the previous paragraph

do not extend to this join.

Crystallographic Structure of the Ternary CIS Compounds

This section is limited to a discussion of those compounds that are stable

at room temperature, with the exception of δ–CIS. This is not a particularly
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serious restriction for subsequent discussions of thin film growth techniques,

since all of those under development for device applications take place at

temperature well below the solid-phase transition and decomposition

temperature of all of these compounds, with the possible exception of the β to

δ-CIS transition as discussed in the previous section.

αααα–CIS (Chalcopyrite CuInSe2)

The crystal structure of α–CIS is well established to be chalcopyrite,

corresponding to the space group  I42d . It is an adamantine structure, as are δ-CIS

and β-CIS, characterized by tetrahedral coordination of every lattice site to its

nearest neighbors. It is distinguished from the zincblende structure of the binary

Grimm-Sommerfeld compounds [36] by ordering of its fcc cation sublattice into

two distinct sites, one occupied in the ideal structure by copper and the other by

indium (Figure 1-2 (a)), and valency considerations require exactly equal

numbers of each. Single-phase homogeneous crystals will for entropic reasons

always exhibit some degree of disorder at room temperature irrespective of the

deviation of their composition from the stoichiometric compound CuInSe2,

although such deviations will always increase that disorder. The chalcogenide

atoms are located on another fcc lattice referred to as the anion sublattice. The

two sublattices interpenetrate such that the four nearest neighboring sites to each

cation site lie on the anion sublattice (Figure 1-2(b)) and conversely the four

nearest neighboring sites to each anion site lie on the cation sublattice (Figure
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1-2(c)). Each anion is surrounded by two Cu and two In site types, normally

occupied by their respective atoms.

Figure 1-2 Schematic representation of CuInSe2 chalcopyrite crystal structure:
(a) conventional unit cell of height c, with a square base of width a;
(b) cation-centered first coordination shell; (c) anion-centered first coordination
shell showing bond lengths dCu–Se and dIn–Se.

The very different chemical nature of the copper and indium atoms result

in bonds between each of them and their neighboring selenium atoms with very

different ionic character and lengths [37]. This bond-length alternation has the

electronic effect of reducing the bandgap energy of the compound with the

chalcopyrite structure, relative to that of the ternary sphalerite structure with

identical chemical composition, since the latter has a disordered cation sublattice.

This bandgap reduction effect is known as optical bowing.

(b)

Cu

Se

In

c

a (c)

dIn–Se

dCu–Se

(a)
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Bond-length alternation also has the effect of making the lattice constants

of the chalcopyrite structure anisotropic in most cases. Binary compounds with

the zincblende structure and the elemental compounds with a diamond structure

require only one lattice constant to quantitatively characterize the crystal

dimensions. The conventional unit cell of the chalcopyrite structure as shown in

Figure 1-2 is equivalent to two cubic zincblende unit cells with sides of length a

stacked in the c-direction and either compressed or dilated along that axis by a

factor η ≡ c/2a, known as the tetragonal distortion.

The lattice constants of CuInSe2 have been widely studied but the early

results by Spiess and coworkers [38] are in excellent agreement with the most

recent measurements of bond lengths by EXAFS [39]. Those values are a = 5.784 Å,

c = 11.616 Å (and hence η = 1.004), dCu–Se = 2.484 Å, and dIn–Se = 2.586 Å. A more

comprehensive compilation of the various reports of lattice constant

measurements for CuInSe2 may be found in Chang's dissertation [40].

δδδδ–CIS (Sphalerite)

The δ–CIS phase is unstable at room temperature, and there is wide

agreement that it forms from either solidification over a wide composition range

of the ternary liquid or a first-order solid-phase transformation from either the

α– or β–CIS phases or mixtures thereof (see Figure 1-1). The δ–CIS single-phase

domain exhibits a congruent melting composition, for which the values of

1005°C at 52.5 mole% In2Se3 [25] are accepted here. At lower temperature the
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domain of δ–CIS is limited by the eutectoid at 600°C [27] where it decomposes

into a mixture of α– and β–CIS. There remains inconsistency between the various

studies over the compositional range of single-phase stability in the relevant

high-temperature regime. Fearheiley's phase diagram [22] posits that this phase

is limited on the copper rich side by a eutectic associated with the putative

compound Cu5InSe4, and stable to much higher In2Se3 mole fractions than found

by Boehnke and Kühn [18], or than shown in Figure 1-1.

The congruent first-order α–δ solid phase transition at 24.5 at.% Cu (50.8

mole% In2Se3) and 809°C [27] corresponds to the crystallographic order/disorder

transformation from the chalcopyrite to sphalerite structure. The sphalerite

structure is based on the zincblende unit cell (and hence does not exhibit

tetragonal distortion), with no long-range ordering of copper and indium atoms

on the cation sublattice. The persistence of short-range ordering in δ–CIS,

specifically the dominance of 2 In + 2 Cu tetrahedral clusters around Se anions as

found in α–CIS, has been theoretically predicted [41].

ββββ–CIS (Cu2In4Se7 and CuIn3Se5)

It is doubtful that there is any part of the ternary Cu–In–Se phase diagram

that is more controversial and simultaneously more important to understanding

the operation of CIS PV devices than the indium-rich segment of the pseudobinary

section containing the β–CIS phase domain shown in Figure 1-1. There is no

agreement between the many studies of these relatively indium-rich materials on
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the phase boundaries' compositions, the number of different phases that lie

between CuInSe2 and CuIn5Se8 (γ phase) or their crystallographic structure(s).

The situation in this field is very similar to that found in the study of the

metal oxides, wherein there is considerable controversy as to whether

nonstoichiometric phases are single phases with broad ranges of compositional

stability, or a closely spaced series of ordered phases with relatively narrow

ranges of stability [42, § 15.2-15.3.].

The existence of the peritectoid decomposition reaction of δ–CIS to the α

phase and another In2Se3-rich solid phase requires that between the compositions

of CuInSe2 and In2Se3 there lies at least one other distinct phase on their tie-line

to satisfy the Gibbs phase rule. A review by Chang [40] finds at least eight

different compounds (Cu2In4Se7, Cu1In3Se5, CuIn5Se8, Cu8In18Se32, Cu7In9Se32,

Cu14In16.7Se32, Cu2In3Se5, Cu3In5Se9), and structures based on eight different space

symmetry groups (  I4,  I42m,   P23, Pm3,   P432, P43m,  Pm3m,  P42c ) have been

proposed for β–CIS (although not all these compounds lie on the pseudobinary).

Most of these proposed structures are members of the group of adamantine

superstructures derived from the cubic diamond lattice structure [43]. Recently a

twinned structure that does not correspond to any of the 230 regular space

groups [44,45] was also proposed.

Various nomenclatures are used by different researchers to describe the β–

CIS compounds. They are sometimes referred to as P-chalcopyrite, a term coined

by Hönle and coworkers when they concluded that the structure possesses  P42c



16

symmetry [46]. These structures are also sometimes referred to generically as

"Ordered Defect Compounds" (ODC's) but it is important to understand that

"ordering" in the context of this terminology refers to the regular arrangement of

preferred crystallographic sites on which defects are found, which alters the

symmetry properties of the lattice. The defect distributions on those preferred

sites in equilibrium might not have any long-range spatial order, although their

statistical occupation probabilities could nevertheless be well defined.

It is beyond the scope of this review to attempt any resolution of this

continuing controversy. Yet numerous studies of polycrystalline CIS [47], CISU

[48], and CIGS [49] PV absorber films have shown that the composition at the

surfaces of those films which ultimately yield high efficiency devices exhibits a

[I]/[III] ratio of about 1/3, corresponding to the compound CuIn3Se5 (except for

nearly pure CGS where the ratio rises to about 5/6 [49]). Resolution of these

crystallographic and phase boundary uncertainties is essential to testing a recent

theory that this behavior results from copper electromigration limited by the

occurrence of a structural transformation at those compositions [50]. The

existence of such a transformation is consistent with Fearheiley's evidence (which

has not been confirmed) that the compound CuIn3Se5 melts congruently [22] and

the crystallographic studies by Folmer [23] that find additional reflections in XRD

spectra for pseudobinary compositions of 77 mole% In2Se3 or greater. The results

of a recent EXAFS study directly prove that the crystallographic structure of



17

CuIn3Se5 (75 mole% In2Se3) is defect tetragonal, containing a high concentration

of cation site vacancies [51].

γγγγ–CIS (CuIn5Se8)

Folmer has pointed out [23] that the one common denominator between

all of the structures found along the pseudobinary Cu2Se–In2Se3 section is the

persistence of a close packed lattice of selenium atoms. It is well known that

different stacking sequences of such planes yields different crystallographic

structures, for example the hexagonal close-packed (…ABAB…) and the face-

centered cubic (…ABCABC…), and that there are an infinite number of possible

stacking arrangements [52, § 4]. In cubic notation, these close-packed planes of

the fcc structure are the {111} family (corresponding to the {221} planes of the

chalcopyrite structure because of the latter's doubled periodicity along the c-

axis).

Although the terminal indium binary compound In2Se3 on the

pseudobinary section has been reported to possess several polymorphic

structures, the low temperature phases are characterized by hexagonal stacking

of the close-packed planes of selenium atoms on the anion sublattice [53]. Hence

the existence of a structural transformation between the cubic stacking

arrangement of the fcc anion sublattice of the chalcopyrite α–CIS structure and the

hexagonal stacking of In2Se3 at some point along that segment of this section is

reasonable.  The crystallographic studies by Folmer [23] described previously
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find additional reflections in XRD spectra that they index as (114) and (118),

which represents evidence of at least partial hexagonal stacking of the close-

packed layers of selenium anions, yielding a layered structure, presumably

containing a high density of cation vacancies and antisites.

The segment on the Cu2Se–In2Se3 section containing ≥ 77 mole% In2Se3 is

assigned in Figure 1-1 to a single γ–CIS phase and a two-phase mixture of

γ-CIS + In2Se3. Folmer concluded that there are three phases (excluding the

terminal In2Se3) instead of one. Given the diversity of wurtzite-derived ternary

defect adamantine structures with a hexagonal diamond structure [43] the

crystallographic data do not provide clear evidence in favor of either a few

distinct phases in a closely-spaced series or a pseudo-monophasic bivariant

system [54] characterized by coherent intergrowth of two phases.

Metastable Crystallographic Structures — CuAu–ordering

Inasmuch as the chalcopyrite structure of α–CIS is itself an ordered variant

of the sphalerite structure of δ–CIS, the issue of alternative ordering in the CIS

material system has long been an active area of study. Vacancy ordering in

conjunction with the indium-rich β–CIS phase has been described in an earlier

section, but here alternative ordering of materials with a composition within the

equilibrium stability range of α–CIS is discussed.

As early as 1992 a theoretical study by Wei and coworkers [41] of the α/δ–

CIS order-disorder transition calculated that the energy of formation of the CuAu



19

(CA) crystallographic structure (Figure 1-3) differed by only 0.2 meV/atom from

that of the chalcopyrite (CH) at T=0. In 1994 Bode [55], however, reported

evidence of CuPt–ordering (CP) from TEM studies of copper-rich CIS films. CuPt–

ordering of III–V alloys has been widely observed since it was first reported in

the AlGaAs system [56]. In CIS the calculated formation energy difference

between the CP and CH structures (at zero Kelvin) was more than 25 times greater

than the difference between that of CA and CH–ordered crystals [41].

The equilibrium CH–CIS crystallographic structure shown in Figure 1-3(a)

consists (in cubic notation) of alternating (201) planes of Cu and In atoms on the

cation sublattice. The CA–CIS structure shown in Figure 1-3(b) consists of

alternating (100) planes and CP–CIS structure consists of alternating (111) planes

[57]. Consequently, each selenium atom in both the CH and CA structures is

surrounded by 2 copper and 2 indium atoms in its first coordination shell

whereas in the CP structure each selenium is surrounded by either (3 Cu + In) or

(3 In + Cu). This variation in local atomic structure is the fundamental reason for

the similar formation energies of the CH and CA structures and their mutual

disparity from that of the CP structure.

The apparent doubling of the periodicity along {111} (cubic notation)

planes that was observed in the study that reported CP–CIS [55] was found in

polycrystalline samples made by codeposition of Cu, In, and Se with an overall

composition in the mixed β-Cu2-δSe + α-CuInSe2 phase domain of the equilibrium

phase diagram (Figure 1-1). Their interpretation has been recently challenged
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[58] based on the results of a careful study of CIS grown epitaxially on GaAs with

a similar copper-rich composition, where it is shown that coherent intergrowth of

a β–Cu2-δSe secondary phase can create an apparent doubling of lattice

periodicity and thence of CuPt–ordering in copper-rich CIS. Coherent

intergrowth of β–Cu2-δSe and CuInSe2 has been suggested by other researchers to

be an energetically favorable strain relief mechanism [59] since these two

compounds share isomorphic, nearly identical Se sublattices.

CuAu–ordering (CA) of the Cu–III–VI2 compounds was first detected

experimentally by TEM in CuInS2 [57] indium-rich MBE–grown epilayers where

the formation of a secondary Cu2-δS phase is unlikely. Recently CA–ordering has

been demonstrated in CuInSe2 in both copper and indium–rich materials grown

by Migration-Enhanced Epitaxy (MEE) [60] using XRD, TEM, and Raman scattering

detection techniques [61]. Further studies of the electronic and optical properties

of CA–CIS are needed to assess their impact on PV device absorber materials,

which very likely contain nanoscale domains of this crystallographic polytype.

Defect Structure of αααα–CIS

The study of the defect structure of α–CIS has probably generated more of

the literature on α–CIS than any other fundamental scientific issue. Pure α–CIS is

amphoteric: its conductivity type and carrier density varies with composition. It

is incorrect to say, however, that these electronic transport properties in real

materials are determined by composition alone since the defect structures that
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must be controlling them are empirically found to vary dramatically between

compositionally indistinguishable materials.

a) b)
Cu

In

Se

Figure 1-3 Comparison of the crystallographic unit cells of CuInSe2 polytypes:
a) chalcopyrite (CH) structure, and b) CuAu (CA) structure.

Conceptually the densities of defect structures found in a single-phase

material system in equilibrium must be determined uniquely by the composition,

temperature, and pressure, else the Gibbs potential, a function of these variables,

is not a legitimate state function for the system. The only intellectually

satisfactory resolution of this conundrum is to conclude that complete

thermodynamic equilibrium is not often found in real CIS materials. As described

in the previous section, recent calculations and experimental results confirm
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[61,62] that the free energy associated with the formation of some defect

structures is so small that little increase in thermodynamic potential results, and

hence there is insufficient driving force to ensure their elimination under many

synthesis conditions. Furthermore, formation of many atomic defects requires

bond breaking and atom transport processes. At low deposition or synthesis

temperature it is expected that these processes will limit the approach to

equilibrium. Comparison of theory with experiment in this field absolutely

demands constant awareness of the ubiquity of metastable defects in real CIS

materials and thus great caution when generalizing limited experimental data.

The starting point for atomistic analyses of the defect chemistry of CuInSe2

is the paper by Groenink and Janse [63] in which they outline a generalized

approach for ternary compounds based on elaboration of an earlier model

developed specifically for spinels by Schmalzried [64]. The number of arbitrary

combinations of possible lattice defects (vacancies, antisites, and interstitials) in a

ternary system is so great that useful insight can only be gained by some

approximation. Antisite defects created by putting anions on cation sites or vice

versa are reasonably neglected because of their extremely high formation energy.

The requirement that the crystal as a whole is electrically neutral also leads

naturally to Schmalzried's assumption that for any given combination of the

thermodynamic variables the concentrations of some pair of defects with

opposite signs will be much higher than the concentrations of all other defects.

Groenink and Janse referred to these as the "majority defect pairs." It is important
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to note that their treatment assumes that these pairs behave as non-interacting

point defects, hence in this context these are "pairs" only in the sense that they

occur in roughly equal numbers. It is also significant that this pair dominance

implies those conduction processes in these materials should inevitability be

characterized by significant electrical compensation, deep level ionized impurity

scattering, or both.

The generalized approach by Groenink and Janse was applied specifically

to I–III–VI2 compounds by Rincón and Wasim [65] who derived the proper form

for the two parameters most useful for quantifying the deviation of the

composition of these compounds or their alloys from their ideal stoichiometric

values:

  
∆m =

I[ ]
III[ ]

− 1 molecularity deviation

  
∆s =

2 * VI[ ]
I[ ] + 3 * III[ ]

− 1 valence stoichiometry deviation

Note that in the notation employed in these equations [I], for example, denotes

the Group I atom fraction. Since [I]+[III]+[VI]=1, these two deviation variables

uniquely specify the solid solution composition.

In the same way that a sum rule enables the composition of any ternary

mixture to be specified completely using only two of its three fractional

compositions, the composition can alternatively be specified by the two variables

  ∆m and   ∆s. They are coordinates within the ternary I–III–VI composition

triangle of the point corresponding to a compound's actual composition in a
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coordinate system whose origin is at the point of I–III–VI 2 stoichiometry and

whose axes are along (molecularity) and transverse (valency) to the I2VI–III2VI3

section. Within the composition range where the I–III–VI2 compound or alloy

remains single phase, these variables may be properly viewed as analogous to

the "normal coordinates" of a dynamical system in the Lagrangean formulation

of the physics of motion. This coordinate system divides the ternary composition

triangle into four quadrants and the analysis of Rincón and Wasim [65] shows

that the 18 ionized point defects allowed in these approximations yield 81

(  = 9 * 9 ) "majority defect pairs," and which might dominate in each of the four

quadrants or at their boundaries.

The merit of molecularity and valency deviations as intrinsically relevant

composition measures in CIS has been empirically demonstrated by careful

studies of conductivity in single crystal CuInSe2 [3]. Neumann and Tomlinson

demonstrated that within the range  ∆m < 0.08 and  ∆s < 0.06 , p-type

conductivity occurs whenever  ∆s > 0  (electron deficiency) whereas n-type

conductivity occurs for   ∆s < 0  (electron surplus). Their Hall effect measurements

also showed that the dominant acceptor changed in p-type CIS from shallow (20–

30 meV) whenever   ∆m > 0 (excess copper) to deeper (78–90 meV) when   ∆m < 0

(indium-rich).

The actual predominance of a specific majority defect pair in any given

quadrant of the molecularity vs. valency domain will in equilibrium be

determined by whether its free energy is lower than that of the other probable
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pairs. A vast amount of theoretical analysis [66-68] was directed in the 1980's

towards estimation of the enthalpies of formation of the various point defects

since their experimental determination is formidable. There is clear agreement

among those analyses that the energy of formation for an isolated point defect is

lowest for the cation antisite defects CuIn and InCu. There was some disagreement

as to whether the next lowest formation enthalpy values are for the copper

vacancy, VCu [66,68], or selenium vacancy, VSe [67].

There remained several disturbing issues with those analyses. First is the

lack of the predicted correlation between the composition and net carrier

concentration [3]. Second is the low level of minority carrier recombination in

polycrystalline CIS PV devices, which are always made with significant negative

molecularity deviation, often in the biphasic α+β domain. Recalling that the

chalcopyrite unit cell contains 16 atoms, a defect concentration of little more than

6% would yield a statistical probability of one defect per unit cell if they are

randomly distributed.

Defect complexes provide a resolution of these deficiencies, since all the

atomistic models described above exclude defect complexes (associates) which

should be anticipated given the Coulombic attraction between the oppositely

charged members of these "majority defect pairs." The dominant cohesive

bonding force leading to the negative contribution to enthalpy that stabilizes

ionic crystals is the Madelung energy [69] resulting from precisely this

Coulombic attraction, and defect clustering resulting in short-range order has
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been shown essential to understanding the defect chemistry of

non-stoichiometric transition metal oxide phases [54].

Theoretical ab-initio quantum-mechanical calculations of cation defect and

defect complex formation enthalpies in CuInSe2 [70] have recently provided

support for these assertions. These results showed that the formation enthalpies

of lattice defects depend on the chemical potential of the constituent atomic

species, and in the case of charged defects, on the chemical potential for electrons

(equal to the Fermi energy at T=0 K). The results showed explicitly that when the

chemical potential of indium sufficiently exceeds that of copper the formation

enthalpy of the   (InCu
2+ + 2VCu

− )0  neutral defect complex (NDC) actually becomes

negative (energetically favorable). Formation of this defect requires the removal

of three monovalent copper ions and substitution on one of those vacancies of

the trivalent indium; hence it has no net effect on the valence stoichiometry

deviation   ∆s. Their calculations were extended to the calculation of the energetic

effects of long-range ordering of the  (InCu
2+ + 2VCu

− )0  complex [71]. They show that

the reported compositions of indium-rich compounds (  ∆m < 0) on the

pseudobinary section could be achieved by mathematically rational ratios of the

numbers of this complex to the number of chalcopyrite unit cells, and that

ordering was energetically favorable.

Additional long-range crystallographic ordering possibilities for the

  (InCu
2+ + 2VCu

− )0  NDC have been proposed by Rockett [72] and further investigations

are needed to determine the true nature and extent of NDC ordering.
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Nevertheless, a recent study of the β-phase compound CuIn3Se5 (X=0.75 in

Figure 1-1) [51] has shown that the EXAFS scattering spectrum of selenium in this

compound is best fit by a local structure model having precisely these defect

proportions in the nearest-neighbor tetrahedra surrounding Se atoms in the

lattice (Figure 1-2(c)). This is strong experimental evidence that the "majority

defect pair" found in indium-rich CIS compounds on the pseudobinary section is

in fact this cation NDC.

Deviations from valence stoichiometry off the  pseudobinary section

(  ∆s ≠ 0 ) cannot be caused by the  (InCu
2+ + 2VCu

− )0  NDC. Deviations of   ∆s < 0  are

caused by defects which create an excess of electrons compared to those required

to form the "normal valence compound" [73]. As examples, an InCu antisite defect

brings two more valence electrons to that lattice site than when normally

occupied by copper, CuCu; and VSe creation removes two bonding orbitals from

the lattice, which would otherwise be normally occupied, thereby freeing two

electrons to be donated to the conduction band by cations. Conversely,

deviations of   ∆s > 0  are caused by defects that create a deficiency of electrons

needed for the normal valence configuration (e.g. VCu). These considerations lead

to the notation   InCu
2+ , which represents an  In

+3  ion placed at a cation antisite on

the lattice that is normally occupied by Cu in its +1 oxidation state.

One of the other results from Zhang and coworkers' studies of cation

defect energetics in CIS is their calculation of electronic transitions associated

with the ionization of isolated point defects and clusters [70]. Their quantum-



28

mechanical studies show that the contrast between relative ionicity and

covalency of the copper and indium bonds, respectively, result in an

unexpectedly shallow acceptor level for VCu (30 meV) and unexpectedly deep

donor levels (Ec-0.24 and Ec-0.59 eV) for the indium cation antisite, InCu. The

shallow donor seen in α–CuInSe2 with deviations of  ∆s > 0  had been attributed

in many studies to InCu acting as a donor but these results show that both of its

ionization levels are deeper than that of the  (InCu
2+ + VCu

− )+  part of the NDC and all

were too deep to correspond to the very shallow (20–30 meV) donor seen in

numerous studies [3].

One of the limitations of Zhang and coworkers' earlier studies of cation

defect energetics in CIS was neglect of defects on the anion sublattice. In

particular the VSe is another widely suggested candidate for this shallow donor

defect [3,68,74]. Investigations of vacancy defects in epitaxial CuInSe2/GaAs via

positron annihilation lifetime studies have been interpreted to suggest that the

most probable defect is the  (VSe + VCu ) defect [75-77]. More recent ab-initio

quantum-mechanical calculations of the  VSe → VSe
+2  electronic transition energy

[78] predict that significant lattice relaxation is associated with the VSe ionization

process, and that the energy level of the indirect (phonon-assisted) transition is

Ec-0.1±0.05 eV. This represents the most shallow donor level calculated for any of

the point defects investigated theoretically by that group.

The possible role of VSe and cation-anion point-defect complexes in CIS

with deviations from valence stoichiometry (i.e., off the pseudobinary section
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with   ∆s ≠ 0 ) does not yet appear to have been adequately investigated. Van

Vechten has argued [79] that VSe is unlikely to be stable in indium-rich materials,

proposing a defect annihilation mechanism when both  ∆m < 0 and   ∆s < 0  based

on the quasichemical reaction:

  2VCu
− + InIn + 2VSe

+ → InCu
2+ + 2e− − 1 crystal unit ,

which he suggests would be energetically favorable because of the large cohesive

energy of the lattice compared to the energy of InCu formation.

Optical Properties of Ternary Cu–III–VI Materials

The focus in this section is the fundamental optical bandgaps of the

α-phase compounds CuInSe2, CuInS2, CuGaSe2, and of their associated β-phases.

Discussion of the opto-electronic properties of alloys will be deferred to the

following section.

Optical Properties of αααα–CIS and ββββ–CIS

Early measurements of the bandgap energy of single-crystal CuInSe2

exhibited nominal discrepancies [80,81], suggesting a value in the range of 1.02 to

1.04 eV. Subsequent studies [82,83] showed evidence of significant optical

absorption at energies below this fundamental absorption edge. Characterization

of polycrystalline CIS absorber films suitable for devices almost always indicate a

significantly lower effective bandgap of ~0.90 eV [84], apparently a consequence

of significant collection of carriers generated by absorption in these band-tails. It
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has been suggested that the widely reported variations in the optical properties

of CIS materials are a direct consequence of variations in composition [85].

The most recent published study of radiative recombination in near-

stoichiometric CuInSe2 epilayers on GaAs yields a value for the fundamental

absorption edge of Eg = 1.046 eV at a temperature of 2 K, with a slight increase to

a value of Eg = 1.048 eV at a temperature of 102 K [86]. Near room temperature,

however, the temperature dependence follows the Varshni relation [87]:

  
Eg (T) = Eg(0) −

αT2

T + β

with   β = 0 and     α = 1.1 ×10−4 eV / K  [85]. Anomolous low-temperature absorption

edge dependency is often observed in of I–III–VI2 semiconductors [88]. This

phenomenon will be discussed in further detail in the section describing the

optical properties of CuGaSe2, since it has been more thoroughly investigated for

that compound.

This low and high temperature data published by Nakanishi and

coworkers [85] was subsequently fitted over the entire temperature range [89] to

the Manoogian-Lecrerc equation [90]:

    
Eg (T) = Eg(0) −UT s − V coth

φ
2T

  
 
   

 
 

  
  

  
  

.

The fitting parameters     Eg 0( ) , U, V, and s are temperature-independent constants,

although they do have relevant physical significance. For example, the second

and third terms represent the effects of lattice dilation and electron-phonon
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interactions, respectively. The temperature φ is the Einstein temperature, related

to the Debye temperature by 
 
φ ≅

3
4

φD  [89], and the value used in their

calculations was derived from the published value of   φD = 225 K[ ]  [91], yeilding

170 Kφ = . The best fit to that data was found for

    Eg 0( ) = 1.036 eV[ ] ,    U = −4.238 × 10−5 eV ⋅ K−1[ ],   V = 0.875 × 10−4 eV ⋅ K−1[ ], and s = 1.

The corresponding 300 K bandgap energy is 1.01 eV. Note the ~10 meV

discrepancy between this value for the bandgap at absolute zero temperature

and that discussed earlier in this section [86].

The spectral dependence of the refractive index of CuInSe2 has been

reported for both bulk and polycrystalline [92] materials as well as epitaxial films

on GaAs [93] Here too, significant discrepancies are found in the reported data.

Analogous discrepancies are found in the reported optical properties of

β-CIS synthesized by different techniques. Polycrystalline films with an overall

composition corresponding to the compound CuIn3Se5 are reported to exhibit a

room-temperature fundamental absorption edge at 1.3 eV [47]. Optical

absorption and cathodoluminescence characterization of heteroepitaxial CuIn3Se5

films on GaAs has been interpreted to indicate a bandgap of Eg ≥ 1.18 eV at 8 K

[94]. The most thorough characterization has been conducted on bulk

polycrystalline samples with a nominal composition of CuIn3Se5 [95]. The

temperature dependence of the absorption coefficient edge was fitted using the

Manoogian-Lecrerc equation. The best fit to their data was found for



32

    Eg 0( ) = 1.25 −1.28 eV[ ] ,     U = 2.0 ×10−5 eV ⋅ K−1[ ],   V = 1.2 −1.5 ×10−4 eV ⋅ K−1[ ],

    φ =205 − 213 K[ ] , and s = 1. The corresponding 300 K bandgap energy is in the

range of 1.19 to 1.21 eV. Although there are significant quantitative discrepancies

between the various published data, they all agree without exception that the

bandgap energy of β-CIS is substantially (0.2–0.3 eV) greater than that of α-CIS.

Variation of optical absorption with composition. The fundamental

absorption edge for intrinsic undoped semiconductors can be determined by

extrapolation of the plot of the absorption coefficient α vs.  hυ  to   α = 0  [96].

Residual absorption at energies below the fundamental absorption edge in

semiconductors which obeys the empirical relationship d(ln α)/d(  hυ ) = 1/kT is

referred to as an Urbach tail [97]. This is known in conventional extrinsically

doped semiconductors to arise via the Franz-Keldysh effect produced by spatial

fluctuations of the internal electrostatic field to give spatial variations in charged

impurity density [98] over distances larger than the Debye screening length.

Photon-assisted tunneling [99] between the resulting exponential bandtails [100]

results in these characteristic exponential optical absorption tails.

The temperature and spectral dependence of the observed sub-bandgap

absorption in single crystal CuInSe2 has been carefully studied by Nakanishi and

coworkers [101]. When they fitted their data to the conventional equation [102] of

the Urbach form:

  
α = α 0 exp

σ(hυ − E0)
kT

  
  

  
  

,
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where , with 
��  �ωp  representing the optical phonon energy [103]:

�  
σ = σ0

2kT
�ωp

  

 
 

  

 
 tanh

�ωp

2kT
 
 
 

 
 
 ,

they found that unphysically large values for the optical phonon energy were

required, and that they depended on composition. However, using the equation:

  
α = α 0 exp

(hυ − E0 )
Ea(T, x)

  

 
 

  

 
 ,

they separated     Ea(T ,x)  into the sum of two terms, one linearly dependent on

composition and the other a temperature dependent factor that fit the prior two

equations with the reported value for the optical phonon energy. They concluded

that the exponential optical absorption bandtails in CuInSe2 arise both from

phonon and compositional fluctuations, the latter increasing linearly with

negative molecularity deviation.

Further variations in optical absorption and emission of α-CIS are

associated with negative valence stoichiometry deviations (  ∆s < 0 ). Early

annealing studies [74] showed a significant red-shift of photoluminescence

emission when bulk samples were annealed or synthesized in excess indium

vapor, and a reversible blue-shift after synthesis or annealing in excess selenium

vapor. A more recent study [104] suggests the formation of an impurity (VSe)

subband when   ∆s < 0.05 .

This phenomenon of strong sub-bandgap absorption in indium-rich CIS

giving rise to apparent narrowing of the effective bandgap is also observed in
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epitaxial films of CIS on GaAs studied by piezoelectric photoacoustic

spectroscopy [105], evidence that it is a consequence of the native defect structure

of these materials, and not an artifact of polycrystallinity, preparation, or

measurement technique. It appears that this effect extends to the biphasic α–β

composition domain, which suggests that the coexistence of these two phases is

accompanied by an interaction between them that results in composition

fluctuations manifested as strong band-tailing in their combined optical

absorption. It is unclear whether this is an equilibrium phenomenon or related to

ubiquitous metastable defect structures common to the materials investigated by

so many researchers.

Optical Properties of αααα–CGS

The temperature dependence of the bandgap energy of CuGaSe2 has been

well characterized recently [89], with the data also fitted to the Manoogian-

Lecrerc equation. The best fit to the data with s = 1 was found for

    Eg 0( ) = 1.691 eV[ ] ,     U = −8.82 × 10−5 eV ⋅ K−1[ ], and   V = 1.6 ×10−4 eV ⋅ K−1[ ], with

189 Kφ = , based on the reported Debye temperature for CuGaSe2 of 259D Kφ =

[91]. The corresponding 300 K bandgap energy is 1.65 eV. Refractive index data

for CuGaSe2 over the range 0.78 to 12.0 µm has been reported by Boyd and

coworkers [106].
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Optical Properties of αααα–CISU

The most recent determination of the bandgap of α–CISU was based on

bulk two-phase CuxS + CuInS2 samples with slight negative valence

stoichiometry deviations analyzed by means of photoreflectance spectroscopy,

yielding a value of 1.54 eV at 80 K [107]. Earlier measurements of the bandgap

varied by about 30 meV in the range of 1.52 to 1.55 eV at room temperature [108].

The relationship of the effective bandgap to composition, discussed in the

preceding CIS part of this section, was studied [109], and the variance between

previously published values was attributed to the same effect. In particular, a

decrease in the effective bandgap was observed for negative valence

stoichiometry deviations (  ∆s < 0 ).

The temperature dependence of the CuInS2 bandgap is reported to exhibit

anomalous low-temperature behavior, like that described for all the other Cu

ternary chalcogenides discussed in this section [110,111]. Refractive index data

for CuInS2 over the range 0.9 to 12.0 µm has been reported by Boyd and

coworkers [112].

Alloys and Dopants Employed in CIS Photovoltaic Devices

A later section of this review will describe in detail the reasons that most

CIS PV devices are not made from the pure ternary compounds, but rather alloys

thereof. Breifly, bandgap engineering is the principal motivation. The

nomenclature might be somewhat confusing in this section unless the reader

keeps clearly in mind the distinction between a compound and an alloy. CuInSe2,
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for example, is a ternary compound, as is CuGaSe2. Both of these “compounds:

show a small range of solid solution extent. An alloy of these two ternary

“compounds” is a binary alloy, although it is also a quaternary material (it

contains four elements). One may view this as simple mixing of Cu on the In

sublattice in α-CIS. By induction, an alloy of that binary, Cu(In,Ga)Se2, with the

ternary compound CuInS2 yields the ternary alloy Cu(In,Ga)(S,Se)2, which is also

a pentanary material.

Gallium Binary Alloy — CIGS

Until the very recent publication of the dissertation of Dr. Cornelia

Beilharz [113] no comprehensive thermochemical study of the quaternary CIGS

phase field was available. This is remarkable in view of the fact that most of the

published world record thin film solar cell efficiencies since 1987 (and all since

1995) have been held by CIGS-based devices. The predominant phase fields in the

pseudoternary Cu2Se–In2Se3–Ga2Se3 composition diagram as reported in that

work are shown Figure 1-4.

The most obviously important aspect of this CIGS pseudoternary

predominance diagram is the monotonic broadening of the α–CIGS single-phase

domain towards more Group III-rich compositions with increasing Ga.

Practically speaking, this means that synthesis of single α–phase CIGS requires

less precise control over the [I]/[III] ratio (molecularity) than needed for single

phase α–CIS synthesis, irrespective of the technique employed. Secondly, the
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appearance of a domain characterized by both α– CIGS (designated P1 in Figure

1-4) and β–CIGS (designated P2 in Figure 1-4) plus the disordered zincblende (Zb)

structure, not found at room temperature in either of the pure ternary

compounds. Note that the extent of this domain (designated Ch+P1+Zb in Figure

1-4) along lines of constant [In]/[Ga] molar ratio (i.e., lines emanating from the

Cu2Se corner) is minimal in precisely the composition range around 25% gallium

where the highest efficiency CIGS devices are fabricated [114,115].
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Figure 1-4 Predominance diagram for the Cu2Se–In2Se3–Ga2Se3 pseudoternary
phase field at room temperature [113]. In that author’s notation, Ch is the α
phase, P1 is the β phase, P2 is the γ phase, and Zb is the δ phase.
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A theoretical study of the effects of gallium addition to CuInSe2 provides

some insight into likely atomic-scale phenomena leading to these effects [116].

First, they calculate that the energy of formation for the isolated group III cation

antisite defect, GaCu, is 0.2 to 0.9 eV greater (depending on its ionization state)

than that of InCu. Second, they calculate that the donor levels for isolated GaCu,

are deeper than those of InCu, hence if present in comparable concentrations GaCu

will not thermally ionize as easily as InCu, and therefore contribute less to

compensation of the acceptors which must dominate for p-type conductivity to

prevail. This is consistent with the experimental observation that hole densities

are higher in CIGS epitaxial films than in CIS epitaxial films with comparable

molecularity and valence stoichiometry [117]. Finally, the  (GaCu
2+ + 2VCu

− )0  Neutral

Defect Complex (NDC) is calculated to require 0.4 eV more energy to form than

the   (InCu
2+ + 2VCu

− )0  NDC, leading to 0.3 eV higher formation energy per NDC in the

Ordered Defect Compounds (ODC) (i.e., β or P2 phase) containing gallium. This

suggests that in CIGS materials with negative molecularity deviation, under

conditions where NDC aggregation can occur, ODC formation is more

energetically favorable in regions where composition fluctuations have lead to a

lower local gallium concentration.

Bandgap dependence on composition. Alloys of the copper ternary

chalcopyrite compounds, like those of virtually all the zincblende binary alloys,

are found to exhibit a sublinear dependence of their bandgap energy on alloy
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composition. Their functional relationship is well approximated by the

expression:

  Eg(x) = xEg(1) + (1− x)Eg(0) − b(1− x)x ,

where the parameter b is referred to as the "bowing parameter." Optical bowing

is now understood to be a consequence of bond alternation in the lattice [37].

Free energy minimization results in a tendency for A and B atoms to avoid each

other as nearest neighbors on the cation sublattice in AxB1-xC alloys, resulting in

short range ordering referred to as anticlustering [118 Chapter 4.].

A very large range of bowing parameters has been reported for CIGS thin

films and bulk Cu(In,Ga)Se2, varying from nearly 0 to 0.025, and data on thin

film CIGS absorber layers strongly supports the contention that this variability is a

consequence of variations in molecularity deviation between the samples

reported by various investigators [119 — and reference therein.]. Another study

of combined temperature and composition dependencies of the bandgap in bulk

crystalline Cu(In,Ga)Se2 concluded that the bowing parameter may be

temperature dependent [89]. A theoretical value of 0.21 at absolute zero has also

been calculated [116]. A preponderance of the room temperature data is in the

range of 0.14 [120] to 0.16 [121] so the intermediate value of  b = 0.151 from the

original work by Bodnar and coworkers is accepted here [122], leading to the

following expression for α–CuIn1-XGaXSe2:

  Eg
CIGS(x) = 1.65x + 1.01(1 − x) − 0.151(1− x)x
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Sulfur Binary Alloy —CISS

Woefully little thermochemical and structural data are available for the

Cu–In–Se–S quaternary system. The bandgap dependence on composition has

been reported by several researchers, with the reported optical bowing

parameters varying from 0 to 0.88 [123-125]. There is substantially better

agreement between a larger number of studies of the mixed-anion alloy

CuGa(SeXS1-X)2 that the optical bowing parameter in that system is zero [126, and

references therein]. It has been argued that the bond-alternation which leads to

optical bowing in mixed-cation ternary chalcopyrite alloys does not occur in the

mixed-anion alloys [127], and that the bowing parameter should therefore vanish

in CuIn(SeXS1-X)2 as reported by Bodnar and coworkers [123]. The substantial

uncertainty and disagreement amongst the published experimental results

suggests that resolution of this question requires further investigation.

Alkali Impurities in CIS and Related Materials

The importance of sodium for the optimization of polycrystalline CIS thin-

film solar cell absorber layers has been extensively studied since first suggested

by Hedström and coworkers [128]. Their careful investigation of the

serendipitous sodium "contamination" of CIS absorber films due to exchange

from soda-lime glass substrates contributed to their achievement of the first CIS

device with a reported efficiency exceeding 15%. Subsequent studies have

concluded that whether derived from the substrate [129] or added intentionally

from extrinsic sources [130-132], optimized sodium incorporation is beneficial to
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device performance, and excess sodium is detrimental [133-136]. Studies of

sodium's concentration and distribution in the films show it is typically present

at a ~0.1 at.% concentration [137], and strongly segregates to the surface [138]

and grain boundaries [139].

A plethora of mechanisms has been suggested in an effort to explain the

beneficial influence of sodium, and an overview of the body of literature taken

together suggests that multiple effects contribute thereto. The primary

phenomenological effects in CIS and CIGS absorber materials may be summarized

as:

1. An increase in p-type conductivity [140] due both to the elimination

of deep hole traps [141], and an increase in net hole concentration resulting

predominately from reduced compensation [142].

2. An increase in the (112) texture and the average grain size in

polycrystalline films [143], with a concomitant reduction in surface roughness.

3. An increased range of compositions (specifically, negative

molecularity deviations) that yield devices with comparable performance

[144-146].

These effects have been attributed to both direct and indirect electronic

effects of sodium in the resulting materials themselves, and to the dynamic

effects of sodium during the synthesis process. These will be each discussed in

turn, beginning with the one model that attributes the improved properties of

absorbers that contain sodium on a bulk defect containing sodium.
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Substitution of sodium for indium, creating residual NaIn antisite defect

acceptors in the lattice of the resulting material, has been proposed to explain the

observed increase in p-type conductivity [137]. Theoretical calculations predict

[78] that its first ionization level, at 0.20 eV above the valence band edge, is

shallower than that of CuIn, but in typically indium-rich absorbers the formation

of the CuIn defect is less energetically favorable than are VCu and InCu, the

structural components of the cation NDC. Furthermore, they calculate the

formation enthalpy of the NaIn antisite defect is quite large (2.5 eV) when the

compounds CuInSe2 and NaInSe2 are in thermal equilibrium.

The simplest indirect model for the sodium effect on conductivity is that

the NaCu defect is more energetically favorable than the InCu defect, so it

competes effectively for vacant copper sites during growth, thereby reducing the

concentration of the compensating InCu antisite defect [147] in the resulting

material.

A related model proposes that formation of NaCu substitutional defects in

lieu of InCu is a transition state of the growth reaction in indium-rich materials,

leading to a reduction in the final InCu antisite defect density within the bulk by

inhibiting the incorporation of excess indium into the lattice [148]. In this model,

sodium acts as a surfactant at the boundary between stoichiometric and indium-

rich CIS, forming a two-phase CuInSe2 + NaInSe2 mixture or quaternary

compound if sufficient sodium is available [149,150]. The advantages of this

model are that it predicts a reduction in the concentration of InCu point defects
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and the NDC defect complexes in the bulk [151]. This model addresses all three of

the primary sodium effects: the morphological changes are a surfactant effect,

and the increased tolerance to negative molecularity deviation a consequence of

enhanced segregation of excess indium. This model has been developed by this

author and will be described in more detail in Chapter 5.

A study of the effects of elemental sodium deposited onto CuInSe2 single

crystals [152] led the authors to conclude that Na atoms at the surface disrupt

Cu-Se bonds, releasing Cu+ ions. These ions subsequently diffuse into the bulk

under the influence of the surface field resulting from band-bending induced by

the sodium itself, thereby increasing the concentration of VCu acceptors in the

near-surface region. They also suggest that NaCu substitutional defects are

created during this process. For high doses of sodium, they find that this lattice

disruption results in the decomposition of CuInSe2, yielding metallic indium and

Na2Se, and suggest that β–phase compounds may form at the surface as

intermediate reaction byproducts due to the enhanced VCu concentrations. It is

difficult to understand how these effects would increase p-type conductivity,

since the excess copper ions released from the surface and driven into the bulk

would most likely recombine with the VCu shallow acceptors that make it so.

Two other models attribute the influence of sodium on electronic

properties to its effects on the concentration of selenium vacancies. The first of

these [146] suggests that sodium at grain boundaries catalyzes the dissociation of

atmospheric O2, creating atomic oxygen which neutralizes surface VSe by
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activated chemisorption, leading to the formation of a shallow acceptor [153,154].

Theoretical calculations of the bulk OSe ionization energy level predict very deep

levels [78], however, and studies of the electronic influence of implanted and

annealed sodium in epitaxial Cu(In,Ga)Se2 films provide evidence for

substantially reduced compensation without any evidence of oxygen diffusion

into the bulk [142].

The final published model for the effects of sodium attributes its influence

to increased chemical activity of selenium at the film's surface during growth

[155]. Strong evidence is provided that sodium polyselenides (Na2Sex) form on

the surface during growth, and they suggest that this acts as a "reservoir" for

selenium on the surface, reducing the formation of compensating VSe donor

defects.

Summary

The various I-III-VI2 material systems described in the foregoing section

show a great deal of similarity in the structure of their phase diagrams. The

common theme among them all is the ubiquity of ordering phenomena

associated with the different phases. Clearly, much more study is needed to

clarify the many unknown properties of each of these material systems and

provide the materials science foundation required to support their successful

application to photovoltaic devices.
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CHAPTER 2 
CIS POINT DEFECT CHEMICAL REACTION EQUILIBRIUM MODEL

Ternary chalcopyrite I–III–VI2 compounds such copper indium diselenide

(CuInSe2) differ at a fundamental level from their binary II–VI zincblende

analogues because of the coexistence in the former of two distinct types of bonds.

Detailed quantum-mechanical calculations [156] show that the I–VI bonds tend

to be far more ionic in character than the III–VI bonds which are predominately

covalent. This heterogeneity leads to extremely strong optical absorption owing

to the resultant high density of unit-cell-scale local dipole fluctuations and to

ionic conduction resulting from the mobility of the relatively weakly-bound

group I atoms.

The point defect chemistry approach expounded by Kröger [157] is

employed. The intention is to explore the consequences of the native lattice

disorder (intrinsic point defects and aggregates thereof) caused by finite

temperature and deviations from stoichiometry in the equilibrium α–phase of

ternary Cu–In–Se, usually refered to by its ideal stoichiometric composition

formula CuInSe2.



Approach

An associated solution lattice defect model is developed to calculate the total

Gibbs  energy function  G(T,P,{Ni })  of  a thermodynamic  system  comprised  of a

continuum of electronic states and charge carriers interacting with atoms and ions

which reside on a denumerable lattice of sites. The defect chemical reactions of this

model  involve  atomic  elements  and  charges  within  the  crystal  which  is  the

thermodynamic system of interest, and atoms, complexes and electrons in an outer

secondary  phase  which  constitutes  the  reservoir  with  which  the  crystal  is  in

equilibrium.  This  approach  treats  specific  well-defined  point  defects  and their

complexes  embedded  in clusters  of  primitive  unit  cells  on a  Bravais  lattice as

quasimolecular  species  and utilizes  conventional  chemical  reaction  equilibrium

analysis [158] to calculate their equilibrium concentrations.

An activity-based formulation for the total Gibbs energy of mixing (or mixture

formation) as a function of the temperature T, pressure P, and total number Ni  of

each  component  in  the  mixture  is  defined  as:

DG = G [ T , P , {Ni } ] –‚
j=1

MaxHiL
 N j Gêêê

j
o@T, P, 8Ni

o<D  

where  Gêêê
j
o  is  the partial  molar  Gibbs energy of a  specie in its  reference  state,

according to the equations: 

G[T,P,{Ni }] =‚
j=1

MaxHiL
 N j I Gêêê

j
o@T, P, 8Ni

o<D + Gêêê
j
IDL @T, P, 8Ni<D + Gêêê

j
XS @T, P, 8Ni <DM   

=‚
j=1

MaxHiL
 N j HGêêê

j
o + RT ln@aj DL  =‚

j=1

MaxHiL
 N j HGêêê

j
o + RT Hln@x j D + ln@g j DLL  

The relations DG = ⁄ j=1
MaxHiL  N j Gêêê

j
MIX  and aj =exp[HRTL-1  Gêêê

j
MIX ] = g j x j  have
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been implicitly used, where aj  is the activity, g j  the activity coefficient,  and x j  the

concentration of the " jth " component. The separation of the Gibbs energy of mixing

Gêêê
j
MIX  into the sum of ideal (random)  and excess parts Gêêê

j
IDL +Gêêê

j
XS  is particularly

useful when x j Ø1 in the reference state since g j = 1 if and only if  Gêêê
j
XS = 0 in that case.

For these computations appropriate but different models for the partial molar total

Gibbs energy of mixing  (Gêêê
j
MIX ) are used for each component j to solve for their

concentrations,  and each activity coefficient g j  determined from the solution via the

expression:

RT ln[aj ] =  Gêêê
j
MIX = Gêêê

j – Gêêê
j
0 fl g j =xj

-1 expA Gêêê
j  – Gêêê

j
0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅRT E . 

The question of normalization must be addressed carefully in the transition

from an extensive quantity like DG to the intensive partial molar quantities Gêêê
j
XS . This

is a particularly subtle issue in the context of a lattice model where it will sometimes

be necessary to normalize the concentrations x j  with respect to the number of lattice

sites. To prevent confusion a number of different concentration notations suitable for

different  contexts  are introduced  and it is simply noted here that the numerical

values  for activities  and activity  coefficients  depend explicitly  on the choice  of

concentration measure [157; §9.4, 158; §6.3].

A building units approach (which is closely related to the more common

structural element approach) and the Kröger-Vink notation are used to describe the

crystal  lattice  and  its  defects  [157;  §7.10].  Structure  elements  are  the  entities

appearing at particular sites in the lattice such as a vacancy on an interstitial site Vi ,

or a copper atom on its ideal lattice site CuCu
ä , where the superscript 'ä' means that it
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is  in  its  normal  valence  state.  In  addition  to  this  lattice  site  atom occupancy

information, the change in electronic charge density surrounding a structure element

compared to its normal electronic charge density distribution is of interest. Charge

localization is of course an idealized concept for the fundamental structural elements

of the defect-free crystal whenever covalent bonding and band formation occur. For

many electronically active crystal defects on the other hand, it is reasonable to deal

with the strong electronic/ionic  defect interactions by treating them together as a

quasiparticle.  The  combined  defect  and  perturbed  electronic  charge  density

distribution  are represented  as a  charged  structure  element.  For  example  InCu
‰‰

represents  a  double  positively  charged  indium atom  on a lattice  site normally

occupied by copper, whereas VCu
£  represents  a single  negatively-charged  copper

vacancy.  Note that the superscript charge notation represents  the deviation of the

defect's local charge distribution from that of the unperturbed lattice site.

Now that  the  distinction  between  the  physical  elements  (e.g.:  Cu)  and

structural  elements (e.g.: CuCu
ä ) has been explicitly described,  it is appropriate  to

introduce the notation for normalization.  The notation ∞CuCu
ä ¥ is used to mean the

mole fraction of normal valence copper atoms on copper sites:  in other words the

number of moles of CuCu
ä  structure elements divided by the total number of moles of

the quasimolecular  species comprised of all the elemental  species in the system.

Kröger used square braces [ ] to denote molar concentration, but that notation cannot

be used with the Mathematica  program employed for these  calculations  since it

identifies and encloses therein the argument sequence of a function. The notation
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XCuCu
ä \  is  used  to mean the  lattice  concentration,  or  more specifically  for this

example, the number of electrically neutral copper atoms on lattice sites normally

occupied in the chalcopyrite lattice by Group I atoms, divided by the total number of

Group I sites in the chalcopyrite lattice. Equivalently, XCuCu
ä \ is the probability that a

Group I lattice site is occupied by a copper atom in its normal charge state. Kröger

used  curly  braces  { }  but  these  cannot  be used in Mathematica  since  they are

predefined therein to identify and enclose a list.

One key  requirement  for  the  interconsistency  between  the  physical  and

structural  element thermochemical  descriptions of phase and reaction equilibria is

that the difference  in their normalization  changes reaction equilibrium constants

differently in the two descriptions since exchange of atoms between phases may not

conserve the total number of lattice sites. Strictly speaking, if the species in the model

are  structural  elements  rather  than  atomic  or  molecular  species,  and  lattice-

normalized  concentrations  are used in the equations  given above for the Gibbs

energy, the result is instead a quasichemical  potential and quasichemical  activities

for each of them. These issues must be kept clearly in mind to avoid misapplication

of the results.

This  model  is  similar  to the solution  defect  lattice  model  developed  by

Guggenheim  [165].  Guggenheim's  model  employs  his  "quasichemical"

approximation  (first derived by Bethe [166]) to calculate for point defect associates

(quasimolecular  species)  the configurational  entropy contribution  to DSXS  in the

exact relation DGXS = DHXS – TDSXS . The essence of this approximation [159] is that
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pairs of nearest-neighbor  sites are treated as independent  of one another,  which

introduces unallowable configurations into the partition function for any species that

occupies more than one lattice site simultaneously. It is nevertheless superior to the

assumption  that  DSXS  vanishes  (or  equivalently  that  g j  is  unity).  This  is  the

assumption used in a regular solution lattice defect model wherein the point defects

are distributed randomly on the lattice despite the existence of interaction enthalpies

between  the  different  point  defect  species.  The  introduction  of correlated  site

distribution probabilities into the theory leads to an associated solution theory and

the implicit possibility of phase segregation or long-range ordering.

The  excess  entropy  DSXS  can  be  partitioned  into  four  components

corresponding  to electronic,  internal,  changes to the lattice vibrational  excitations

(phonons)  associated  with the quasimolecular  species,  and configurational  excess

entropies.  These excess entropies are computed for the normal lattice constituents,

point defects,  and for defect associates  using a cluster expansion method. These

clusters are formally identical to the relative building units used by Schottky [167].

Thus strictly speaking this calculation is based on his building units approach rather

than a  structural  element  approach  [157,  §7.10].  The  overall  problem  is made

tractable by separating the strong short–range energetic effects due to interactions

between the point defects  and the normal lattice components  in their immediate

neighborhood into internal interactions within clusters which can then be treated as

weakly-interacting.  Consequently,  the activity coefficients  (g)  of these clusters in

their mixture corresponding to the actual state of the entire CIS lattice need only be
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modified to account for the long-range Coulombic interactions between the charged

species. These corrections are largely compensated by the Fermi degeneracy of the

charge  carriers  [157,  §7.11],  so  the  activity  coefficients  of  the  clusters  will  be

approximated as unity, yielding a simple cluster mixing model.

 Prior efforts to identify the structural  defects responsible for the electronic

behavior in these materials [65] have relied on estimates of the enthalpy of vacancy

formation by Van Vechten  [168] based on a cavity model for vacancy formation

energy. More recently, first principle calculations of these formation enthalpies have

been conducted  by Zhang and coworkers  [70]  which shall  be used here.  Their

quantum-mechanical  calculations  provide  enthalpies  of isolated defect  formation

since they allowed for  lattice  relaxation  and hence changes  in specific  volume

resulting from the formation of a single defect or defect complex within an otherwise

perfect  lattice  supercell  containing  32  atoms.  For  the  dilute  point  defect  and

quasimolecular species in this model which were considered therein, their calculated

formation enthalpy is set equal to Hêêêê
j
XS /NAv . Those authors, however, estimate the

uncertainty  in their  calculated  defect  formation  enthalpies  to be ~0.2 eV which

represents a potentially significant source of errors in the results of these calculation.

In addition to their formation enthalpy calculations for isolated defects and

complexes, Zhang and coworkers calculated the enthalpies of interaction between

ordered arrays of one specific defect complex, 2 VCu ∆ InCu , placed on neighboring

copper sublattice sites along the (110) direction (note the infix notation '∆ ' is used to

denote  an  associate  or  defect  complex  formed from the  specified  lattice  point
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defects). This neutral cation defect complex had the lowest formation enthalpy of any

they considered  in the  dilute  limit.  The  Madelung  energy resulting  from their

interaction when in a dense array as described above gave an additional reduction in

enthalpy that varied with their concentration.  These results  will  be used when

analyzing the defect model in the case of an overall excess of indium compared to

copper in the isolated thermodynamic system.

Finally,  Zhang  and coworkers  calculated  the  defect  electronic  transition

energy levels for isolated cation point defects and complexes. In a defect chemical

model these electronic transition energies correspond to the enthalpy of ionization of

a neutral defect to form an ion or charge localized on a vacant lattice site (an "ionized

vacancy"). Their estimated uncertainty in these electronic transition energy levels is

±0.05 eV for isolated point defects  and ±0.10 eV for defect pairs.  This represents

another potential source of errors in the results of these calculation. The entropy of

ionization  will be included in an approximation derived by van Vechten [169].

Formulation of the problem

The empirical observation that the  compounds which form in the Cu–In–Se

ternary system all exhibit wide compositional ranges of phase homogeneity is proof

of a non-neglible  compositional  dependence  of their partial molar Gibbs energies

Gêêê
j [T,P,{xi }] on the values of the component atom fractions, xi . It has been proven

that a statistical  thermodynamic  model can account for this variation by retaining

higher order correction terms to the entropy that are usually neglected, including

lattice vacancy [162] and electronic carrier band-entropy contributions [163].
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This model is an adaptation of the ternary alloy model developed by Sha and

Brebrick [163] to the structure of the chalcopyrite  lattice, wherein there are three

distinct lattice sites rather than two, as in their model. Unlike their approach, the

statistical mechanics used to compute entropies is based on a cluster configuration

technique. Furthermore, rather than solving the reaction equilibrium problem by the

usual method of Lagrange multipliers,  more recently developed matrix techniques

described by Modell and Reid [158] are employed. It is assumed that:

I. The lattice structure  of the a and b phases  consists  of four sublattices,

referred to as M1, M3, X6 and I (interstitial).  Each of the metal-sublattices  (M1 and

M3) has N sites and there are 2N X6-sublattice  sites for a total of 4N normally-

occupied lattice sites, which comprise an fcc Bravais lattice of N lattice unit cells.

Their are eight normally-occupied  lattice sites in each primitive  unit cell of the

chalcopyrite  crystal  structure,  which  is comprised  of four lattice site  tetrahedra

distorted  along the c-axis. Hence the entire ideal lattice comprises NÅÅÅÅÅÅ2  chalcopyrite

primitive unit cells. In an fcc lattice there are a plethora of interstitial sites: eight

tetrahedral,  four octahedral,  and thirty-two trigonal per fcc  unit cell  [172].  It  is

assumed that the only interstitial species included in this model, the Cu interstitial

(Cui ),  occupies  the  tetrahedral  interstitial  sites  only.  Note  that  all  of  these

tetrahedrally  coordinated  interstital  sites are  not equivalent  with respect  to the

symmetry  operations  of the I4
êê

2d point group characteristic  of  the chalcopyrite

structure (space group 122), but it is assumed nevertheless that they are statistically

equivalent and energetically degenerate. There are therefore 8N total sites available
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in the entire lattice including these interstitial sites, and sixteen per primitive unit cell

cluster.

II. Each of the point defect species is distributed randomly on its respective

sublattice within each cluster. Defect complexes are defined as short-range (nearest-

neighbor) correlated occupancy on one or more of the sublattices. The correlation is

achieved by restricting  each complex  to a distinguishable  lattice cluster,  but the

distribution of those clusters over the available lattice is assumed to be random.

Interactions leading to aggregation of defect complex clusters on this lattice is treated

as a second phase.

III. The excess Gibbs energy of a phase is a first-degree homogeneous linear

function of the numbers of clusters of each kind and the total number of clusters that

comprise the lattice.

The defect structure within the a phase, and phase segregation phenomena

between the a phase and any secondary phase, is analyzed in the context of this

lattice model.  The constituent  physical elements  Cu, In, and Se and charge q are

distributed among the available lattice sites and between phases in accordance with

the principle of minimum total Gibbs energy but the total amounts of these physical

elements  are  strictly  conserved.  Hence  equilibria  are  calculated  based  on the

following basis set:

a = 8Cu, In, Se, q, M1, M3, X6, I< ;

The electrochemical state vector with respect to this basis is defined as: 
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sN := 8NCu , NIn , NSe , Nq, N, N, 2 N, 4 N<
This electrochemical  state vector sN  can be transformed to express the total

Cu, In, Se and charge q in terms of the reduced set of variables X, y, Z, N, and ∑

where:

NIn := y N
NCu := X y N

NSe :=
Z y N H3 + XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
Nq := ∑N

The reverse transformations are clearly (since N≠0):

X ===
NCuÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
NIn

;

y ===
NInÅÅÅÅÅÅÅÅÅÅÅÅÅ
N

;

Z ===
2 NSeÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3 NIn + NCu
;

∑ ===
Nq
ÅÅÅÅÅÅÅÅÅÅÅ
N

;

The dimensionless electrochemical state vector is now defined as:

s := 8X, y, Z, ∑, N<
Conservation of mass in this chemical context where nuclear transformations

between elements are inadmissable  implies the conservation of NCu , NSe , and NIn

distinctly and therefore of X, Z, and yµN. When the system is closed to charge

transfer,  Nq  is conserved and therefore ∑µN is conserved. The importance  of this

transformation lies in the fact that X and Z are invariant, whereas changes in y and ∑
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can result  from a change in N. It is  apparent  from these  observations  that the

specification of s uniquely specifies sN. Note that both of these state vectors, s and

sN, are extensive.

The significance  of changes  in N is apparent  in a simple  example where

NCu =NIn = NSeÅÅÅÅÅÅÅÅÅÅ2 =N.  The  state  vector  sNØ{N,  N,  2N,  Nq ,  N,  N, 2N,  4N}.  This

represents N formula units of the compound CuInSe2 , N primitive unit cells of the

fcc  Bravais  lattice,  and a  net  electronic  charge  of Nq . Changes  in N therefore

represent the loss or gain of lattice sites resulting from segregation to another phase

in equilibrium which has an incoherent lattice structure. "Incoherent lattice" means a

lattice with a different number of crystallographically distinct sublattices, or different

site ratios, or both. Any such reaction leaves X and Z unchanged but change the ratio

(y) of total indium to lattice sites and the overall charge density on the lattice (∑). The

utility of this formulation will become apparent.

The relationship of the variables in the reduced electrochemical state vector s

to  prior  formulations  of  this  problem  [65]  is  now  developed.  The  chemical

composition of any mixture in this ternary system may be formally written as the

reaction:

x Cu2 Se + (1-x) In2 Se3 + Ds Se 1 HCux In1-x L2Se3-2x+Ds  ; 0≥ x ≥1 fl 2x-3≥ Ds. 

It is obvious from their definitions that X = xÅÅÅÅÅÅÅÅÅÅ1-x  ñ x = XÅÅÅÅÅÅÅÅÅÅÅ1+X (given that x≠1)

and  by  direct  substitution  (note  that  Ds = 0 ñ Z = 1):

 Z = 6-4 x+2 DsÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 x+6 H1-xL = 1+ DsÅÅÅÅÅÅÅÅÅÅÅÅÅ3-2 x ñ Ds = (Z-1) (3-2 x) = HZ-1L H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X
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If phase segregation of the compound composition on the right hand side of

the reaction does not occur, comparison with [63] shows that this parameter X is the

"molecularity"  and Z is the "valence  stoichiometry"  of that phase.  Furthermore,

Z– 1 = Ds ÅÅÅÅÅÅÅÅÅÅÅÅÅ3-2 x  is the "valence stoichiometry deviation" of the phase and X– 1= 2 x-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-x  is

Dx, its "molecularity deviation."

The necessary foundation has been laid to address the normalization of atom

fraction  and molar  quantities  in  terms  of  these  variables.  The  atom  fraction

corresponding to a number Nk  of a given atomic species k is denoted xk , and given by:

xk = NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅNCu +NIn +NSe
= NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

N  y µ H1+X+ Z µ H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 L = 2 µ NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN  y µ H2 µ H1+XL+Z µ H3+XLL .

The mole fraction corresponding to a number N j  of any given species j is

denoted ∞N j ¥, or in the code for their computation c j , and has been defined as the

ratio  of  N j  to  the  total  number  of  "molecules"  of  the  hypothetical  speciesHCux  In1-x L2  Se3-2 x+Ds . It is stressed that this does not necessarily imply the existence

of any phase within the system with this actual composition,  hence the modifier

"hypothetical."  Substituting  for the stoichiometric  coefficients  from the foregoing

solutions for x and Ds in terms of X and Z gives:HCux  In1-x L2  Se3-2 x+Ds  = ICu XÅÅÅÅÅÅÅÅÅÅ1+X
 In 1ÅÅÅÅÅÅÅÅÅÅ1+X

M
2

 Se3- 2 XÅÅÅÅÅÅÅÅÅÅ1+X + HZ-1L H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X

= Cu 2 XÅÅÅÅÅÅÅÅÅÅ1+X
 In 2ÅÅÅÅÅÅÅÅÅÅ1+X

 Se Z  H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X
.

This form of the quasimolecular species formula can be used to solve for the

atom  fractions  xk  in  terms  of  the  variables  X  and  Z  alone:

xCu = 2 XÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2µH1+XL + ZµH3+XL , xIn = 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2µH1+XL + ZµH3+XL , and xSe =  ZµH3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2µH1+XL + ZµH3+XL .

Next the total number of moles, M, of this quasimolecule  is sought. By the
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definition of y, NIn = y µN and that the number of indium atoms in a mole of the

quasimolecule  is  2ÅÅÅÅÅÅÅÅÅÅÅÅ1+X µNAvo  (Avogadro's  number).  Hence  the  equation

M µ 2 NAvoÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X = NIn = y µN is solved to give:

M = 
H1+XL  y µ NÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 NAvo

= NIn +NCuÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 NAvo
 , and thus:∞N j ¥ = N jÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM µNAvo

 = N j µ 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+XL  y µ N ; and M= 1 fl N j = ∞N j ¥ µ NAvo

Since X, Z, and the product yµN are invariants, changes in the  atom fraction

or molar fraction of any species, either atomic, molecular, or structural, may be due

only to the change in the number of that species in the entire system.

For completeness  the  relatively  obvious  normalizations  are  given for  the

lattice site occupation probability for the species indexed by a given value of j:XN j\M1  or  M3  = 
NjÅÅÅÅÅÅÅÅN  for the M1 or M3 (cation) sublattice;XN j\N  = 

NjÅÅÅÅÅÅÅÅÅÅ2 N  for the X6 (anion) sublattice;XN j\I  = 
NjÅÅÅÅÅÅÅÅÅÅ4 N  for the I (interstitial) sublattice.

Unlike  the  other  normalizations,  however,  note  that  these  species

normalizations  may change  via  their  explicit  dependence  on  the  unconserved

quantity N.

The  equilibrium  associated  lattice  solution  theory  calculations  will  be

conducted with respect to the lattice state vector, sL, whose components are lattice

site occupation numbers and which is defined with respect to a subset of all possible

lattice  defects:   {{NCuM1
q },  {NCu M3

q },  {NCuX6
q },  {NCuI

q },  {NIn M1
q },  {NIn M3

q },  {NInX6
q },

{NInI
q },{NSe M1

q },  {XNSe M3
q },  {NSeX6

q },  {NSeI
q },  {NV M1

q },  {NV M3
q },  {NVX6

q },  {NVI
q },

{Ne- }, {Nh+ } }, where the charge q on each of these lattice basis elements assumes all
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possible  values  for  each  constituent.  This  complete  lattice  state  ensemble  is

unnecessarily large since many configurations which are conceptually possible are so

energetically unfavorable that they may be omitted without significant effects on the

results. The subset chosen for these calculations will be discussed in detail at a later

point. At this juncture it is only necessary to note that sL is constrained by sum rules

that connect  it to sN  and s.  Specifically,  the sum of molar concentrations  of all

structural  elements  containing  a  given physical  element  must  equal  the  molar

concentration  of that physical  element in the corresponding thermochemical  state

vector. Similarly, the net charge on the lattice calculated from sL must equal the total

charge, Nq . Finally, the sum of lattice site occupation probabilities must be unity for

each sublattice independently.

Four independent specific variables are required to model the thermochemical

reaction equilibria  of a single  phase,  three component  system.  The temperature,

pressure, the overall copper to indium molar ratio X, and the anion to cation ratio Z

are chosen:  the variable set {T, P, X, Z}.    The activity of each atomic species is

referenced to its standard state of pure elemental aggregation (Standard Elemental

Reference, SER) at Standard Temperature and Pressure (STP is T0 =298.15K (25°C) and

P0 =101.3 kPa = 1 atm) for which its enthalpy of formation, DH f
SER , is set to zero by

convention. The absolute scale for entropy where limit
TØ0

 ST
o = 0 for all elemental species

is used and the changes in equilibria between phases calculated from mathematical

expressions for G -DH f
SER . Furthermore the effects of pressure  will not be considered

and all calculations will be conducted at standard pressure, effectively reducing this
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to a problem in three variables. Note that the extensive reduced electrochemical state

vector s introduced in the preceding section contains five variables, X, y, Z, ∑, and N.

For this initial thermochemical  analysis an electroneutrality  constraint is imposed,

hence  ∑ = 0 (and Nq = 0) in this context. Note that reaction equilibria are intensive

relations and that s may be transformed to an intensive state vector, sê , by setting the

total  number  of  moles,  M,  of  the  quasimolecules  with  the  formulaHCux  In1-x L2  Se3-2 x+Dy  to unity. Using the formula derived in the prior section for M:

M = 
H1+XL  yµNÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 NAvo

 = 1 ñ y = 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+XL  NAvoÅÅÅÅÅÅÅÅÅÅÅÅÅÅN

This transformation from the extensive state vectors sN to s results in no loss

of information regarding the state of the system assuming the ratio of sublattice site

numbers  remained  fixed  with  respect  to  all  possible  reactions.  The  variable

transformations therein for y and ∑, however, are explicitly dependent on N via the

physical  requirement  that yµN and ∑µN remain constant.  Transformation  from

either sN or s to the intensive molar state vector sê  = {X, y, Z, ∑} places a constraint on

these products,  but neither y nor ∑ independently.  The choice of the independent

thermodynamic variable set  {T, P, X, Z} implies that equilibrium values for the state

variable y (and similarly  ∑) are dependent variables calculated with the equation

above (or its analog for ∑) using the equilibrium value of N for one mole of the

quasimolecular species Cu 2 XÅÅÅÅÅÅÅÅÅÅ1+X
 In 2ÅÅÅÅÅÅÅÅÅÅ1+X

 Se Z  H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X
.

The structural element basis of the a and b phases of CIS that will be employed

for these calculations consists of various clusters of the following subset of lattice

species, which comprise the basis set for sL:
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L_CIS = 88CuCu
x , InIn

x , SeSe
x , Vi <, 88VCu

x , VCu
£ , InCu

x , InCu
‰ , InCu

‰‰ <,8CuIn
x , CuIn

£ , CuIn
££ , VIn

x , VIn
‰ , VIn

‰‰ , VIn
‰‰‰ <, 8VSe

x , VSe
‰‰ <, 8Cui

x , Cui
‰ <<,8Cui ∆ VCu , CuIn ∆ InCu , VCu ∆InCu , HVCu ∆InCuL‰ <, 82 VCu ∆InCu<<;

The normal lattice constituents, the isolated point defects on each sublattice,

and defect complexes on different numbers of lattice sites have each been grouped

seperately in L_CIS. The various lattice clusters will be labeled by their characteristic

point defect, except for the normal lattice constituents which combine to form the

normal cluster which will be labeled simply CISa . These are grouped in the cluster

basis set abL by the number of primitive unit cells in the structure element's cluster

of lattice sites, with that corresponding number of primitive unit cells given by the

ordered list ncL.

abL = 88CISa <, Join@Flatten@Take@L_CIS, 82, 2<DD, Take@Take@L_CIS, 83, 3<DP1T, 2D,8H2 VCu ∆InCuL b13<D, Join@Drop@Take@L_CIS, 83, 3<DP1T, 2D,8H2 VCu ∆InCuLa , H2VCu ∆InCuL b15, H2 VCu ∆InCuLb25<D<;
abLP1T === 8CISa <
abLP2T === 8VCu

x , VCu
£ , InCu

x , InCu
‰ , InCu

‰‰ , CuIn
x , CuIn

£ , CuIn
££ , VIn

x , VIn
‰ , VIn

‰‰ ,
VIn

‰‰‰ , VSe
x , VSe

‰‰ , Cui
x , Cui

‰ , Cui ∆ VCu , CuIn ∆ InCu , H2 VCu ∆ InCu Lb13 <
abLP3T ===8VCu ∆ InCu , HVCu ∆ InCu L‰ , H2 VCu ∆ InCu La , H2 VCu ∆ InCu Lb15 , H2 VCu ∆ InCu Lb25<
ncL = 81, 3, 5<; Dimensions@ncLD === Dimensions@abLD

To model solid phase equilibria the lattice building unit basis abL must be

extended to quantify and characterize the transfer of physical constituents from this

lattice to other phases that are in equilibrium with the lattice.
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cEgrouped = 8abL, 8e£ , h‰<, DN, 8CuCu2Se, Cu2_dSe<<;
The crystallographically  incoherent secondary phase constituents which will

be utilized in this model have been appended, and band-delocalized charge carriers

added to construct  a complete basis for the state vector,   which will enable  the

modeling  of  phase  segregation  and  electronic  carrier  concentrations  in  the

equilibrium system. The basis element DN allows for changes of the sublattice site

proportionality  multiplier  N independent  of phase  segregation  processes,  since

vacancy generation  on all sublattices  (lattice expansion) is a physical  mechanism

whereby the total free energy of the lattice might be reduced even in the absence of a

secondary phase.

The domain of this analysis is limited to the compositional range of greatest

relevance to applications  to photovoltaics,  with Cu/In molar ratios in the range:

1ÅÅÅÅ3 ≤ X ≤1. The case of X= 1 and Z= 1, which corresponds to the ideal stoichiometric

compound  CuInSe2  is  first  analyzed.  The  second  case  will  be  for  1ÅÅÅÅ2 ≤ X < 1- e,

corresponding to the a, b, and intermediate a + b two-phase regions [26]. Despite the

present uncertainty regarding the exact crystallographic structure of the b phase, it is

mostly agreed [40] that it must be closely related to the chalcopyrite structure. This

structure  persists  between the putative a/b  phase boundary composition  (X= 1ÅÅÅÅ2 ),

which corresponds to the compound Cu2 In4 Se7 , through at least those compositions

corresponding to the compound CuIn3 Se5  (X= 1ÅÅÅÅ3 ). Within the restricted limits of this

second case the total number of lattice sites in the system (including interstitial sites)

remains constant,  at least in the absence of valency stoichiometry deviations from
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zero. This structural coherence between the a and b phases has extremely significant

ramifications which will be addressed at a later point in this treatise.

The temperature domain of these calculations is restricted to below 1048.15K

(750°C) in the first case and 873.15K (600°C) for the second case.  This minimizes the

complications  introduced  by  the  high  temperature  order/disorder  phase

transformations of the a phase at 1083K [20] and the b phase at 873K [27].

The details of the interphase and defect equilibria calculations are included in

the appendix  to this dissertation,  including all the Mathematica  code required to

verify the results.

Results

The results of these calculations are divided into two major subsections.  The

first details the predicted phase diagrams and the composition of the two different

phases found in equilibrium with a–CIS over the domain of this calculation, Cu2-d Se

and b–CIS. The second describes  the calculated  equilibrium defect  concentrations

within a–CIS, and their variations with composition and temperature.

Interphase Reaction Equilibria

The predicted equilibrium phase diagram for the Cu–In–Se ternary phase field

along the Cu2 Se/In2 Se3  tie-line where Z= 1 is shown below as a function of the

atomic fraction of copper and temperature.
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Figure 2.1 Calculated equilibrium phase diagram for the Cu–In–Se system on the 
Cu2 Se/In2 Se3  section where Z= 1

Two dominant features of this model's predictions are clearly consistent with

the published experimental phase diagrams. The location of the a/b–CIS two-phase

boundary at STP is predicted to be at 15.35 at.% copper (X= 0.4987),  corresponding

almost  exactly to the widely reported b–CIS compound formula Cu2 In4 Se7 . The

curvature  of the copper-rich a/b–CIS two-phase boundary  towards lower copper

content with increasing temperature has also often been  reported, although usually

to a much greater extent than found here.

The most striking inconsistency of this diagram with published data are the

narrow width of the predicted single-phase a domain and curvature with increasing

temperature  of  both  the  indium-rich  a/b–CIS  and  Cu2 Se/a–CIS  two-phase

boundaries in the same direction, towards lower copper content.
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The detailed discussion of these results in the following subsections will argue

that these inconsistencies  are mostly a consequence of two factors. The first is the

inadequacy  of the limited, four-species  basis used to model the energetics of the

b–CIS phase. The second is that the lowest free energy state of the system is in fact

displaced from this pseudobinary section of the ternary phase field towards a small

selenium enrichment  (Z t 1), on a scale below the resolution of current chemical

composition analysis methods.

The effect  of  such deviations  were  explicitly  modeled  for the two-phase

Cu2 Se/a–CIS boundary. Those results show a significant increase in the width of the

a–CIS single-phase  homogeneity  range, and also imply the existence of a kinetic

barrier  to Cu2 Se/a–CIS equilibration  at  temperatures  below ~100°C  that would

inhibit the conversion of excess Cu2 Se into a–CIS, creating an apparent shift of this

boundary towards lower copper content.

Stoichiometric CuInSe2  and the Cu2- d Se/a–CIS phase equilibrium

These Cu2 –d Se/a–CIS equilibrium calculations  have been constrained by an

energy sum rule, which requires that the total Gibbs energy of any Cu–In–Se mixture

with a composition corresponding to CuInSe2  must at every temperature  equal a

reference value which has been calculated from three empirical published relations

for the thermodynamic properties of CuInSe2 . Their values are given explicitly in the

appendix and include the Gibbs energy at a reference temperature near the a/d–CIS

eutectoid [173], the standard state entropy [174], and the temperature dependence of

the heat capacity [175].
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A mathematical  model  of  the Gibbs energy dependence  of Cu2 –d Se with

composition  and temperature  is  used,  which was  derived as part  of a recently

completed assessment of the binary Cu–Se phase diagram [176]. It is assumed here

that indium is completely insoluble in Cu2 Se and that a–CIS is in equilibrium with

this phase over the domain of this calculation.  Consequently,  the constraints  on

compositional  variation of the non-stoichiometric  compound Cu2 –d Se imposed by

the other binary Cu–Se phases became implicit constraints within this equilibrium

calculation.  This is a direct consequence of the Gibbs phase rule, as the detailed

analysis  in the appendix shows,  which implies  that any unrestricted  three-phase

equilibrium  in  a  ternary  phase  field  is  confined  to  a  single  combination  of

temperature  and composition.  Thus the two-phase  boundaries  within the Cu–Se

phase field that define limits on the value of the Cu2 –d Se stoichiometry deviation

parameter d restrict its ability to accomodate stoichiometry variations in a two-phase

mixture that includes indium. Over the range of this equilibrium calculation, these

constraints on d are defined by the equilibrium between Cu2-d Se and a number of

different binary Cu–Se phases.

Over the entire temperature  range of interest,  the Cu2-d Se binary copper

selenide's  copper-rich  single-phase  domain  boundary  is  determined  by  its

equilibrium with fcc Cu with a non-vanishing  solubility  of selenium [176].  Thus

perfectly stoichiometric  Cu2 Se is not stable to decomposition  in the binary model,

and  the  Cu2-d Se  binary-ternary  equilibrium  composition  is  limited  by  the

corresponding  minimum  value  of  d,  or  equivalently,  this  binary  compound's
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minimum  selenium  content.  This  effect  is  most  significant  near  the

Cu:Se/a–Cu2-d Se/b–Cu2-d Se  peritectoid  temperature  of 396K  (123°C).  The

following  figure  shows  the  results  of  the  calculated  deviation  of  d  from that

minimum value if Cu2-d Se is assumed to be in equilibrium with stoichiometric

CuInSe2 .

-1200 -1000 -800 -600 -400 -200
@ppmD400

500

600

700

800

900

1000

T @KD

Figure 2.2 Calculated deviation of the Cu2-d Se stoichiometry parameter d in 
hypothetical equilibrium with stoichiometric CuInSe2

Figure 2.2 shows that without some mechanism whereby ternary a–CIS could

accomodate stoichiometry variations,  Cu2-d Se in equilibrium with CuInSe2  would

not be stable below a calculated temperature of ~850K with respect to segregation of

the nearly pure metallic Cu phase found near the Cu vertex in the Cu–In–Se ternary

phase triangle.  Since such a three-phase  equilibrium over that finite  temperature

range would violate the Gibbs phase rule, this cannot occur.
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Figure  2.3  shows  the  results  of  the  equilibrium  calculation  wherein  the

internal defect structure of the a–CIS phase, stoichiometry variation of the Cu2-d Se

phase, and extent of phase segregation are varied to minimize the total Gibbs energy

of the stoichiometric CuInSe2  mixture. It shows that at high temperatures selenium

will segregate preferentially  to the binary phase, increasing d above its minimum

value. The temperature at which the equilibrium and constrained minimum values of

d are equal is lowered by the a–CIS internal defect equilibration to a value of 677K.
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Figure 2.3 Deviation of the Cu2-d Se stoichiometry parameter d from its minimum 
allowable value in equilibrium with defective ternary a–CIS in the stoichiometric 
CuInSe2  mixture
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Although this segregation of selenium in excess of its constrained minimum to

the  Cu2-d Se  compound  does  not  continue  to  lower  temperatures  in  the

stoichiometric  mixture,  the minimum  value of the stoichiometry  parameter  dmin

is itself positive.
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Figure 2.4 The  Cu2-d Se stoichiometry parameter d in equilibrium with  a–CIS in the 
stoichiometric CuInSe2  mixture

Figure 2.4 shows the total value of d over the entire temperature range of this

calculation.  Note in particular its rapid increase in equilibrium as the temperature

approaches  the peritectoid  from above.  This also implies  that the stoichiometric

composition  CuInSe2  is  not  single  phase  at  equilibrium.  Figure  2.5  shows  the

calculated  extent  of  phase  segregation  of  this  composition  over  the  entire

temperature range of this calculation.  Clearly Cu2-d Se always segregates to some
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extent, thus ideal stoichiometric ternary CuInSe2  always dissociates in equilibrium to

form the two-phase mixture.
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Figure 2.5 The equilibrium molar extent of binary Cu–Se phase segregation in the 
stoichiometric CuInSe2  mixture

Since  the  stoichiometry  deviation  parameter  d  of  Cu2-d Se  is  positive,

the segregation process always removes selenium from the remainder of the mixture

at a rate more than half the rate at which copper is depleted. Hence this segregation

process  in the stoichiometric  mixture  creates  negative  valency deviation  of the

ternary phase in equilibrium, as shown in figure 2.6.
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Figure 2.6 The negative valency deviation of a–CIS in equilibrium with the binary 
Cu–Se phase in the stoichiometric CuInSe2  mixture 
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Figure 2.7 The negative molecularity deviation of a–CIS in equilibrium with the 
binary Cu–Se phase in the stoichiometric CuInSe2  mixture 
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The segregation of Cu2-d Se does not remove indium from remainder of the

mixture.  Hence this segregation process in the stoichiometric  mixture also creates

negative molecularity deviation, as well as negative valency deviation of the ternary

phase in equilibrium at this two-phase boundary, as shown in figure 2.7.

Two-phase regions are also present in the binary Cu–Se phase field that define

an upper  limit  on the single-phase  stability  range  of Cu2-d Se. Over the entire

temperature range, this boundary is defined by the equilibrium between Cu2-d Se

and a number of different phases [176]. The maximum stoichiometry deviation of

equilibrium Cu2-d Se occurs at a temperature of  650K, where its maximum selenium

binary  mole  fraction  rises  to  36.8 at.%.  Below  that  temperature  it  decreases

monotonically,  dropping  to 36.0 at.% at the 291K a–Cu2-d Se/b–Cu2-d Se/Cu3 Se2

eutectoid. The net result of both these upper and lower limits on d is a significant

narrowing of the homogeneity range of Cu2-d Se between 396K and 291K.

The equilibrium effects of positive valency deviation in the Cu–In–Se mixture

were also modeled.  As previously  derived, the relationship  between the valency

deviation and excess selenium in the mixture is given by the relation Ds = HZ-1L H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X .

All of these calculations were performed for a value of X= 1 in the mixture, so this

relation reduces here to Ds = 2 DZ. The first issue of concern in these calculations was

to properly include the effects of the constraints on the maximum allowable selenium

content  in  the  binary  Cu2-d Se  phase.  It  was  found that  the  secondary  phase

composition first exceeds its maximum selenium content at STP when the value of DZ

reaches about +4.5µ10-6 , as shown in figure 2.8.
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Figure 2.8 The equilibrium selenium mole fraction of the binary Cux Se1-x  phase in 
the Cu–In–Se mixture with DX = 0 and DZ = +4.5µ10-6  (left), and the temperature 
dependence of the maximum allowable selenium mole fraction (right)
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Slightly greater selenium enrichment also yields a violation of this limit at the

395K Cu:Se/a–Cu2-d Se/b–Cu2-d Se peritectoid.  Figure 2.9 shows the specific Gibbs

energy of the binary phase alone as a function of its selenium mole fraction both a

few degrees above and a few below this peritectoid.  The  binary's  composition

variation with temperature in the ternary equilibrium is clearly a consequence of the

energetic discontinuity at the peritectoid.
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Figure 2.9 The variation of specific Gibbs energy with composition of the binary 
Cux Se1-x  phase at 393.15K (upper curve) and 398.15K (lower curve)

The constraint  on the maximum selenium composition of the binary phase

was incorporated into the calculations for all cases where DZ > 1. The temperature at

which the binary's selenium content saturates is found to increase up to DZ > 0.1739,

at which point the secondary  Cu2-d Se phase is found to possess  its maximum

selenium  content  over  the entire temperature  range  from STP to the a/b/d–CIS
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eutectoid.  Figure  2.10  demonstrates  these  results  for  several  values  of positive

valency deviation.
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Figure 2.10 The deviation of equilibrium selenium mole fraction in the binary 
Cux Se1-x  phase from its minimum constrained value in the Cu–In–Se mixture, with 
DX= 0 and (left to right) DZ= 100, 400, 700, 1000, and 1739 (µ10-6 )

The results displayed in figure 2.5 for the calculated extent of Cu2-d Se phase

segregation for the mixture with DZ= 0 were extended to a maximum of DZ= 0.22,

corresponding to a selenium excess of 0.44 at.% in the two-phase mixture with X= 1.

These results are displayed in figure 2.9, and clearly show a significant increase in the

extent  of  binary  segregation  with  increasing  positive  valency  deviation  in the

mixture.

The large decrease in equilibrium solubility of the binary in the mixture with

excess selenium through the final  150 degrees above STP during cool-down after

synthesis may represent a significant kinetic barrier to equilibration. Either a net flux
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of copper and selenium into the indium-enriched ternary or a net flux of indium out

of the ternary phase into the binary is needed to effect this transformation.  Since the

selenium sublattices of the two phases are nearly identical and selenium interstitials

and antisites so energetically unfavorable,  it is unlikely to redistribute. The relative

strength and covalency of the In–Se chemical bond makes indium less mobile than

copper, particularly in this low temperature range. Thus synthesis under conditions

of high selenium fugacity may not fully equilibrate if their composition pass through

the equilibrium two-phase boundary corresponding to its composition during cool-

down. Growth under conditions of indium excess may be more necessary in practice

than the equilibrium phase boundaries suggest, in order to inhibit the formation of

metastable binary copper selenide precipitates.
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Figure 2.9 The equilibrium molar extent of Cu2-d Se phase segregation in  Cu–In–Se 
mixtures, with DX= 0 and (left to right) DZ= 0, 0.11, and 0.22
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This enhancement  of Cu2-d Se phase  segregation  with increasing  positive

valency deviation in the two-phase mixture will exacerbate the consequent negative

molecularity deviation of the a–CIS phase in equilibrium. Since the selenium content

of that binary phase also increases with increasing positive valency deviation, so too

the valency deviation of the ternary must decrease.

These calculations predict that a minimum of about 0.4 ppm excess selenium in

the two-phase mixture is required to insure that the equilibrium valency deviation of

the ternary  a–CIS  phase  remains  positive  definite  over  the  temperature  range

between  STP  and  the  peritectoid.  Even  more  selenium  is  required  at  higher

temperatures to inhibit selenium depletion of the ternary, as shown in Figure 2.10.
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Figure 2.10 The valency deviation of a–CIS in equilibrium with Cu2-d Se, with DX= 0 
and DZ= 0.143 or 0.2 (µ10-6 )
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Although the relationships between the valency deviation of the two-phase

mixture  and those in each of its  constituent  non-stoichiometric  phases are very

complex, they are single-valued. Hence it was possible to invert them and calculate

the valency deviation in the mixture  required to yield a specified valency in its

ternary  a–CIS  component.  Figure  2.11  shows  one  example,  demonstrating  the

temperature dependence of the valency deviation of the mixture with X= 1 that is

required to keep the a–CIS phase valency fixed at its equilibrium value in the mixture

at STP. This is equivalent to varying the two-phase mixture's values of X and Z to find

those  values  at  which  the  extent  of  Cu2-d Se  phase  segregation  becomes

infinitesimally small in equilibrium with the ternary at its specified molecularity.
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Figure 2.11 The valency deviation of the two-phase mixture with X= 1 required to 
maintain the valency of the a–CIS  component at its STP value.
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Thus the two-phase boundary value of molecularity can be determined from

the two-phase equilibrium calculations at X= 1. Simplistic application of the "lever-

arm rule" to this situation would give an incorrect answer, without prior knowledge

of the locus of the lever's fulcrum, which effectively varies with temperature  and

does  not  lie  in the T–X plane  except  at  the  phase  boundary  itself.  This  is  a

consequence of the non-stoichiometry of both these phases in equilibrium.

The domain over which the two-phase boundary can be calculated by this

method is restricted by the range of the mapping between Z and Za  over the domain

of the two-phase  calculation  for X= 1. The domain of the two phase calculation

between 0 ≤ DZ ≤  0.22% maps into the range 0 ≤ DZa  d 0.1%, corresponding  to a

maximum excess selenium content in the single-phase ternary of about +0.2 at.%. The

calculated phase boundaries  both on the pseudobinary  section (DZ= 0) and in the

T–X plane where DZ= +0.1% are compared in figure 2.12.

Comparing the two curves in figure 2.12, the increase in valency deviation of

+0.1% has yielded a shift of less than -0.01% in molecularity at STP, but a nominal

shift of -0.4% in the temperature range of ~450–600K. Comparison with the extent of

binary phase segregation in figure 2.9 makes it clear that this is a direct consequence

of that process.

The phase boundaries shown in figure 2.12 are more easily compared to the

published literature data when expressed in terms of the atomic fraction of copper, as

in figure 2.13.

79



0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
DX

300

400

500

600

700

800

T@KD

Figure 2.12 Calculated equilibrium Cu2-d Se/a–CIS phase boundaries in the Cu–In–Se 
system for DZ= 0 (right) and DZ= +0.1% (left) between STP and the a/b/d–CIS 
eutectoid
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Figure 2.13 Copper composition at the equilibrium Cu2-d Se/a–CIS phase boundaries 
in the Cu–In–Se system for DZ= 0 (right) and DZ= +0.1% (left) between STP and the 
a/b/d–CIS eutectoid
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Figure 2.13 demonstrates that an increase in valency deviation of +0.1%  yields

a decrease of about three-quarters that amount in terms of the copper atomic fraction

in the temperature range of ~450–600K, and less than one-fifth that amount at STP.

Returning briefly to the issue of metastability,  the preceding conjecture that growth

under  conditions  of  indium  excess  would  circumvent  the  kinetic  barrier  to

equilibration presented by this phase segregation process is empirically supported by

comparison with the limiting composition at the eutectoid. That value does not shift

with valency deviation, and is found to be 24.4 at.% copper, nearly identical to the

most recently reported experimental estimate of the phase boundary [27, 277].

Finally, the solution for the internal defect equilibria within the a–CIS at the

Cu2-d Se/a–CIS phase boundary molecularity value, and with valency deviation of up

to 0.1% were computed.  These are combined with the chemical  potentials  of the

model's species to calculate the total specific Gibbs energy of a–CIS at this two-phase

boundary.  Figure 2.14 shows the difference between that value calculated at each

temperature and valency and its value at the same temperature on the pseudobinary

section.
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Figure 2.14 Temperature variation of the specific Gibbs energy deviation of a–CIS 
from its value at DZ= 0 on the Cu2-d Se/a–CIS two-phase boundary. Valency 
deviations between 0 ≤ DZa  ≤ 0.1% and temperatures between STP and the a/b/d–CIS 
eutectoid are shown.

This  figure  reveals  a  free  energy barrier  to  the  incorporation  of  excess

selenium  at  temperatures  below  ~670K  (400°C),  and  shows  that  below  this

temperature the minimum in total Gibbs energy lies at about DZa  > 0.07 ± 0.03%.
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That  corresponds  to  about  0.1–0.2%  excess  selenium,  very  near  the  absolute

calibration  and resolution  limit  of  chemical  analysis  methods  for the  principal

constituents of nonstoichiometric  multinary solids. The total Gibbs energy of a–CIS

is also  seen to  be independent  of valence  stoichiometry  deviation  at the same

temperature  above  which  the  binary  copper  selenide  phase  begins  to  absorb

selenium in excess of its constrained minimum, as previously identified in figure 2.3.

This result provides useful insight into the two-temperature processes often

used for the synthesis of thin-film absorber materials for photovoltaic  applications.

Although CIS is rarely used for these purposes as a pure material  nowadays, the

earliest breakthrough in the synthesis of these films for photovoltaics [177] was based

on a two-step process  beginning with a two-phase  copper  selenide/α–CIS mixture

grown at about 625K with a large [Se]/([Cu]+[In])  flux ratio,  and subsequently

heated to about 725K while indium was added in excess to convert  the copper

selenide. The defect structure of the a–CIS phase in equilibrium at this free energy

minimum off the pseudobinary  section at the two-phase boundary is dramatically

different than its structure on the stoichiometric  side of the barrier that separates

them. In particular, the acceptor–donor compensation ratio is reduced from unity to

almost zero at this minimum. This observation will be elaborated in the subsequent

subsection on the ternary's defect structure in equilibrium.

The a–CIS/b–CIS phase equilibrium

The intent of this part of the modeling was to test the relevance of a published

model for the defect structure of the b–CIS phase [70], which suggested that it is forms
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as a consequence of the short-range ordering of the cation NDC. Their first-principles

quantum-mechanical  calculations of defect formation and ordering enthalpies were

used explicitly to calculate the deviation of the enthalpies of the defect species in this

model from that of the ideal chalcopyrite CIS unit cell. This model has extended those

results  by means  of  a  statistical  mechanical  model  that  combines  the internal

entropies of those lattice point-defect  and their associates  within their respective

clusters, with a regular solution theory for the entropy of those clusters' mixing on

the lattice, to calculate the Gibbs free energy of the entire lattice. This calculation was

described  more  fully  in the introduction  of this chapter  and is detailed  in the

appendix to this dissertation.

The simplest possible model that could be used within the framework of this

formalism  to  test  that  hypothesis  requires  a  total  of  six  independent  species.

Inasmuch as the a and b–CIS lattices are coherent, no quasichemical reaction between

them can remove lattice sites from the system, so it is uneccessary to include lattice

site multiplier in the basis. The NDC species is neutral, so charge is conserved in its

exchange between the two and charge does not need to be explicitly included as a

conserved quantity. Thus only three conserved quantities need to be considered, the

total initial amount of the three elements copper, indium, and selenium. However,

since the valency of the NDC clusters are unity the exchange of these species between

the two phases cannot change the valency of either phase. Expressed differently, the

exchange of selenium is independent  of copper and indium exchange with only a

single species that does not contain selenium, so only two parameters are required to
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insure the conservation  of all three species.  With pressure  fixed, as in all these

calculations,  this leaves only temperature as the other independent thermodynamic

variable required to model this equilibrium, for a total of three. By using six species,

three degrees of freedom remain, permitting the composition of each phase and their

respective mole fractions to be determined in equilibrium.

The a–CIS phase is represented in this part of the model as a secondary phase

in the same manner as Cu2 Se was in the preceding two-phase equilibrium model,

with its specific Gibbs energy given by the sum of two contributions, one associated

with  a  reference  composition  and  the  other  by  a  species  with  the  correct

stoichiometry  to quantify the exchange of conserved  quantities  between  the two

phases.  In  this  case  those  species  are  a  single  formula  unit  of  the

 Cu 2 XaÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa
 In 2ÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa

 Se Z  H3+XaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa
 quasimolecular  specie  with  its  composition  equal  to  its

solution value on the tie-line at the Cu2-d Se/a–CIS phase boundary, and  the other

species' stoichiometry given by the same formula evaluated with the molecularity

value of the NDC cluster species in the building unit model for a–CIS. Neither of these

are equivalent  to any building unit in that former model, any more than the two

species used to model the composition and temperature dependence of the binary

copper selenide phase's Gibbs energy was related to the sublattice solution model

employed  to  derive  its  thermodynamic  properties.  However,  the  molecularity

dependence of the a–CIS phase's Gibbs energy is given here by the solution of the

building unit model on the pseudobinary section.

The b–CIS phase is represented by a four-specie building unit model. The first
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specie is simply the chalcopyrite  unit cell, energetically  identical  (in its reference

state)  to that used to model the a–CIS phase.  The second species has the same

stoichiometry as the NDC cluster species used in the a–CIS phase building unit model,

but is assigned a formation enthalpy of zero, based on unpublished calculations

provided by S.–H. Wei, a coauthor of the original model which this calculation was

intended to elaborate [70]. The other two species correspond to one or two NDC

associated with different  cluster  sizes, both effectively  more concentrated  on the

lattice than the  stoichiometrically  identical  species shared by the a and b phase

building unit models. The details of this formulation are given in the appendix. The

salient  features  of this  choice  are  that there are no implicit  constraints  on the

composition of b–CIS between 1ÅÅÅÅ3 ≤ Xb ≤ 1, and there are no lattice defects other than

the NDC.

As described in the introductory paragraphs of this chapter, the indium-rich

a/b–CIS  two-phase  boundary  at  STP  is  predicted  to  be  at  15.35 at.%  copper

(X = 0.4987),  corresponding almost exactly to the widely reported b–CIS compound

formula Cu2 In4 Se7  and the empirical  two-phase boundary at STP [18,20,22,23,26,27].

This result is remarkable in view of the facts that none of the building unit species in

this model obtain that characteristic  composition, and no empirical data regarding

the b–CIS phase is included whatsoever. The accuracy of the result of combining the

quantum and statistical mechanics to model this phase equilibrium is a compelling

confirmation of the hypothesis that the dominant physical process in the formation of

the b phase of CIS is indeed the aggregation of the NDC.
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The more detailed a–CIS phase defect model provide insight into the failure of

this  model  to correctly  predict  the reported  curvature  of  this phase  boundary

towards higher copper fractions with increasing temperatures. In the former case, the

NDC is found to dissociate to a large extent into its constituent subspecies VCu
£  andHVCu ∆ InCu L‰ , the dominant electrically active defects.  This would likely occur to

some extent in a more comprehensive model of the b phase, but it raises more subtle

questions  about ordering  and metastability  regarding  the experimental  evidence

used to identify the phase boundary itself.

If X-ray diffraction is used to characterize  phase composition,  it is essential

that the coherence length of the order parameter in the material be at least

comparable to the wavelength,  else the constructive  interference that contributes

to the concentration  of  its  scattering  into  the  angles  identified  as  peaks  instead  of

background will be diminished.  The enthalpy reduction that underlies  the point

defect associate formation characterized here as the NDC is a result of the Madelung

interaction  between  the defects,  a  Coulombic  interaction  whose long-range  net

effective charge is null by virtue of the particular combination of 2 VCu
£  and an InCu

‰‰

in their  normal  valence  states.  The minimum correlation  length implicit  in this

random mixing model of clusters with a maximum extent of five chalcopyrite unit

cells is quite small. Those compositions  within the b phase consistent with regular

ordering over a shorter periodic length scale may be more apparent in XRD.

When thermal  transient techniques  (e.g.: DTA) are used to characterize  this

phase  transformation  the question  of  kinetic  barriers  to equilibration  must  be
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addressed.  Aggregates  of  the  2 VCu ∆ InCu  complex  yield  a  local  composition

fluctuation of the lattice that cannot be created simply by local depletion of copper to

form VCu  defects. The formation of InCu  by a shift within neighboring coordination

tetrahedra of InIn
ä  to occupy VCu  leaves VIn , a defect found in these equilibrium

calculations  to be so energetically  unfavorable  that it  is  virtually  absent  at all

temperatures  in the range of a/b–CIS two-phase equilibrium.  The VIn  tend to be

annihilated  by  the  formation  of  a  common  defect  in  the  lattice  equilibrium

calculations,  CuIn ,  yielding  VCu  and  the  InCu ∆ CuIn  complex  in  lieu  of

2 VCu ∆ InCu . This moderation process is mitigated in regions of the lattice wherein

the spatial density of indium exceeds its stoichiometric  value, but the formation of

such composition  fluctuations by diffusion of indium may represent a significant

kinetic barrier to equilibration, given the strength and covalency of the In–Se bond.

Finally, this model has predicted that in the case of Cu2 –d Se/a–CIS equilibrium

the Gibbs energy minimum lies towards positive valency deviation at their phase

boundary,  and that a significant shift in the boundary results from that deviation.

Calculation of the a/b–CIS equilibrium off the pseudobinary  section may have an

effect  on  the  locus  of  this  phase  boundary  as well,  and possibly  reduce  the

discepancy  between  the modeled  boundary  and results of experimental  studies.

Extension of the b–CIS defect model to incorporate species whose stoichiometry is

consistent with valency deviation (unlike the NDC) would be required.
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The generation  of lattice defects  is a mechanism  whereby the crystal  can

accomodate nonstoichiometry, or reduce its Gibbs energy below its value in the ideal

stoichiometric  crystal,  a  consequence  of  the entropic  contribution  to the Gibbs

energy. These effects are quantified in the solution of this model for the equilibrium

defect structure of the lattice. The empirical reference value of the Gibbs energy of

stoichiometric  CuInSe2 , which provided the energetic boundary condition for these

calculations , was  assumed  to  correspond  to  the  properties  of  the  equilibrium

Cu–In–Se mixture  with this stoichiometry.  From the solution,  the specific  Gibbs

energy of the hypothetical defect-free stoichiometric chalcopyrite a–CuInSe2  crystal

was calculated. The results shown in figure 2.15 demonstrate that the deviation of the

ideal crystal's specific Gibbs energy from the reference value is positive definite, and

it is therefore not the equilibrium state of the crystal.
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Figure 2.15 Temperature variation of the specific Gibbs energy deviation of an ideal 
chalcopyrite CuInSe2  crystal from this model's reference value for the equilibrium 
stoichiometric mixture

The remainder of this section will describe the predicted equilibrium defect

concentrations and their temperature dependence at three exemplary stoichiometries

within the single-phase composition domain of a–CIS. These are the compositions at

the phase boundary  with a–CIS on the pseudobinary  section,  and at the phase

boundary  with Cu2-d Se, both on the  pseudobinary  section, and with a positive

valency deviation of 0.04. Inspection  of figure 2.14 reveals that the latter two are

nearly isoenergetic.
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Figure 2.16 Temperature variation of the VCu
£  species mole fraction at the phase 

boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)

The  addition  of  about  0.08  at.%  excess  selenium  to  the  a–CIS  phase

dramatically  suppresses the formation of HVCu ∆ InCu L‰  at temperatures  below the

677K threshold  where  the  selenium  content  of the  binary  phase  drops  to  its

minimum stable value, and as shown in figure 2.14, the specific Gibbs energy of the a

phase is independent of valency deviations of this magnitude.

£  (figure 2.16) and HVCu ∆ InCu L‰  (figure 2.17). On the pseudobinary

section their concentrations are nearly equal, and they almost completely compensate

one another, yielding electrically intrinsic material. 

100

Lattice defects

The dominant lattice defects at all temperatures and molecularities within the

single-phase domain on the pseudobinary section are the ionized NDC dissociation

components, VCu
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Figure 2.17 Temperature variation of the HVCu ∆ InCu L‰  species mole fraction at the 
phase boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)

Positive valency deviation also has a significant effect on the abundance of the

NDC, as shown in figure 2.18. The similarity between the behavior of H2 VCu ∆ InCu La

and HVCu ∆ InCu L‰  is a consequence of two phenomena. First, in equilibrium all of the

InCu  defects  associate;  the isolated  defect  vanishes.  Second,  almost  all  of these

associates involve either one or two VCu  defects, and their only other association

option in this model is to form the antisite pair InCu ∆ CuIn , which is relatively scarce

in equilibrium. Hence the concentrations of both are dominated by the equilibrium

extent of the quasichemical reaction:H2 VCu ∆ InCu La F HVCu ∆ InCu L‰ +VCu
£ 

and the neutralization  reactions  for  the partial NDC on the right-hand-side:

 HVCu ∆ InCu Lä F HVCu ∆ InCu L‰ + e£      
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The latter ionized dissociation reaction always goes to completion within the

domain  of  this  model,  so  the  relative  concentrations  of  H2 VCu ∆ InCu La  and

VCu ∆ InCu  are controlled entirely by the extent of the first reaction.
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Figure 2.18 Temperature variation of the H2 VCu ∆ InCu La  species mole fraction at the 
phase boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)

The relationship between the NDC and the VCu
£  species is not so direct, as a

comparison of figures 2.16 and 2.18 shows, in spite of the symmetry between its role

and that of HVCu ∆ InCu L‰  in the NDC ionized dissociation reaction. Comparison of the

ionized copper vacancy's  behavior in figure 2.16 with that of the neutral shown in

figure 2.19 does not clearly resolve this question.
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Figure 2.19 Temperature variation of the VCu
ä  species mole fraction at the phase 

boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)

Comparing figure 2.16 with figure 2.19 leads to the conclusion that the extent

of the neutral copper vacancy ionization reaction:

VCu
ä  F  VCu

£ +  h‰

must vary greatly with temperature when excess selenium is incorporated

into the lattice. The answer lies in the behavior of the isolated copper antisite CuIn
ä ,

which vanishes  on the pseudobinary  section,  but  whose concentration  becomes

significant with positive valency deviation, as shown in figure 2.20.
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Figure 2.20 Temperature variation of the CuIn
ä  species mole fraction at the phase 

boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)

The minimum neutral VCu
ä  and CuIn

ä  species concentrations are found at the

677K threshold  where  the  selenium  content  of the  binary  phase  drops  to  its

minimum stable value and the lattice is isoenergetic with respect to nominal positive

valency deviations. Clearly the dominant accomodation mechanism for molecularity

deviation changes upon the addition of excess selenium, from dissociation of the NDC

to formation of the copper antisite.

Over  the  domain  of  this  calculation  the  species  VCu
£ ,  HVCu ∆ InCu L‰ ,H2 VCu ∆ InCu La ,  VCu

ä , and CuIn
ä  comprise the dominant lattice defects in single-

phase a–CIS. The remaining lattice  defects  occur in very small  concentrations  in

equilibrium, and only a few will be described in further detail.
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The least common defect in the domain of this calculation among all those

considered is the indium vacancy, in all of its ionization states. It's concentration was

found to drop below one defect per mole over the entire range of the a/b–CIS two-

phase equilibrium. The selenium vacancy was found in very low concentrations at

STP, even on the pseudobinary section and effectively vanished with the addition of

a few ppm of excess selenium. The only other species predicted to exist at equilibrium

in potentially measurable quantities was the InCu ∆ CuIn  antisite complex, whose

concentrations  at high temperatures  as shown in figure 2.21, although in the ppb

range,  were  still  significantly  greater  than any of the other  minor  defects  and

independent of positive valency deviation.
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Figure 2.21 Temperature variation of the InCu ∆ CuIn  species mole fraction at the 
phase boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)
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Electronic defects

Transport  studies  have  shown [3] that CIS material  with positive valency

deviation is p-type at STP, but their measured carrier concentrations are considerably

less than those shown in figure 2.22,  which shows the hole concentration  at the

a–CIS/Cu2-d Se  phase  boundary.  However,  it  was  proposed  in  the  preceding

discussion of the interphase equilibria that essentially all experimental single-phase

CIS  materials  are  metastable,  constrained  by  kinetic  barriers  when  grown  at

compositions  more  copper-rich  than the true  equilibrium  value at  the  a/b–CIS

eutectoid of 24.4 at.% copper. Binary copper selenide is known to be strongly p-type

and it  would be quite  difficult  experimentally  to confirm this predicted  carrier

concentration at their phase boundary.
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Figure 2.22 Temperature variation of the h‰  species mole fraction at the phase 
boundaries on the pseudobinary section (left) and with DZ= 4µ10-4  on the 
a–CIS/Cu2-d Se phase boundary (right)
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The  non-degenerate  approximation  was  used  to  calculate  all  ionization

equilibria  in this  model.  In this  approximation,  the Fermi-Dirac  distribution  is

approximated by a value that is reasonably accurate whenever the electrochemical

potential is far removed from a lattice defect's ionization level in the fundamental

absorption gap of the semiconductor.  This is sufficient for the calculations on the

pseudobinary section, where as previously mentioned, the concentrations of the two

dominant  defects  VCu
£  and HVCu ∆ InCu L‰  are nearly  equal and compensate  one

another, yielding an electrochemical  potential near the middle of the fundamental

absorption gap (although shifted slightly towards the valence band by a difference in

the carrier mobilities).

This approximation fails with only moderate positive valency deviation, and

as a  consequence  the  carrier  concentrations  calculated  here for  those cases are

erroneous.  Another  consequence  of  the  non-degenerate  approximation's

inapplicability in this circumstance is the complementary error in the dominant ionic

defect concentration. Thus the result of this calculation that the compensation ratio

becomes almost  zero with very small positive valency deviation cannot be taken

literally without further elaboration of this model. It is nevertheless certain that this

trend  is  correct,  and that  the  compensation  ratio  is  dramatically  reduced  in

equilibrium  with  the  addition  of  excess  selenium  to  the  lattice,  as  shown  in

figure 2.23.
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Figure 2.23 Contour map of net carrier concentrations in a–CIS in equilibrium with 
Cu2-d Se over the temperature range between STP and the a/b/d–CIS eutectoid, and 
the valency deviation range 0 ≤ DZ ≤ 0.1%. Contour intervals are p = 2.5µ1018  cm-3  
and the black region (left) is intrinsic.
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Summary

The results of defect modeling presented in this chapter represent the first

attempt  to develop an associated solution  defect  model  for ternary chalcopyrite

compound semiconductors.  The model has been used to predict the phase equilibria,

compositions, and lattice defect properties of the three phases in the domain of the

calculation:  binary  Cu2-d Se, and the a  and b  phases  of ternary copper  indium

selenide.

The results of modeling the binary Cu2-d Se/a–CIS phase equilibrium predict

that the stoichiometric  composition is not single phase, and that the minimum in

total Gibbs energy does not lie on the pseudobinary section. The lowest Gibbs energy

at this boundary is for compositions of the ternary phase that are enriched in both

indium and selenium by proportions  very near the resolution  limits of chemical

analysis  methods.  The  discrepancies  between  these  predictions  and published

experimental data are explained by the model's results themselves, which suggest the

existence  of  significant  kinetic  barriers  to  equilibration  of  the  lattice  at  low

temperatures, where its equilibrium composition changes, driven by a shift in phase

segregation.  This is a caused by a peritectoid phase transformation  in the Cu–Se

system near 123 °C.

The  results  of  modeling  the  a–CIS/b–CIS  phase  equilibrium  predict

experimentally reported phase boundary at STP with remarkable accuracy, using only

published ab-initio  quantum-mechanical  defect formation enthalpy values for three

different concentrations  of a single species,  the 2 VCu ∆ InCu  cation neutral defect
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complex, to characterize the b–CIS phase. The deviations of this model's predictions

from experimental  data at higher temperatures  is likely due both to this severely

restricted defect model, and once again, a kinetic barrier to equilibration of the lattice

at low temperatures  when so highly  indium-enriched.  Nevertheless,  this  result

provides significant support to the model of  b–CIS phase formation based on short-

range ordering of the cation NDC.

Finally, a comparison was made of the calculated equilibrium defect structure

of a–CIS with three different compositions within its predicted single-phase domain.

It is found that the mechanism whereby the lattice accomodates  excess indium is

significantly different  when excess selenium is introduced onto the lattice. In the

absence  of valency deviation  the dominant  defects  are VCu
£  and HVCu ∆ InCu L‰

resulting from the ionized dissociation of the NDC. The addition of excess selenium

suppresses NDC formation and results in creation of the CuIn
ä  defect instead, reducing

the compensation of the VCu
£  acceptor and thereby increasing the net hole concentration.
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CHAPTER 3 
REACTOR DESIGN AND CHARACTERIZATION

Design

The growth of all semiconductor films described in this dissertation was

performed in a custom-designed reactor intended specifically for this research.

The system was built on the foundation provided by a commercial vacuum

evaporator, a model SE-1000 from CHA Industries. The pumps and their

interlocked control systems, the baseplate assembly, feedthrough ring on that

baseplate, internal substrate platen support rods, and rotating shaft with its drive

assembly were the only parts of the original system retained in the final system.

The principles implemented in the design of the reactor were based on

careful consideration of the limitations encountered in the growth of CIS using

conventional physical vapor deposition methods, and an intentional effort to

explore alternative growth techniques that might be particularly suitable for

heteroepitaxial growth. "Epitaxy" is the term used to describe the growth of a

layer of crystalline material on a crystalline substrate in any manner such that the

crystallographic axes of the film assume a well-defined geometric relationship

with respect to that of the substrate upon which it is grown. This is not generally
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so, and the more general case is referred to as "thin-film deposition." In either

case, when the growth occurs in a reactor whose pressure is sufficiently low that

the mean free path of gases and vapors is greater than the reactor's dimensions,

the term "physical vapor deposition" (PVD) is used in general, and "molecular

beam epitaxy" (MBE) is used when epitaxial growth results.

Conventionally, both PVD and MBE of compound semiconductors is

performed with separate thermal sources for the different elemental components

of the compound to be grown, heated to temperature where their vapor pressure

becomes sufficiently large that the resulting fluxes can be mixed by simultaneous

condensation on the substrate's surface to grow the intended compound. Under

these conditions, vapor phase collisions between reactant molecules (and thus

their pre-reaction) is improbable, so that the composition and internal energy of

the fluxes incident on the growing surface are determined solely by those

characteristics of the source's emissions.

Our understanding of the physics and chemistry of the subsequent

processes is well developed [179, §1.1], but the details have been found to be

highly dependent on the particular properties of the material system [180].

Nevertheless, certain elementary processes are found to occur almost

universally. The flux incident on the surface may be partially reflected without

coming to thermodynamic equilibrium with the surface, and thus with little or

no energy exchange occurring. The remaining flux is almost always first trapped

by the Van der Waals potential of the surface into a weakly bound mobile
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precursor state [181], a process called physisorption first described by Langmuir

[182]. Some fraction of that flux will sometimes desorb after partial or total

thermal equilibration with the surface, and each of the remaining atoms or

molecules (called adsorbates) will migrate across the surface until forming a

chemical bond with either another adsorbed species or an energetically favorable

site on the surface, a process called chemisorption [183]. Once again, some

fraction of the chemisorbed species or previously bound surface atoms may

desorb rather than incorporate into the growing film. The overall fraction of the

incident flux that does incorporate is referred to as the accommodation

coefficient. The accommodation coefficient is much easier to measure than the

desorption fluxes resulting from the underlying elementary processes that

determine its value, and is equivalent to the difference of the incident and all

desorbed fluxes normalized to the incident flux. Its value is calculated here by

measuring the incident flux, the thickness and composition of the final film, the

deposition time; and then using the theoretical value for bulk density of the

resulting compound to determine the rate at which each atomic species was

incorporated.

As described above, two competitive processes occur among reactant

molecules physisorbed into the mobile precursor state: chemisorption onto a

surface site and bonding among themselves due to inelastic collisions. The bond

formation occurring in the second process results in the formation of clusters

with significantly lower mobilities than the independent species enjoy, thus
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increasing the likelihood that the cluster will not have time to diffuse to an

energetically favorable site for incorporation into the surface of the growing

crystal lattice before being buried by further deposition. This can result in

growth defects: kinetically stabilized non-equilibrium atomic configurations that

reduce the translational symmetry of the crystal lattice and often introduce

electronic defect states.

The growth of thin films on crystalline substrates is often found to exhibit

three different domains determined mostly by the substrate temperature. At the

lowest temperature, the films are amorphous, at intermediate temperature the

films are polycrystalline and at higher temperature they grow epitaxially

[184,185]. We focus here on the transition between the latter two modes of

growth, which occurs for a given film material and substrate orientation at some

critical temperature for epitaxy,  Tc
epi . The explanation for this general

phenomenon is based on the sensitive dependence of adatom surface mobilities

on temperature, since adatom surface diffusion is a thermally activated process.

The argument is that polycrystallinity in a material system (film + substrate) that

can exhibit epitaxy is the manifestation of excessively high densities (above some

threshold) of growth defects. These defects result in general from incomplete

equilibration of the adlayer and crystal surface during growth, which in the

context of the elementary kinetic processes described previously, can be due to

inadequate adatom diffusion lengths.
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In fact the dependency of  Tc
epi  on incident flux and substrate temperature

are both consistent with this explanation. Reducing incident flux decreases  Tc
epi

by reducing the rate of bimolecular collisions that form relatively immobile

clusters. This effect is particularly strong in the growth of compound

semiconductors formed by the reaction of cationic and anionic species which

undergo charge-exchange reactions to form a very strong bond, for example the

growth of III–V, II-VI, or I–III–VI2 compound semiconductors. Awareness of this

effect led in the late 1970's to the suggestion [186] that lower epitaxial growth

temperature and smoother surfaces could be achieved during compound

semiconductor film growth by alternating between the cationic and anionic

reactant fluxes with a flux-free pause between them to permit adatom/surface

equilibration [187].

The original implementation of this approach, called Atomic Layer

Epitaxy (ALE), further stipulated that a self-limiting growth mechanism involving

desorption of any species in excess of that required to grow one atomic layer

should desorb during the "relaxation" step between alternating flux exposures of

the substrate. Such a self-regulatory mechanism is available in compounds (for

example most II-VI semiconductors) wherein both cationic and anionic species

are volatile at reasonable growth temperature, or in reactive growth processes

that can produce volatile molecular compounds. Extension of the ALE growth

technique to materials or methods where no such desorption mechanism occurs

was first described by Horikoshi and coworkers in 1986 [60], a mode of MBE
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growth that they refer to as Migration Enhanced Epitaxy (MEE). They reported

that the MEE technique enabled them to reduce  Tc
epi  for homoepitaxial growth of

GaAs to temperature as low as 200°C. Numerous other variations of this general

approach have been developed, and since they are sometimes employed in the

growth of non-epitaxial thin films they are collectively referred to as Modulated

Flux Deposition (MFD) techniques.

The reactor designed for this research program was specifically intended

and optimized for MEE growth of CIS. It has also been employed during the

course of this research for the MFD growth of both CIS and its related binary

(Cu,Se) and (In,Se) thin films. For compound semiconductor growth, MEE is a

cyclic process divided into four component steps: cationic (metals) reactant

deposition, flux-free surface equilibration, anionic (metalloid) reactant

deposition, and a final flux-free equilibration step. In conventional MBE reactors

this process is implemented by alternately opening the appropriate source

shutters. However, this method is not very robust since it quickly leads to

premature shutter failure. The first design principle for the reactor is intended to

circumvent this problem by relying on substrate rotation rather than shutters to

create flux modulation at the substrates' surfaces. This approach has the added

benefit that films may be grown on a relatively large batch of substrates (in this

case up to nine) during a single deposition run of the reactor.

The requirement for alternating exposure of the substrates to metal

(Cu,In) and metalloid (Se,S) fluxes combined with the first design principle of
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rotating the substrates to dictate the requirement for condensation shielding to

isolate the sources into separate zones within the reactor. Since the pumping

system provided with the original CHA SE–1000 deposition system employed a

diffusion pump isolated from the deposition chamber by a liquid nitrogen

cryotrap, the base pressure (~10-7 Torr) was not sufficiently low to prevent

contamination of the film's growing surface by residual gases in the system. All

of these problems were solved by the addition of two custom deposition shields

and a liquid nitrogen cryoshroud to the system (Figure 3-1).

The liquid nitrogen cryoshroud effectively divides the reactor vertically

into two zones. The pump inlet is through the baseplate at the bottom of the

vacuum chamber and is blocked by the cryoshroud from direct line-of-sight

exposure to the sources and substrates' surfaces. All feedthroughs above the

feedthrough collar used knife-edge flanges and metal gaskets, so most steady-

state permeation after bakeout comes from the lower region of the chamber,

below the level of the cryoshroud.  A nude ion gauge at the top of the chamber in

the load-lock zone measured the same pressure (8x10-8 Torr) as the Bayard-

Alpert gauge located 6" above the baseplate on the feedthrough ring when the

cryoshroud was empty, but dropped to the range of 9x10-10 to 2x10-9 Torr when

the cryoshroud was filled. Thus the cryoshroud acts as a differential pump,

reducing the pressure in the deposition zone between the top surface of the

cryoshroud and the lower surface of the rotating substrate platen.
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Figure 3-1 Schematic diagram of the MEE reactor showing the source and shielding configuration.



Figure 3-2 Detail of metals deposition shield with chamber removed.

The entire deposition chamber above the level of the feedthrough collar is

water-cooled as are the metal deposition sources that penetrate through

cylindrical apertures in the cryoshroud into the completely shielded metals

deposition zone, Figure 3-2. Electron Impact Emission Spectrometry (EIES) is used

111
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to monitor the copper and indium fluxes and the ionization head for these

transducers penetrate through apertures in the metal deposition shield. Source

shutters completely block the flux from the effusion cells to both the substrate

and EIES sensors when closed. The rotating substrate platen blocks most of the

flux by passing through a horizontal slit in the shielding, but with a wafer carrier

puck removed from the platen, tubes at the top of the metal deposition shield

permit cross-calibration of the EIES sensors with Quartz-Crystal Monitors (QCM)

on feedthrough ports in the deposition chamber's lid.

The cryoshroud is annular but does not continue through a full 2π

azimuthal angle because a π/2 sector is blocked by a full height water-cooled

internal selenium condensation shield (Figure 3-3). This shield very effectively

isolates the entire reactor outside the chalcogen deposition zone from the

selenium source such that the background vapor pressure of selenium outside

this zone of the reactor remains negligible during growth. Two sources,

described in detail in the next chapter, are located within this zone: a commercial

EPI–225Se double-oven thermal cracking cell passes through a port in the

deposition chamber's outer wall and a unique ECR plasma cracker designed and

built for this research is mounted entirely inside the zone.

A third zone lying between the metals and chalcogen deposition zones

contains the backside radiant heating source that provides most of the substrate

platen heating during growth. The boron nitride-encapsulated pyrolytic graphite

heater uses four layers of tantalum radiant shielding and molybdenum rods as
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conducting power leads. This has performed flawlessly for five years at

operating temperature during growth of 1000°C. A thermocouple suspended

between the heater and rotating platen provides temperature monitoring.

a

b

Figure 3-3 Detail of the chalcogen (selenium and/or sulfur) deposition zone of
the reactor with the chamber outer walls removed, showing a) effusion source
before the plasma cracker is mounted on the left and b) radiant heater with
power leads and monitoring thermocouple at top right.
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a

b

c

d

e

Figure 3-4 Detail of reactor viewed from the front load-lock zone with the
chamber walls removed. The NaF Knudsen cell source (a) and QCM (b) are visible
at upper left, in front of the metals deposition shield (c). The water-cooled
selenium sector shield (d) is on the right and the annular liquid-nitrogen
cryoshroud (e) at center.

A load-lock attached to a port at the substrate platen level of the

deposition chamber's water-cooled cylindrical wall allows the system to remain

under vacuum for months during operation. The load-lock is independently

pumped with a small turbomolecular pump isolated by a gate valve from the

loading chamber and equipped with a Residual Gas Analayzer (RGA) used to

monitor substrate degassing in the load lock prior to transfer through the gate

valve that isolates it from the deposition chamber. All chamber venting uses
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argon gas and the load lock is equipped with a liquid nitrogen sorption pump for

rough-pumping to the turbomolecular pump's crossover pressure of 10-3 Torr. A

substrate and its back-side heat-spreader are placed onto a holder with a

machined aperture on its bottom side, and transferred with a magnetically-

coupled rod into the fourth zone of the reactor, where it is placed into one of nine

recessed apertures in the rotatable carrier platen.

A Luxel Corporation 100cc effusion cell mounted in the load-lock zone of

the deposition chamber is fitted with a custom-designed machined boron nitride

Knudsen cell with a rate-limiting orifice and used as a sublimation source for

sodium fluoride (NaF). It is monitored by both thermocouples within the source

and a shuttered, water-cooled QCM suspended between the source and the

substrate platen (Figure 3-4).

Operational Characteristics

Substrate Temperature Calibration

Measuring the substrate temperature in the system is complicated by the

high-temperature rotating platen design. Due to the difficulty of making reliable

electrical contact for thermocouple or thermistor-based temperature

measurement and the problems with pyrometry presented by selenium

condensation on optical ports, temperature calibration estimates were performed

by ex-situ observation of the melting of metallic bilayer thin films at their eutectic

temperature. These bilayers were deposited on molybdenum-coated soda-lime
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glass substrates  to mimic as nearly as possible the emissivity and thermal mass

characteristics of the substrates used for in-situ growth of polycrystalline

absorber films.

Procedurally, bilayer temperature calibration substrates were inserted into

standard 2"x2" substrate holders between a CuInSe2–coated alumina substrate

(source side) and an uncoated alumina heat spreader (heater side). Platen

rotation was then initiated and the setpoint of the substrate heater temperature

controller raised slowly to a temperature where it was allowed to thermally

equilibrate for at least an hour prior to a standard growth run. In this manner the

calibration samples were subjected to the closest possible approximation to the

conditions of the actual samples with which it was included. After the growth

run, the samples were allowed to cool overnight before being removed to

ascertain whether the eutectic bilayer had melted or not. After multiple

repetitions of these experiments, correlations were established between the

controller setpoints and the substrate temperature. The data were fitted with an

equation of the form of the Stephan-Boltzman relation, y = a*(x+b)4 , using the

two adjustable parameters a and b. The results are shown in Figure 3-5.
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Figure 3-5 Calibration curve for substrate temperature controller

Epitaxial growth experiments were conducted at a controller setpoint

temperature of 700°C, above the temperature range where empirical temperature

calibration data was available. Extrapolation of the fitted expression predicts a

substrate temperature of ~800K, or about 525°C, but the increasing scatter of the

calibration data at higher temperature yields a ±50°C uncertainty in that

temperature. At the lower setpoint temperature of 400°C typically employed for

binary (Cu,Se) and (In,Se) deposition experiments, the uncertainty is much less,

with a calculated substrate temperature of 250±10°C at that setpoint.
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Flux Calibration

The reactor's design relies on EIES for control of the copper and indium

metal evaporation sources and on temperature control for the selenium sources.

Calibration of these process-monitoring measurements is essential to the goal of

providing the fundamental quantitative flux data that are the inputs to the

thermodynamic analysis that these experiments are intended to support.

Metal (copper and indium) sources

The reactor's design incorporates both EIES sensors for process control and

QCM's with collimated shielding for each of the metal sources that permit cross-

calibration and routine testing for EIES sensor calibration drift. Since these two

sensors are not co-located with each other their geometric flux correction factors

are different for each sensor type and both must be calibrated with respect to the

flux incident on the rotating substrates. The metal deposition shielding prevents

deposition on each individual substrate except during that portion of each

rotation cycle of the substrate platen when it is inside the shield. The shield

subtends only an 80° sector of the full circle, and the flux of each metal is not

constant at the surface while each substrate is within the metals deposition zone.

Therefore, an absolute flux calibration method was employed to establish ratios

between the integrated sensor reading over an entire deposition cycle and the

total quantity of each element measured ex-situ after it is deposited

independently of the others.
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The procedure employed for calibration was to grow a thin film of a single

source material on an unheated Mo/SLG (Soda-Lime Glass) substrate. After

deposition of several thousand Angstroms, the substrate was removed, vias

etched or scraped through the film, and its thickness measured at a minimum of

twelve different locations across the substrate using diamond stylus

profilometry. The mean thickness data was converted into an areal molar density

using the bulk mass density and molar mass of each element. The implicit

assumption that the elemental film's density is the same as the bulk mass density

for that element is the greatest potential source of error in this calibration

procedure for copper and selenium. These films were found to be very smooth

and their thickness, being very uniform across the entire substrate, was unlikely

to cause a significant error.

The metallic indium films were not at all smooth, so that the uncertainty

in their thickness propogated through the calculation and became the greatest

source of error in its calculated calibration factor. In fact, it was found that the

[Cu]/[In] ratios calculated from their absolute calibration factors differed by

about 10% from those measured by EMP on codeposited CIS films grown at low

temperature where the accommodation coefficients for both metals are expected

from thermodynamic considerations to be unity.
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Selenium sources

Absolute flux calibration was conducted only for the thermal selenium

source, not the plasma selenium source. In both cases the flux was controlled by

temperature control of the selenium reservoir, so the absolute flux calibration of

the former required the establishment of a mathematical relationship between

the temperature and calculated areal molar density derived from the thickness

data measured ex-situ after growth, as described in the previous paragraph.

Figure 3-6 Absolute selenium molar flux calibration curve for the thermal
source.

Selenium source crucible temperature between 135 and 150°C were

typically used for growth of both binary and ternary thin films. Although
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calibration was performed over the range 150 to 200°C, the accuracy of the data

fit was extremely good and estimated uncertainty at the lower temperature used

for growth is ≤10%.
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CHAPTER 4 
ACTIVATED DEPOSITION SOURCES

The history of progress in the development of semiconductor materials

might be generally viewed as revolving around two fundamental issues:

purity and process temperature reduction. Purity is essential due to the

monotonic reduction in charge carrier mobilities, which occurs as a consequence

of impurity scattering. In a few exceptional cases, semiconductor alloys such as

InxGa1-xAs contain isoelectronic “impurities” resulting in a net increase in carrier

mobility due to other effects, such as a decrease in the curvature of the

conduction band dispersion relation’s minima (and hence the intrinsic mobility).

Even in this case, however, the total mobility is the net difference between an

increase due to the latter effect, and a decrease due to the former. Process

temperature reduction is inherently important for several reasons. First, low

temperature are often necessary to prevent undesirable interdiffusion of

component species at the interface between different materials. Second, lower

crystal growth temperature to a limit usually effects a reduction in the density of

point defects incorporated into the films. This empirical observation is
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reasonable, even in the case of non-equilibrium growth techniques, in view of the

rigorously demonstrable temperature dependence of equilibrium vacancy

concentrations (Schottky disorder) [157]. The growth of II-VI compound

semiconductor layers is particularly sensitive to high growth temperature due to

the high volatility of both the group II and the group VI elements. This is

distinctly different from the case of III-V compound semiconductors, where the

group III element is essentially involatile, and this difference manifests itself in a

fundamentally different relationship between the flux ratio and growth rate in

Molecular Beam Epitaxy (MBE) [188,189]. In the CIS material system, copper has

been found to be involatile, whereas indium may desorb as InSe2 at temperature

above ~500°C.

Examples of lower deposition temperature leading to significant advances

in semiconductor device technology abound. OrganoMetallic Vapor Phase

Epitaxy (OMVPE) has largely supplanted chloride and hydride-based VPE as a

production process for GaAs in large part due to the fact that it results in lower

deposition temperature. Plasma-Enhanced Chemical Vapor Deposition (PECVD)

of silicon nitride has become a standard part of commercial silicon device

fabrication technology because of the extremely high temperature required for its

pyrolytic deposition.

From an economic perspective, deposition temperature reduction has a

significant impact on the ultimate cost of fabricating high volumes of

semiconductor materials as required for mass production of solar cells for
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terrestrial applications. As processing temperature drop, the demands on system

materials are reduced, enabling the use of lower cost construction materials. For

example, at temperature ≤350°C high vacuum systems may be reliably built

from aluminum, whereas at higher temperature stainless steel must be utilized,

with concomitant increases in equipment cost.

It has been found in prior research that the temperature required for

growth of high-quality semiconductor epilayers by MBE can be significantly

reduced for some materials by thermally dissociating the polyatomic molecules

characteristic of the vapor evaporating from condensed phases of most

metalloids from groups V and VI of the periodic table (e.g.: arsenic, phosphorus,

selenium, and sulfur). For example, lower defect levels are found in GaAs grown

by MBE with As2 instead of As4 at the same growth temperature [190], and a

200°C reduction in minimum growth temperature for heteroeptiaxial ZnSe on

GaAs with no loss of material quality has been reported for growth employing

thermally dissociated selenium [191,192].

Plasma-enhanced deposition processes have also proven to be effective in

the reduction of temperature for the epitaxy of many semiconductor materials

including GaAs by Physical Vapor Deposition (PVD) [193], OMVPE [194], and

Metal-Organic MBE (MOMBE) [195]; ZnSe by PVD [196] and OMVPE [197]; GaSb,

InSb, and InAs by PVD [198], HgxCd1-xTe by OMVPE [199], GaN by OMVPE [200],

and ZnO by OMVPE [201]. In every case significant reductions in the minimum
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temperature required for the onset of single crystal epitaxial growth were

observed, varying from 150-300°C.

One of the goals of this research has been to directly compare the efficacy

of these two approaches. To that end, epitaxial growth experiments have been

conducted using both thermally and plasma activated reactants. The rest of this

chapter is devoted to a detailed discussion of the sources used to perform this

comparison, and the experimental characterization of each source.

Thermally Activated Source and its Molecular Species Distribution

The majority of all metal chalcogenide film growth experiments reported

herein were performed using a commercial thermal selenium evaporation source

(model EPI–225Se from EPI). This source is a double-oven design [202] with two

independent heating and thermocouple circuits, one pair for the 500cc capacity

selenium reservoir, and a second pair for the baffled flux transfer tube through

which the selenium vapor had to pass before exiting the source's aperture. The

lower-temperature reservoir (referred to hereafter as the "selenium crucible") was

equipped with a type K thermocouple and the higher-temperature downstream

zone (referred to hereafter as the "selenium cracker") was equipped with a type C

thermocouple. The maximum operating temperature of the selenium crucible

was 250°C as discussed in the previous chapter's section on source calibration,

but it was degassed at 500°C before its initial selenium charge was loaded. The

selenium cracker zone was outgassed at a temperature of 1200°C prior to source
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charging, and two different operating temperature for the cracker were selected

for deposition experiments: 350 and 972°C.

The low-temperature cracker setpoint was slightly above the minimum

temperature required to prevent condensation of selenium on the coolest parts of

the cracker during extended operation. The high-temperature cracker setpoint is

equivalent to 1200K and was chosen to facilitate direct comparison of

experimental flux characterization data with the results of thermodynamic

calculations based on a recent critical assessment of the selenium unary system

[26,163]. Those theoretical calculations predict that if the source's selenium flux

comes to equilibrium with the cracker at its high-temperature setpoint, the

predominant molecular species would be the dimer Se2. In contrast, those

calculations indicate that the predominant molecular species at the source's low-

temperature cracker setpoint would be Se5.

The influence of cracker-zone temperature on the molecular distribution

of selenium from the thermal effusion source has been studied with a Balzers

QMG-420 quadrapole mass spectrometer (QMS) fitted with a cross-beam ionizer

and with a mass range of 0 to 512 AMU. The QMS inserts through a port on the

reactor’s chamber wall at a level above the substrate platen and the ionizer’s flux

aperture rests directly on a hole drilled in the top surface of the selenium

deposition shield. During measurement a substrate holder was removed from

the platen and the resulting aperture in the platen rotated to align with the

spectrometer to conduct these measurements.
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QMS-based measurements of this type have been employed since the

earliest days of MBE’s development, but more sophisticated beam modulation

methods are required unless the source flux is substantially greater than the flux

of background vapor in the reactor [203]. This condition occurs at the lower

cracker temperature setting (350°C), based on direct measurement of the

background prior to heating the effusion cell. At the higher cracker temperature

setting, the background pressure of the reactor measured by a nude ion guage

outside the chalcogen deposition zone, was to 1.5x10-6 Torr, as compared to

1.6x10-7 Torr (the cryoshroud was not filled for these experiments, since it does

not penetrate the selenium sector shield into the chalcogen deposition zone).

Inspection of the water-cooled selenium sector shield during maintenance

cleaning provides visible evidence that high-temperature cracker operation

results in some sublimation of selenium on those parts nearest the cracker.

However, a QMS study of the ion-energy distribution from subliming selenium

[204] shows that the species Se5, Se6, and Se7 dominate the vapor flux therefrom.

Two characteristics of QMS and our QMG–420’s mass limitation of 512

AMU prevent a completely quantitative analysis of the data we have acquired.

First, QMS do not have constant sensitivity over their whole AMU range. Their

relative sensitivity S is a function of resolution and has the form   S ≈ 1+ x( )− R

where R, the resolution, is defined as  M / ∆M , and x is the fractional change in

sensitivity which is itself not constant over wide mass ranges [205]. The facilities

required for quantitative calibration of the sensitivity were not available, so the
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values of the function x(M) could not be determined, although the value of

R=512/0.1=5120 is known.

The other major complication arises from the tendency of the larger

selenium molecules to dissociatively ionize in the cross-beam ionizer of the QMS

itself. This problem is unavoidable in the selenium molecular system since the

appearance potential for positively charged ionic selenium molecules varies

between 8.3 and 10.4 eV [206] and significant cross-sections for electron

dissociative attachment (forming negative ions) extend to above 7 eV for Sen

when n=1,2, or 3 [207]. Even assuming prior knowledge of the dissociation

pathways and probabilities for each molecular species, inversion of the measured

ion currents to extract their parent molecules’ distribution is not possible without

data for the   Se7
+  and   Se8

+  peaks, whose most common masses are beyond the

range of the QMS, at 554 and 634 AMU, respectively [204].

Table 4-1 QMS ion currents generated from the flux of selenium molecules
formed from the predominant mass 80 isotope effusing from the thermal source.

a) Low Cracking Temperature
150°C on crucible, 350°C on cracker, PNIG = 1.6E-7 Torr

80amu 160amu 240amu 320amu 400amu 480amu
Reading 4.334 1.986 4.256 0.517 0.201 0.152
Range 9.000 9.000 12.000 12.000 12.000 12.000
Actual 4.3E-08 2.0E-08 4.3E-11 5.2E-12 2.0E-12 1.5E-12

b) High Cracking Temperature
150°C on crucible, 927°C on cracker, PNIG = 1.5E-6 Torr

80amu 160amu 240amu 320amu 400amu 480amu
Reading 3.583 5.533 3.286 1.535 0.367 0.218
Range 8 8 11 12 12 12
Actual 3.6E-07 5.5E-07 3.3E-10 1.5E-11 3.7E-12 2.2E-12
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Keeping these limitations in mind, the selenium thermal cracker QMS

characterization results shown in Table 4-1 nevertheless admit to a qualitative

interpretation that indicates a significant increase in the fluxes of the lower mass

species (particularly Se2) at higher cracker temperature, as displayed in Figure

4-1. This conclusion is based on the calculated ratios of measured Beam-

Equivalent Pressure (BEP) data from Table 4-1, wherein the corrections due to

variations in QMS sensitivity cancel out for each distinct mass.
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Figure 4-1 Ratio of measured ion-currents at high and low thermal source
cracking zone temperature for each selenium molecular species within the mass
detection range of the QMS.

Plasma Source

There are sometimes problems with plasma-activated deposition

processes, mostly relating to impurity contamination and ion-bombardment
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damage. The approach developed in the course of this research may make a

significant contribution to low temperature CIS deposition technology by

alleviating these problems through a unique approach to plasma excitation of the

reactants.

This approach to lowering growth temperature could also result in a

significant reduction in process equipment and facilities expenses (and hence

photovoltaic costs) by pioneering a new technique for the in-situ generation of

activated reactants. The new deposition source can significantly improve the

safety of growth processes by eliminating the need for the storage or transport of

large quantities (typically gas cylinders) of the hyper-toxic selenium hydride.

Several approaches to solving these safety and cost problems have been

studied, including the use of non-hydride precursors. In OMVPE for example,

tertiarybutylarsine has been used to replace arsine for GaAs epitaxy [208], and

methylallylselenide has been used to replace hydrogen selenide for ZnSe epitaxy

[209]. Problems persist in this approach, however, with residual carbon

impurities and precursor costs. Another approach, for deposition processes using

OM precursors, and routinely used in PVD deposition processes like MBE, is to

employ an elemental source such as arsenic for GaAs epitaxy or selenium for

ZnSe epitaxy. In the case of OM processes, this approach does not in itself solve

the problem of residual carbon contamination.

In the case of plasma-activated PVD processes, it has been shown that the

use of hydrogen provides distinctly superior results in the quality of materials
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grown, when compared to argon [210]. Those results suggest that utilizing

hydrogen may have beneficial results under circumstances where the reactants

themselves are not sources of carbon contamination. There are several plausible

mechanisms that may be suggested for this effect. First, since hydrogen atoms,

radicals and ions are all powerful reducing agents, they may effectively getter

oxygen or displace chemisorbed oxygen adatoms on the growth surface,

increasing their desorption rate. Second, chemisorbed hydrogen may passivate

dangling surface bonds, thereby reducing the binding energy of subsequently

impinging species, an effect which has been shown to occur in some material

systems [211]; and third, since the mass of hydrogen atoms is smaller than that of

argon, momentum transfer to the lattice of the crystal, and consequently lattice

displacement, is less than the argon case [212]. The approach developed in the

course of this research utilizes elemental selenium buffered by argon, hydrogen,

or mixtures thereof in a plasma discharge, which could be used to generate

hydrogen selenide and related radical and ionic species in-situ.

The novel plasma-activated selenium source developed in the course of

this research is significantly different than any other heretofore reported in the

scientific literature of the field. It is microwave-excited, magnetically-confined

helical resonator that operates under Electron Cyclotron Resonance (ECR)

conditions at 2.455 GHz. This “plasma cracker” is directly coupled to the

aperture of an effusion cell and evidence will be provided herein that it both

excites and dissociates the vapor exiting therefrom. It can combine the effusion
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cell vapor flux with a stream of hydrogen and/or inert gas at the ECR resonance

point. A non-resonant, higher-pressure approach to the in-situ generation of

arsine from elemental arsenic and hydrogen has been demonstrated in a

“downstream microwave plasma” operating mode for OMCVD application [213].

All ECR sources reported in the literature, to our knowledge, utilize gas

precursors (e.g., hydrogen or arsine).

Thus this modified ECR source supplies plasma-activated reactants for

epitaxial growth at reduced pressures utilizing elemental reactants. Furthermore,

the ability to inject mixtures of hydrogen and an inert gas such as helium or

argon provides another dimension of control over the relative composition of the

flux generated by the source. Presumably, a lower ratio of hydrogen to selenium

vapor in the plasma will reduce the steady state concentration of hydride species

or shift their distribution towards greater concentrations of less completely

hydrogenated species. This control over the reactant species distribution is

unavailable with ECR sources that utilize hydride precursors and represents

another advantage of this novel plasma source.

Conceptually, the source may be viewed as an alternative to a

conventional thermal “cracker” as previously discussed, and has been utilized to

convert the flux of thermally evaporated molecular species to a flux of

dissociated hyperthermal molecular species which are more readily incorporated

into the crystal lattice (e.g.: Se5 to Se 2). A rendered cross-sectional CAD drawing

of the final source design with a coupled effusion cell is shown in Figure 4-2.
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Figure 4-2 Rendered, cross-sectional CAD drawing of TE011 plasma cracker
with coupled effusion cell.
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Source Design

The ECR technique has important advantages compared to other

techniques of plasma excitation, particularly for crystal growth applications.

Excitation at microwave frequencies (e.g.: 2455 MHz) rather than at RF (typically

13.56 MHz) significantly reduces the average ion energies within the plasma

since there is less time during which the ions can accelerate and absorb energy

within each cycle before the reversal of the force on the ions due to the

electromagnetic field’s oscillation. Typical ion energies in microwave plasmas are

tens of volts, while typical ion energies in RF plasmas are hundreds of volts.

Another related consequence of this frequency difference is that the sheath

potential of a microwave plasma (i.e., the potential difference between external

ground and the plasma volume) is significantly lower than that of a RF plasma.

The sheath potential is a consequence of the higher mobility of electrons than

ions in response to the impressed electromagnetic field. Electrons tend to escape

to grounded surfaces surrounding the plasma faster than ions as a consequence

of their lighter mass and thus higher mobility. Hence in steady state the plasma

assumes a positive electrostatic potential with respect to ground to establish a

dynamic equilibrium between the electron and ion loss and generation

mechanisms. Quasi-neutrality is thereby maintained in the plasma volume.

The importance of these differences for crystal growth applications is

extremely significant. The value of ion bombardment of growth surfaces for

increasing the surface mobility of adatoms has been clearly demonstrated [212].
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It is critical for the growth of high quality crystalline materials that the energies

of the incident species at the growth surface be sufficiently low to prevent ion

bombardment damage, else the growth temperature (or post-growth thermal

treatment temperature) must be sufficiently high to anneal the point and/or

extended defects created by the bombardment.

Magnetic confinement is used in conventional RF plasmas as well as

microwave plasmas. A resonance occurs when the excitation frequency coincides

with the natural “cyclotron” frequency (also known as the Larmor frequency) of

the electron’s circular rotation around their guiding centers as they follow helical

trajectories in a magnetic field, given by

fce= 
eB0

me
  = B0*2.8 GHz/kG.

A more complete treatment [214] of the coupled electromagnetic wave and

plasma system shows that the eigenmodes for the propagation of

electromagnetic waves in a plasma along the direction of a static magnetic field

are given by the poles of the complex index of refraction in the dispersion

relation:

ω = 
c
ñ  k

where the complex index of refraction is given by:

ñ2 =1– 
ωp

2/ω2

1±(ωc /ω) 

with
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ωp
2 = 

n0e2

m   and ωc = 2πfce

defining the plasma and cyclotron angular frequencies respectively; m, n0 and e

are the electron mass, electron density and charge. The mode characterized by

the negative sign in the denominator of this complex index of refraction is called

the “whistler” mode (for historical reasons; see Chen [214] § 4.17.1) or R-wave

(because it is right-hand circularly polarized), and is the relevant mode to ECR

plasma excitation. Hence, unlike conventional RF magnetically confined plasmas,

the magnetic field in an ECR plasma creates a resonance which dramatically

increases the absorption of energy by the plasma from the power source. The

result of this is that ionization efficiencies in ECR plasmas are one to two orders of

magnitude higher than in conventional RF plasmas.

Another significant consequence of the stronger coupling between the

excitation and plasma in ECR plasmas is that a self-sustaining discharge can be

maintained at pressures one to two orders of magnitude lower than conventional

RF discharges. Pressures in the 10-4 to 10-5 Torr range can be achieved, and are

desirable in this and many other low-pressure techniques where long mean free

paths are beneficial.

The extraction of ions from an ECR source results from divergence of the

static magnetic field and the fact that ion trajectories (in the absence of collisional

scattering) follow the magnetic field lines. Since the magnetic moment enclosed

an ion’s helical trajectory in a magnetic field is an adiabatic invariant [214] ions
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gain kinetic energy when they travel from a region of higher to lower magnetic

field. Hence, the energy of ions incident on the growth surface can be directly

controlled (over a finite range) by controlling the relative magnetic field at the

growth surface compared to the field in the source [215].

The basic source design is a 2.455 GHz resonant microwave cavity placed

within a permanent magnet flux shunt assembly to create a “magnetic mirror”

plasma confinement volume. Microwave power is coupled to the cavity via a

high temperature coaxial microwave cable, and coupled within the cavity to the

plasma by a helical antenna designed to couple efficiently to the R-wave

eigenmode. The reactants are isolated from the cavity by a sapphire tube to

prevent unwanted deposition within the source, and to insure that all of the

escaping reactant flux is directed toward the substrate. Two sources have been

used, a TM011 cavity (which is relatively small), and a TE011 cavity.

The combination of a helical antenna and resonant cavity is known in the

modern literature as a helical resonator. It was first described in 1970 by Lisitano

and coworkers [216], who built a very similar discharge source for gases, but to

this author's knowledge this is the first time such a structure has been coupled to

the exit orifice of an effusion cell. Although the cavity may be resonant prior to

ignition of the plasma, its modes are significantly perturbed by the plasma itself,

a problem previously addressed analytically by Agdur and Enander [217].

Lisitano found that very efficient non-resonant absorption was maintained in
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spite of this when a helical antenna was used, so these antennas are sometimes

referred to in the literature as a “Lisitano coil.”

The relative advantages of ECR microwave plasmas compared to

conventional and magnetically confined RF plasmas have discussed in this

introduction. In summary, they are lower ion energies, control of incident ion

energies via control of the magnetic field strength at the growth surface, higher

ionization efficiency, and lower pressure operation. The advantage of this ECR

source over commercial ECR sources, or conventional ECR source designs are the

utilization of elemental reactants and the ability to control their hydrogenation

by mixtures of hydrogen with the injected buffer gas. The results of this source

development could be applicable to other material systems, such as GaAs, and

other growth techniques, such as Metal-Organic MBE. Details of specific source

design issues will be discussed in the following subsections.

Antenna Design

Symmetry considerations are extremely important in optimizing the

design of the discharge chamber to maximize the power coupled from the power

supply into the plasma. The whistler mode is a TEM-type mode propagating

parallel to the external static magnetic field, hence the electric and magnetic

fields oscillate in the plane perpendicular to the wave’s direction of propagation.

An externally impressed microwave field and cavity modes excited by that
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external field can only couple to this plasma mode to the extent they share this

symmetry.

Most commercial ECR sources couple microwaves into a cylindrical

ionization cavity by means of an axial, end-coupled TE10 rectangular waveguide.

This couples strongly to the cavity if it is designed to resonate in a TE mode at

the oscillator’s frequency, which can in turn couples strongly to the Whistler

plasma mode (presuming an axial static magnetic field is used). This end-

coupled waveguide, however, is completely incompatible with an end-coupled

effusion cell and any other hollow waveguide coupling geometry would not

efficiently couple the external power with the cavity modes.

Hence, an antenna had to be designed which would effectively couple to

both a cavity TE mode and the plasma whistler mode. The choice of antenna

coupling to the cavity immediately forces the use of coaxial waveguides to

deliver power to the antenna. This created two challenging issues: a microwave

cable and power feedthrough for the vacuum chamber. This section will discuss

the significant issues and solution to each of these two problems.

Helical antennas have long been used for microwave applications since

their invention in 1946, and a great deal of empirical and analytical information

is available regarding their impedance and radiation characteristics in less

complex applications [218]. When embedded in a resonant cavity, analytical

calculation of their effective radiation impedance becomes an intractable

problem, although approximation methods have been reported [219,220]. The
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techniques developed for impedance matching of helical antennas to coaxial

transmission lines [221] have been implemented in the final antenna design to

the extent feasible given manufacturing constraints. Specifically, the antenna is

peripherally fed via a bulkhead feedthrough in the base of the cavity and

dielectrically isolated from the ground plane by a boron nitride disc against

which it rests (pitch=0) for the first half-revolution, creating a λ/2 transmission

line coupling. The pitch increases linearly over the second half-revolution to its

final value determined by the radius and the “one integral wavelength per

revolution” constraint described next.

One goal of the overall source design is to maximize the interaction

probability to achieve the greatest possible degree of molecular dissociation,

excitation and ionization. To maximize the transverse electric field strength along

the central axis of the cavity a helical antenna design was selected with the helix

diameter and pitch chosen to give a path length along the antenna of one

wavelength at 2.455 GHz per revolution. This insures that the electric field vector

in the interior of the helix is predominantly radial. The wavelength is fixed by the

oscillator frequency at

λ2.455 GHz = 
c
ν = 

2.998 x 1010 cm/sec
2.455 x 109 cyles/sec

 = 12.21 cm = 4.807" 

The general expression for the path length, s, of a helix of pitch l and with θ/2π

rotations is:

s2 = (θr)2 + l2 ↔ l = s2 - (θr)2 
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Hence the maximum radius of a helical antenna at this wavelength subject to the

“one integral wavelength per revolution” constraint is found by setting the pitch

(l) to zero, or:

s2 = (2πr)2 ↔ rmax = 
12.212 cm

2π   = 1.944 cm

These design choices and constraints led to the selection of a 1" outside diameter

sapphire tube as the reaction vessel, when combined with the smallest physical

dimensions of standard miniature microwave cable connectors (type SMA). Two

antenna types were built, one with a radius of 0.6" and one wavelength

pathlength; the other six wavelengths pathlength with a radius of 0.7"; for use

with effusion cells with or without water cooling, respectively.

These antennas, the coaxial microwave cable and microwave vacuum

power feedthroughs were custom built utilizing materials and techniques

developed originally for advanced radar systems for demanding military aircraft

applications. Several iterations of design were necessary to eliminate

inadequacies which resulted in failure of the various components during the

earlier technology development phases of this contract. Design features which

were found to be important include venting of cable connectors inside the

vacuum to prevent virtual leaks and localized plasma breakdown, the

replacement of all brazed joints in the antenna assembly with laser welded or

mechanically constrained connections to prevent thermal runaway and melting,
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and the use of hermetically sealed, silica-filled high temperature stainless-clad

copper coaxial conductor cables.

Cavity Design

A resonant microwave cavity load has the effect of storing electromagnetic

field energy, thereby increasing the strength of the fields. It can be shown that in

the absence of an interior conductor, only two types of resonant modes can be

sustained in a right circular cylindrical waveguide or cavity, those with radial

magnetic field vector (TM) and those with radial electric field vector (TE) [222,

p. 95]. Calculating the dependence of these mode frequencies on the geometric

dimensions of ideal cavities is straightforward, but provides only a first order

estimate of the resonant frequencies of a practical cavity design for this

application, which includes perturbations due to apertures on either end,

dielectric loading (the sapphire discharge chamber tube and boron nitride

insulators) and interior conductive surfaces (the helical antenna and plasma

column itself during operation).

Estimation techniques for some of these perturbations have been

discussed in the literature [223]. Calculating the exact magnitude of these

perturbations is possible using finite-element analysis, but empirical

quantification of these deviations from ideality is simpler, cheaper and quicker.

The effect of the perturbations was correctly anticipated to be a reduction in the

mode frequencies when compared to the idealized cavity calculations.
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The procedure used to optimize a cavity was to originally construct it with

a smaller inside diameter than would be calculated for the ideal mode at the

pump frequency. Then microwave impedance measurements of the cavity were

conducted to measure the deviations of the cavity from ideality, and then the

cavities were re-machined to larger inside diameter in an iterative process which

converged on the required dimensions in one or at most two iterations. Other

key considerations in the choice of cavity dimensions were maximizing the

frequency separation of the desired mode from competing modes (which could

result in mode-hopping and instability) and maximization of the quality factor

(Q) of the desired cavity mode. Resonant mode frequencies were calculated

using the expression [222, p. 328]:

fnml = 
�
�
�
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�
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�lπ

h

2 1/2 c
2π 

where a is the cavity radius, h is its height, c is the speed of light and for TE

modes xnm= p'nm (the nth root of the equation J'm(x)=0 where J'm(x) is the first

derivative of the Bessel function Jm(x)) whereas for TM modes xnm= pnm (the nth

root of the equation Jm(x)=0).

The initial TE011 mode cavity design was based on the general observation

that the Q is maximal for approximately equal height and diameter, combined

with a plot of “isofrequency” contours for the various neighboring modes at a

frequency corrected by the loading and non-ideality shifts previously measured

on a smaller cavity.
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Figure 4-3 Calculated resonant frequency contours of TE011 and neighboring
modes as a function of diameter and height of an empty ideal right circular
cylindrical cavity.

In this context “unloaded” means the cavity was measured without the

sapphire discharge tube inserted and “loaded” means measurement with the

tube inserted (operational mode). The non-ideality shifts are the differences
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between the calculated mode frequencies for an ideal cavity and those measured

for the unloaded cavity, which is perturbed by the antenna, boron nitride

insulators, and endface apertures. Results are shown in Figure 4-3.

 Note that the total shifts of the different modes vary greatly, far more

than their resonance bandwidths, as will be shown further on. Furthermore, the

resonant frequency of the mode of desired symmetry, the TE011 mode, is

relatively insensitive to the cavity length. This makes accurate tuning relatively

easy but conversely requires a very careful choice of cavity diameter if the

effective tuning range is to be in the frequency domain of interest.

Table 4-2 Calculated mode frequencies of semifinal TE011 cavity design at
minimum tuning length limit.a

Character n m l Bessel root (n,m) ƒ (GHz)

TE 1 1 1 1.841 1.5380
TM 0 1 0 2.405 1.5446
TM 0 1 1 2.405 1.8312
TE 2 1 1 3.054 2.1942
TE 1 1 2 1.841 2.2952
TM 1 1 0 3.832 2.4610
TM 0 1 2 2.405 2.5011
TM 1 1 1 3.832 2.6503
TE 0 1 1 3.832 2.6503
TE 2 1 2 3.054 2.7779
TM 1 1 2 3.832 3.1506
TE 0 1 2 3.832 3.1506

a diameter = 5.850", length = 6.000"

Results of the ideal cavity mode analysis prior to the last design iteration

of the TE011 cavity are shown in Table 4-2 and Table 4-3 for the upper and lower
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length limits of the cavity’s tuning range, respectively. Experimental data will be

presented and compared with these calculations in a subsequent section.

Table 4-3 Calculated mode frequencies of semifinal TE011 cavity design at
maximum tuning length limit.b

Character n m l Bessel root (n,m) ƒ (GHz)
TE 1 1 1 1.841 1.4994
TM 0 1 0 2.405 1.5446
TM 0 1 1 2.405 1.7989
TE 2 1 1 3.054 2.1673
TE 1 1 2 1.841 2.1907
TM 1 1 0 3.832 2.4610
TM 0 1 2 2.405 2.4056
TM 1 1 1 3.832 2.6281
TE 0 1 1 3.832 2.6281
TE 2 1 2 3.054 2.6923
TM 1 1 2 3.832 3.0754
TE 0 1 2 3.832 3.0754

b diameter = 5.850", length = 6.400"

Magnetic Flux Shunt Design

As described in earlier sections, one goal of the overall source design is to

maximize the interaction probability  to achieve the greatest possible degree of

molecular dissociation, excitation and ionization. Another means of achieving

this goal is to use magnetic confinement techniques to increase the residence time

and thereby the steady-state concentration of ions in the plasma volume. A

magnetic mirror is a field arrangement originally developed for plasma research

which utilizes two annular magnets or solenoids with their magnetic fields

parallel to their common axis, and creates a region of lower magnetic field flux

between them. Ions generated in this lower field region will travel in helical
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trajectories along the flux lines, but due once again to the adiabatic invariance of

the magnetic flux enclosed in that helix they will decelerate as they approach the

higher flux region, and given sufficiently high field gradients most will reflect

back into the interior of the plasma volume. In the context of an ECR source, most

primary ion generation will occur in the resonance field region, so it is important

that this resonant field strength occur inside the microwave cavity and that

higher fields exist near the entrance and exit apertures of the source.

Permanent magnets were chosen for this magnetic mirror design due to

their relative compactness compared to sufficiently strong electromagnets. The

tradeoff of greatest consequence was the requirement for substantial heat

shielding, water cooling, and thermal isolation from the effusion cell and

discharge cavity to prevent thermal demagnetization of the permanent magnets.

To isolate their strong magnetic fields from the rest of the vacuum system

instruments and to prevent their uncontrolled interaction with other

magnetizable system components, these magnets were enclosed in a “flux

shunt,” an enclosure of highly susceptible magnetic materials which have the

effect of “channeling” the magnetic field between the two permanent magnet

annuli.

Samarium-cobalt magnets with a Sm2Co17 alloy composition and 26

Oersted-Gauss B-H field energy product were chosen. The cylindrical magnetic

flux shunt is comprised of end-plates fabricated from a 49% nickel, 49% cobalt,

2% vanadium alloy sold under the trade name of “2V-Permandur,” connected
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via a cylindrical coil of 49% iron, 49% cobalt, 2% vanadium alloy sheet metal sold

under the trade name of “Permandur.” These magnetic components were pre-

assembled onto water-cooled copper heat spreaders, which became the primary

structural components of the entire source. The exteriors of the copper

components were nickel plated to prevent corrosion due to selenium vapor.

Microwave Characterization

Microwave cavity impedance measurements were conducted throughout

the course of this source development effort to provide feedback to the iterative

design optimization process described in a later section. All of these

measurements were conducted using a Hewlett-Packard 8753 network analyzer

with 8753B and 85047A modules for the measurement of forward and reflected

power. The results of these measurements were plotted as reflected signal

attenuation (in decibels) versus frequency. The results of one such measurement,

conducted in-situ with the final cavity design is shown in Figure 4-4.

The assignment of modes and determination of shifts due to non-ideality

were conducted by comparing the calculated and empirical data for unloaded

cavities, as demonstrated with Table 4-5 for the measured data corresponding to

the ideal cavity calculation results presented in Table 4-2 and Table 4-3. In

general it was found that mode identification was best made on the basis of shifts

in frequency accompanying changes in diameter and length of a cavity than on

the basis of the absolute frequency measurement, since the frequencies of the
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various modes shift by different amounts, sometimes resulting in empirically

different ordering of the modes than were calculated.

Figure 4-4 In-situ impedance measured over a 2GHz range of the final cavity
design at its optimal tuning length for TE011 operation.

Note that there are more experimentally measured modes than calculated.

Some of these unpredicted resonances are clearly due to splitting of degenerate

modes resulting from symmetry violation. Such modes are identifiable because

they nearly perfectly track one another. Another resonance, labeled “antenna” is
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assigned as such because it does not shift with any change in cavity geometry.

Finally, some of the modes may be unpredicted modes of TEM character since

the introduction of the antenna in the interior of the cavity removes the

previously mentioned proscription against TEM modes, which applies strictly

only to cavities without interior conductors. On the other hand, no resonance

was found in cavities of any dimension that correspond to the TE112 mode

predicted by the general theory. The reason for its absence is uncertain.

The determination of shifts due to loading the cavity with the sapphire

discharge chamber tube were conducted by comparing the empirical data for

loaded and unloaded cavities, as shown in Table 4-4 for the TE011 mode. Note

that the loading shift of this individual mode is quite reproducible and constant.

Also, note that the lowest TE011 mode frequency for this semifinal cavity design,

corresponding to the loaded cavity at maximum tuning length, is too high.

Table 4-4 Comparison of frequency shifts of the TE011 mode due to dielectric
loading of the cavitya at several different lengths.

length
 (in):

loaded ƒ
(GHz) ∆ƒ

unloaded ƒ
(GHz) ∆ƒ

Loading
Shift

6.0000 2.468 2.529 -0.061

-0.008 -0.009

~6.35 2.46 2.52 -0.06

-0.004 -0.003

6.4000 2.456 2.517 -0.061

a diameter = 5.850"



Table 4-5 Compilation of theoretical calculations and experimental data demonstrating unloaded semifinala cavity
mode assignments.

Cylindrical
cavity ƒ (GHz)

tuning shift tuning shift
ƒ (GHz)

Assignment
of

Non-ideality Shift
(measured-ideal)

calculated
modes

height=
6.0000"

height=
6.4000"

∆ƒ [ideal] ∆ƒ [data] height=
6.00"

height=
6.40"

Measured
Modes

height=
6.00"

height= 6.40"

TE 111 1.5380 1.4994 0.0386 0.0260 1.3925 1.3665 TE 111 -0.14549 -0.13292
TM 010 1.5446 1.5446 0.0000 -0.0070 1.5680 1.5750 TM 010 0.02343 0.03043
TM 011 1.8312 1.7989 0.0323 1.7590
TE 211 2.1942 2.1673 0.0269 0.0310 1.8410 1.8100
TE 112 2.2952 2.1907 0.1045 0.0190 1.8540 1.8350 TM 011 0.02284 0.03611
TM 110 2.4610 2.4610 0.0000 0.0230 2.1730 2.1500 TE 211 -0.02119 -0.01733
TM 012 2.5011 2.4056 0.0955 0.0780 2.4970 2.4190 TM 012 -0.00411 0.0134
TM 111 2.6503 2.6281 0.0222 2.4280
TE 011 2.6503 2.6281 0.0222 -0.0010 2.4350 2.4360 TM 110 -0.02603 -0.02503
TE 212 2.7779 2.6923 0.0857 0.0120 2.5290 2.5170 TE 011 -0.12131 -0.11112
TM 112 3.1506 3.0754 0.0753 0.0020 2.5590 2.5570 antenna
TE 012 3.1506 3.0754 0.0753 2.6730 TE 212 -0.01925

0.0270 2.8580 2.8310
0.0550 2.9100 2.8550
0.0490 2.9260 2.8770

a diameter = 5.850"
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Figure 4-5 Final cavity design, tuned and fully loaded, in-situ TE011 mode
impedance measurement.

The final TE011 cavity design, compensated for all the perturbations,

loading effects, and deviations from ideality described above, has an inside

diameter of 5.875" and tuned to the microwave power supply frequency at an

inside length of ~6.03". Its measured microwave impedance and derived

parameters are shown in Figure 4-5. Note that the bandwidth is only 1.74 MHz,

quite narrow when compared to its tuning range (cf: Table 4-5) of ~12 MHz. The

152
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quality factor (Q) of 1409 is proportional to the ratio of the time-average energy

stored in the cavity to the energy loss per second, which is Q/2π or 224 [222,

p. 314]. The return loss of -14.64 dB is equivalent to an 81% attenuation of the

input voltage in the reflected wave amplitude. These characteristics are quite

adequate for these materials processing applications.

Magnetic Profiling

To discover whether the source design would achieve the requisite ECR

resonance condition, the magnetic field strength distribution of the completed

assembly was measured in-situ. The data were collected using a F.W. Bell Model

4048 Gaussmeter with their model A-4048-002 axial magnetic flux probe. Thus,

the data compiled in Table 4-6 are a measurement of only the axial component of

the magnetic field vector. Two sets of measurements were made, one at a radius

approximately 1mm inside the sapphire discharge tube, the other along the

center axis of the tube. Distances are measured from the exit aperture of the

discharge tube downward toward the effusion cell. Note that both profiles

achieve the critical field value of 875 Gauss for ECR resonance at 2.455 GHz

outside of the interior of the resonant cavity, which begins at a distance of 4.4 cm

from the exit aperture. This is not a desirable configuration since the TE011 mode

has 0 azimuthal, 1 radial and 1 axial maxima in field strength and a transverse

electric field z-dependence proportional to sin (πz/d). Hence, the ideal TE011

cavity mode transverse electric field strength falls to zero at the endplates of the
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cylindrical cavity. In this configuration only fringing fields extending outside the

cavity through the endplate apertures or propogated by a plasma column excited

by another absorption mechanism can effectively excite the plasma in the

resonance zone. Nevertheless, the source works, and Lisitano noted this same

effect in the very first report of an ECR helical resonator [216].

Table 4-6 Axial magnetic field strength profiles of the final source assembly.

Axial Magnetic Field Strength (Gauss) at
axial distance

(cm) =
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

radial distance =
0 cm

146.2 55.1 383 569 765 908 873 634 292 -370 -237

radial distance =
1.1 cm

112.7 35 340 599 923 993 952 597 151 -197 -358 -448

Source Installation

The TE011-mode cavity and flux shunt assembly described earlier in this

chapter constitute the plasma “cracker” which is attached to the exit orifice of a

commercial, water cooled, low temperature effusion cell, the EPI-20MLT

manufactured by EPI Systems, Inc. The sapphire discharge chamber and effusion

cell crucible are coupled by a small pyrolytic boron nitride disc incorporating a

socket into which a 1/8" stainless steel gas delivery line is inserted. Microwave

power is coupled to the microwave cavity antenna bulkhead fitting by the high-

temperature hermetically sealed microwave cable described previously which

attaches at the opposite connection to a 1" baseplate feedthrough with
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impedance-matched microwave coaxial couplers on either side of the vacuum

seal. Power is provided by an Astex S-250 microwave power supply connected to

the feedthrough via a circulator, water-cooled dummy load and double-slug

tuner. These latter features permit tuning of the load impedance to match the

source and protect the power supply from excessive reflected microwave power

that might otherwise damage the klystron. The source is mounted onto a water-

cooled baffle inside the reactor's chalcogen deposition zone as shown in Figure

3-3.

Source Operational Characteristics

Experiments were conducted to demonstrate operation of the source and

test for microwave leakage from the system subsequent to its installation. The

source was first tested using helium gas. A steady state discharge was

established for ~20 minutes at a forward power of 150 watts, reflected power of 2

watts and a system background pressure of 5 x 10-5 Torr of helium (indicated

pressure of 2.6 x 10-4 Torr with calibration of the vacuum gauge controller for

nitrogen and a sensitivity ratio of 0.18 [224]). The strong blue emission

characteristic of recombination emission from helium plasmas was clearly

observable under these conditions.

Argon discharges were also established and the full operational range for

this gas was studied. Steady state discharges were routinely established and

maintained throughout the epitaxial growth process at a forward power of 200
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watts, reflected power of 10 watts, and a system background pressure of 2 x 10-5

Torr at an argon flow of 6 sccm. A discharge could be maintained at pressures as

low as 6.5 x 10-6 Torr but the 100 sccm full-range mass-flow controller used to

regulate the gas flow was unstable at the lower flow setpoints required to

achieve this pressure, and its fluctuations would eventually cause the discharge

to extinguish. The lower first ionization potential, higher ionization cross-section,

and lower mobility of argon compared to helium [225] undoubtably contribute to

the lower minimum pressure for a sustained discharge in this case.

Immediately following the initial loading of the effusion cell with

selenium, experiments were conducted in an effort to create a self-sustaining

discharge of pure selenium, with no buffer gas flow. A discharge was

successfully established on the first attempt, but all subsequent efforts to repeat

that experiment were unsuccessful. A plausible conjecture is to attribute this fact

to selenium contamination of the inner walls of the sapphire tube during

cooldown after that first experiment. When first assembled, the sapphire tube

was cleaned with a 1:1:2 mixture of hydrogen peroxide, ammonium hydroxide,

and deionized water, respectively. Combined with ion bombardment from the

inert gas discharges, the inner walls were uncontaminated at the commencement

of the first experiment to establish a selenium discharge, and it is reasonable to

argue that the recombination probability for selenium ions incident on that clean

surface was significantly less than the surface once contaminated with condensed
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selenium. Indeed, a semitransparent residual coating of selenium was observed

on the inner surface of the tube when it was removed after a month of operation.

Insufficient plasma characterization data are available to unequivocally

identify the nature of the observed discharges. Nevertheless it seems likely that

the observed plasma may be sustained both by ECR coupling and a space charge

wave resulting from the interaction of the plasma with charge accumulations at

the surface of the sapphire discharge tube. This type of wave is not possible in

the theory of idealized spatially infinite plasmas, but has been studied

extensively in plasma research because of its common occurrence in practical

experimental configurations, and in particular in systems with precisely this

geometry. Considerable difficulty is entailed in distinguishing these space charge

modes in finite plasmas bounded by dielectric surfaces from whistler-mode

waves because both waves are slow and may have similar pass bands.

Furthermore, nearly any antenna in a finite plasma column has fringing fields

that can excite the space charge wave and both modes require close antenna

coupling to the plasma [226, p. 182]. In this case the axial component of the

helical antenna’s interior near field is the component oriented in the direction

required to couple to these space charge wave modes whereas the radial

component is oriented in the direction required to couple to the whistler mode.
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Molecular Species Distribution of the Plasma Source Flux

The same QMS techniques described previously in the context of thermal

source flux characterization have been applied to measure the distribution of

molecular species in the flux from the ECR helical resonator plasma source. The

most obvious difference in the experimental conditions between the two cases

was the significantly higher total background pressure in this case of 2 x 10-5

Torr, predominately due to the argon buffer gas. Nevertheless, this pressure is

well below the manufacturer’s claimed linearity limit of 7.5 x 10-5 Torr for the

Faraday cup detector used to conduct these measurements.

The results of this experiment are shown in Figure 4-6 and Figure 4-7,

which show the raw signals and calculated ratio of selenium monomer to dimer

signals. Note that the signal intensities are very low (reduced by three to four

orders of magnitude) compared to the data for the thermal cracking source

shown in Table 4-1. These measurements of the plasma source were conducted at

a selenium effusion source temperature of 200°C, and subsequent growth

experiments showed that a source temperature of 300°C was required to achieve

fluxes comparable to those provided by the thermal cracking source at

temperature of only 150°C. Thus the absolute fluxes used for this measurement

were too low for accurate determination of the relative fluxes of any of the

species other than the monomer and dimer.
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dimer fluxes from the plasma source.
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Figure 4-7 shows that the uncorrected monomer/dimer ion current ratio

drops from about 2 to 1.4 when the microwave power is reduced to 0. Figure 4-6

shows that the absolute magnitude of both decrease as well, but these signal

intensities’ declines cannot be directly analyzed quantitatively because all

include too great a contribution from the noise of the detector (all higher mass

peaks overlap each other thereby indicating the noise level). Thus this

monomer/dimer ratio calculation provides only a lower limit. Figure 4-7 also

shows the “corrected” ratio with the mean value of all higher mass peaks’ signal

(0.59) subtracted from both data sets before calculating the ratio. In this case the

monomer/dimer ion current ratio drops from about 3 with the plasma to 2.1

without. This latter value compares favorably with that for the thermal cracker

data (where the statistics are much better). The ratio from Table 4-1 is 2.15 for the

low-T thermal case and decreases to 0.65 in the high-T case.

The factor of ~2 increase in absolute signal intensity when the argon flow

is terminated also suggests that some gas-phase scattering occurs. Calculations of

the various species’ mean free path lengths were performed for the background

value of pressure, and the results were all in the 100-1800 cm range (lowest for

the large selenium molecules). Nevertheless, since the gas is injected a few

millimeters above the effusion cell’s exit orifice, the local molecular density at

that point is much higher, resulting in locally reduced mean free path lengths.
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Ion Flux from the Plasma Source

Considerable efforts were made to directly measure both the ion flux mass

and energy distributions from the plasma source. The ion flux mass distribution

measurement was attempted using the same QMS with its emission current set to

zero, so that the only measurable currents would be those pre-existing in the flux

from the source itself. Every experiment gave a negative result, indicating ion

currents from the source could not be measured with the QMS. These experiments

were conducted using the much more sensitive secondary electron multiplier as

well as the Faraday cup detector but still returned a negative result.

A retarding grid ion energy analyzer was also constructed for the sole

purpose of measuring the energy distribution of the ion flux, using a design

published in the literature specifically optimized for the measurement of ECR

plasmas. Repeated efforts to measure any ion current from the source using this

instrument consistently yielded a negative result, independently verifying the

results of the QMS measurements.

These results were unexpected but not inexplicable. The magnetic mirror

confinement structure used to create the resonant ECR static magnetic field was

originally developed as a confinement system in the course of fusion research. It

was mostly abandoned for that application because of leakage from the magnetic

cusps which represented an unacceptable loss in plasmas at the high densities

and temperature required for fusion applications. The leakage from such a

system is much less for low-temperature plasmas such as the present one.
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It is likely that the dominant reason for the difference between this source

and others published in the literature (some of which use magnetic mirror

confinement yet nevertheless deliver measurable ion currents) is the combination

of the 1 inch diameter sapphire discharge confinement tube and the divergent

magnetic field within the cavity. As described earlier in this chapter, in the

absence of scattering events, ions in a magnetic field follow the field lines with

their gyration radius increasing as the flux density decreases, since the total flux

enclosed in their trajectory is an adiabatic invariant. These effects combine to

direct the vast majority of the ions generated in the plasma into a collision

trajectory with the walls of the sapphire tube. This will neutralize a significant

fraction of those ions that do not stick to the surface, and once neutralized their

trajectories are no longer perturbed by either the static magnetic or microwave

electromagnetic field. This yields a hyperthermal component in the flux from the

source with energies widely distributed between ~10 meV thermal energies and

10 eV characteristic ECR plasma energies. It probably also yields a distribution

with disproportionate fractions of molecular species in excited internal

vibrational states as well as molecular radicals.

Thus the experimental evidence shows that this device is most accurately

described as a source that uses an ECR plasma to generate a partially dissociated

hyperthermal radical beam of molecular species but which does not produce

significant ion fluxes outside the source itself. The abbreviated description of the

source as a “plasma cracker” is therefore more precise than reference to it as a
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“plasma source.” The next chapter will nevertheless demonstrate that its use for

the growth of metal chalcogenides significantly changes the properties of the

resulting materials, consistent with the increased selenium reactivity implied by

the results of these characterization studies.
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CHAPTER 5 
GROWTH OF METAL CHALCOGENIDES

The reactor described in a previous chapter was applied to the growth of

polycrystalline (Cu,Se) and (In,Se) thin films, polycrystalline ternary CIS thin

films both with and without intentionally added sodium, and epitaxial films of

CIS on GaAs, ZnTe, and SrF2 substrates. The effects of intentionally added

sodium were studied in these films, and some of the polycrystalline CIS films

were processed to create photovoltaic devices. The binary selenide films were

combined by sequential deposition to form bilayer structures, which were

subsequently processed ex-situ by RTP to form single-phase chalcopyrite CuInSe2.

The effects of selenium reactant activation both by high-temperature thermal

dissociation and by means of the ECR plasma cracker were compared in the case

of epitaxial growth.

Binary Chalcogenides

The relationships between the conditions employed for growth of (Cu,Se)

and (In,Se) layers on molybdenum-coated SLG and the composition and structure

of the resulting polycrystalline thin films were studied. EDX and EMP composition

measurements as well as XRD were used to characterize the films. These data

were compared with both published crystallographic diffraction data and the
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Cu–Se and In–Se binary phase diagrams, then these measured properties of the

films were correlated with those of the known equilibrium phases in their

respective binary phase fields. Morphology of the films was also studied both by

SE-SEM imaging and Phase-Contrast Microscopy (PCM).

During the growth of polycrystalline binary chalcogenide thin films,

substrate temperature during growth and the molar flux ratio of selenium to

metals were varied. The full temperature range of the reactor’s capability was not

investigated for binary growth, however, since the goal of these studies was to

determine the conditions under which (Cu,Se) and (In,Se) binary films with

specific target compositions and suitable morphology could be grown for

application to RTP synthesis of ternary CIS thin films. Initial experiments indicated

that temperature at the lowest range available in the reactor were required for

sufficient accommodation of selenium to grow any phase in the Cu–Se phase

field other than the Cu2-δSe compound. Therefore all of the binary chalcogenide

growth studies described below were conducted at a substrate heater control

setpoint of 380-400°C, corresponding to a substrate temperature of 235-250°C.

Thermodynamic Phase Control

As previously described, substrate temperature during growth and the

molar flux ratio of selenium to metals were the experimental variables amenable

to control in these binary growth experiments. The relationship between these

experimental variables and the fundamental thermodynamic parameters (T, P, x)
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has been discussed in a published thermodynamic analysis of the results of In–Se

MBE by Chatillon and coworkers [227], whose arguments are briefly recounted

here.

Based on a simple calculation of supersaturation using the incident vapor

fluxes and the substrate temperature MBE and related methods are sometimes

thought of as highly non-equilibrium processes. However, once the typically

poor accommodation of volatile species is taken into account and the

thermodynamic system redefined to consider the equilibrium between the

crystal bulk and the surface adlayer, thermodynamic analysis has been shown to

apply remarkably well [228-230], with concomitant supersaturation pressures

that are relatively small.

Deposition of (Cu,Se) polycrystalline thin films

The strategy for RTP synthesis of ternary CIS from binary precursors to be

described in detail later in this chapter is based on the use of binary (Cu,Se) thin

film precursors with an overall composition of not less than 52.5 mole%

selenium, a composition as shown in Figure 5-1 corresponding to the two-phase

CuSe + CuSe2 domain at temperature below ~350°C, and also the critical point

composition at the 523°C monotectic. Such films are selenium-rich compared to

the compound with the highest melting temperature in the phase field, Cu2-δSe.
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Figure 5-1 Assessed Cu–Se temperature-composition phase diagram [149].

Binary (Cu,Se) thin films with the desired composition (up to 54 at.% Se)

were grown and they were found to exhibit strong diffraction spectra indicative

of α–CuSe compound formation .
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#141–1 (Cu,Se)/Mo/SLG: 
WDS 50.33 at.% Cu + 49.64 at.% Se

Mo

1.E+02
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1.E+04
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Counts JCPD 6–427 (alpha-CuSe)    

Figure 5-2 XRD θ–2θ scan of desired α–CuSe binary precursor phase for RTP.
Films were grown with up to 54 at.% selenium that showed similar XRD patterns.

Deposition of (In,Se) polycrystalline thin films

This same strategy for RTP synthesis of ternary CIS from binary precursors

requires binary (In,Se) thin film precursors with an overall composition of not

more than 53.8 mole% selenium, a composition as shown in Figure 5-3

corresponding to the compound In6Se7 at temperature below ~630°C, where this

compound decomposes into a two-phase mixture of In2Se3 and a liquid. Such

films are selenium-poor compared to the compound with the highest melting

temperature in the phase field, In2Se3.
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In contrast to the (Cu,Se) precursor films grown at these low temperature,

the (In,Se) thin films were found to exhibit relatively poor crystallinity, with

broad peaks which could not be justifiably assigned to the published

crystallographic structures of the equilibrium phases with compositions

corresponding to those of these films.

Figure 5-3 Assessed In–Se temperature-composition phase diagram [149].
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Deposition of RTP Precursor Films

These foregoing results were employed to deposit bilayer thin films of

specific (Cu,Se) and (In,Se) compounds with low melting point temperature,

which were used to verify the feasibility of synthesizing CuInSe2 by subsequent

rapid-thermal processing, a novel approach developed in the course of this

research. This approach is intended to realize the manufacturability benefits that

RTP offers [231] whilst employing the reaction engineering flexibility provided by

the use of binary precursors. The demonstrated efficacy of a liquid phase

quasiepitaxial regrowth process [232] suggests that precursor melting and

mixing are important components of an optimized process for CIS synthesis.

Figure 5-4 Cu–In–Se ternary composition diagram indicating compounds
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Figure 5-4 is a composition diagram for the Cu-In-Se ternary system

showing the accepted binary selenide compounds and several sections

connecting pairs of them, including the pseudobinary section between the binary

selenides with the highest melting point on each boundary (Cu2Se and In2Se3). In

a thermodynamic system closed to mass transfer with its environment, the

overall composition of the products of any reaction two compounds must lie on

the line that connects them, the exact point being determined by the reactant

molar ratios and given by the inverse lever-arm rule.

Note that two of these sections pass directly through the stoichiometric

α-phase composition (CuInSe2), while the third, connecting the CuSe and In2Se3

phases, does not. This means that a reaction between the latter two binaries

cannot yield only the α-phase in a closed system. Nevertheless this combination

is of interest, as described below. First consider the following reaction between

Cu2Se and In2Se3 to form CIS:

Cu2Se + In2Se3 � 2 CuInSe2

The ternary composition diagram of Figure 5-4 can be extended in the third

dimension to display temperature, where phase boundaries at various

temperature are represented as embedded two-dimensional manifolds. A cross-

section along the line connecting the compounds Cu2Se and In2Se3 through these

surfaces yields the phase domains shown in a T-x diagram such as the

pseudobinary Cu2-δSe–In2Se3 section shown in Figure 1-1. The lowest

temperature at which a liquid phase coexists with a solid phase in equilibrium is
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the ~870°C eutectic temperature for In2Se3-rich compositions. This temperature is

slightly less than the 885°C melting temperature of pure In2Se3.

The T-x diagrams for the binary selenide constituents (Figure 5-1 and

Figure 5-3) represent two of the three bounding surfaces along the edges of the

ternary composition diagram in Figure 5-4. Inspection of the binary diagrams

show that only liquid phases persist in equilibrium above the 523°C monotectic

temperature for all (Cu,Se) compositions with more than 52.5 at.% selenium.

(In,Se) compositions with less selenium than that of the compound In6Se7

(<53.8 at.% Se) will decompose into a liquid/solid mixture at temperature above

156 to 600°C (depending on composition), but will not form the high melting

temperature compound In2Se3 at temperature below the peritectic decomposition

of In6Se7 at 660°C. Hence in separate closed systems at equilibrium,

appropriately chosen selenium-rich copper binary precursors and selenium-poor

indium binary precursors will each exist as liquids or liquid/solid mixtures at

temperature above 523 to 600°C and any solid compounds would not be the

highest melting-temperature ones found along each of these binary tie-lines so

long as the temperature remains below 660°C.

These considerations alone do not answer the question of the reactions

which would ensue upon liquid-phase mixing of such precursors. The

equilibrium results of these reactions are found by re-examination of the T-x

sections along this section in Figure 5-4 between the precursor reactant

compositions. Views of the phase diagram along these other sections shows the
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existence of a very low temperature eutectic valley for those which cross the

[Cu]/[In] = 1 meridian on the selenium-rich side of the α-CIS phase, for example

the reaction:

2 CuSe + In2Se3 � 2 CuInSe2 + Se.

This eutectic is absent for those sections passing through the the stoichiometric

α-CIS phase composition, reactions such as:

CuSe + InSe � CuInSe2.

Rapid thermal processing is potentially a non-equilibrium process, which

provides an additional degree of freedom for process optimization. If the heating

rate of the precursors is faster than the kinetic rate of a given reaction, that

reaction may not proceed to its equilibrium extent if the temperature becomes

high enough that a competing reaction pathway becomes more favorable. For

example, the phase Cu3Se2 (Figure 5-1) undergoes a peritectoid decomposition

into CuSe and Cu2-δSe at a temperature of 112°C. The rate of a solid-solid phase

transformation at this low temperature is expected to be very low because

substantial atomic rearrangement is required to effect the solid-solid

transformation and the atomic transport mechanism is diffusion. Solid state

diffusion is many orders of magnitude slower than liquid phase transport

processes. Sufficiently rapid heating of Cu3Se2 to temperature in excess of the

CuSe peritectic decomposition at 377°C is expected to result in its direct

decomposition into Cu2-δSe and selenium-rich liquid phase.
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This strategy is supported by the results of a recently published thin-film

calorimetry study of CIS ternary formation from stacked elemental layers [233].

The formation of In-selenides was shown to be controlled both by thermal

activation and by the phase composition of the Cu–In alloys that form as reaction

intermediates at the Cu–In interface. The reaction of elemental Cu and Se

proceeds in two steps: rapid diffusion of Cu is responsible for the formation of

CuSe, which is subsequently transformed to CuSe2 at a significantly lower rate.

At higher temperature slow interdiffusion of binary phases governs CIS

formation, but it turned out that the reaction rate is increased due to the

formation of liquid phases in binary peritectic transitions as previously

predicted, in the first publication describing this approach [149].

These binary chalcogenide bilayer precursor structures were successfully

converted to single-phase chalcopyrite CuInSe2 thin films by subsequent RTP in

times as short as 30 seconds [234]. Further details of the RTP process and results

may be found in another dissertation [40].

Ternary Chalcogenides

Deposition of CIS Photovoltaic Absorber Films

The growth of CIS films for subsequent photovoltaic device fabrication

was investigated by means of a statistical experimental design technique. An

orthogonal 2-level fractional factorial design with twice repeated center points

was selected  to maximize the information which could be extracted from
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subsequent characterization of the materials and devices derived from the 18

experimental runs required to fulfill the design requirements. Design and

analysis of the experimental results were conducted using the SAS JMP software

package.

These experiments implemented a single-stage [235] three-layer process

[236] for the in-situ synthesis of CIS in our rotating-disc reactor. Growths were

conducted with cycle times and metal fluxes calibrated to correspond to the

growth of a single unit-cell-thick layer of CuInSe2 per cycle. The first layer is

grown with a constant indium flux [Se]/[In] molar flux ratio of ≈ 5, and with

peak temperature slowly ramped from 200 �350°C over the entire film

thickness. The second layer is grown with a constant copper flux [Se]/[Cu] molar

flux ratio of ≈ 5, but with peak temperature excursions rapidly ramped from

350 �550°C after the start of copper deposition. The third and final layer is

grown at 60% of the first layer indium flux and a [Se]/[Cu] molar flux ratio of

≈ 9.

The experimental design varied both the overall [Cu]/[In] molar flux ratio

of the film and the ratio of indium deposited in the first layer [In1] to that in the

third layer [In3], where [In] = [In1] + [In3]. The fraction of total indium deposited

in the third layer varied from 2 to 8% for the subject samples in this study.

Intentional sodium doping was performed relatively rapidly and

immediately at the beginning of second layer deposition. This strategy was

adopted  to maximize the sodium concentration at the interface between the
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initial layer of indium selenide and subsequently deposited adlayers containing

copper and selenium. A model of the role of sodium in the growth of CIS [148]

described in detail in the next section of this chapter suggests that its efficacy as a

surfactant should be enhanced when incorporated at this point rather than on the

substrate prior to growth.

Device fabrication was completed at NREL, where CdS was grown on these

CIS films by a Chemical Bath Deposition (CBD) process followed by deposition of

a high/low resistivity ZnO bilayer film, nickel/aluminum grid deposition, and

mesa isolation.

Compositional analysis by WDS, Auger depth profiling, and Secondary Ion

Mass Spectrometry (SIMS) are compared and were correlated with structural

properties of the films such as phase constitution, crystallinity, and texture as

determined by XRD.

WDS was performed on the subject samples with two different electron

beam accelerating voltages, 6 keV and 25 keV. This technique was previously

reported as a means of qualitatively assessing differences between near-surface

composition within the ≈ 100 to 200 nm penetration depth of 6 kV X-rays and

the ≈ 2000 to 2500 nm penetration depth of 25 kV X-rays in CIS [237]. The PROZA

correction algorithm employed to convert the raw X-ray intensity data to atomic

composition assumes that the film is homogeneous. Otherwise, the calculated

compositions are subject to significant error although the trends should be

reliable to the extent that any inhomogeneous depth distributions between
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samples are the same. Table 5-1 shows the [Cu]/[In] ratio of these films

measured at each energy and suggests indium-enrichment of the near surface

region compared to the average over a significant part of the 3.5 µm total film

thickness.

Table 5-1 Composition of two samples from the CIS absorber film deposition
experiments using the three-layer process showing significant variations in the
extent of intermixing between the layers.

Sample [Cu]/[In]
6 keV WDS

[Cu]/[In]
25 keV WDS

68 0.876 1.03
69 0.484

Cu

In

Se

Figure 5-5 Auger depth profile of Sample 69 showing near surface indium
enrichment.

Further insight into this apparent surface indium enrichment is found in

Auger depth profiles. Figure 5-5 shows a profile through the entire thickness of

sample 69. The constant selenium level indicates that the sputter rate was

uniform throughout the sample at ≈140 nm/minute. The copper signal increases
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slowly over the first ≈8 minutes of sputtering indicating enrichment in the first

1100 nm, roughly half of the thickness sampled by the 25kV WDS measurement.

Samples 70 and 71 were intentionally doped with sodium by codeposition

of NaF as previously described. SIMS profiles of sample 69 provided an estimate

of the background doping levels from sodium transport through the

molybdenum back contact from the SLG, which has been reported to vary widely

with different processing conditions. Extremely low background doping levels

on the order of ≈ 0.1 ppm are found by SIMS. Sample 70 showed the same low

levels throughout the bulk of the film, with the added sodium apparently

segregating to the surface, where its peak concentration rose to only ≈ 10 ppm.

Sample 71 was more heavily doped and exhibited a ≈ 10 ppm concentration

throughout the film’s thickness. Due to uncertainties in the SIMS calibration these

values may be only relied upon within an order of magnitude. Even so the

background doping levels appear to be an order of magnitude lower than those

reported for growth on soda-lime glass [134] by conventional or RTP techniques

[130] with significantly larger thermal budgets.

XRD measurements of these samples showed only those peaks associated

with the α phase compound CuInSe2, with no evidence of ternary β phase or

binary selenide secondary phases. The crystallinity determined from diffraction

peak FWHM correlated strongly with texturing. Samples #68 (the most indium

rich) and #70 (low NaF doping level) exhibited broad peaks with roughly equal

(112) and (024)/(220) peak intensities at 2θ values of 26.6° and 44.2°, respectively.
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Samples #71 (highest copper and NaF doping level) and #69 exhibited sharp

peaks with significantly reduced (112) intensity and a dominant (024)/(220)

peak.

The ratio of the overlapping (024)/(220) peaks to that of the (112) peak has

been recently reported to strongly correlate both with carrier concentration and

efficiency [238], with the highest efficiency CIGS cells reported to date in the

literature exhibiting the same preferred orientation observed here in samples #71

and #69 [239]. The empirical inverse correlation between orientation and carrier

concentration reported in CIGS for polycrystalline absorber films of nominally the

same composition may hold for CIS as well, and could be the reason that the

highest efficiency CIS devices fabricated in these experiments was from sample

#69 which is also characterized by this orientation.

The contactless Dual Beam Optical Modulation (DBOM) technique

developed in our laboratory has been utilized previously to study the effects of

different CdS buffer layer processing (i.e., CBD, MOCVD, and sputtering) on the

properties of CIS and CIGS films [240]. The results showed a significant increase in

the DBOM signal (∆I/I) which is related to the free carrier absorption and excess

carrier lifetimes in the absorber layer after the buffer layer deposition. An

analytical model for the DBOM technique has been derived which contains the

functional dependence of ∆I/I on the excess carrier lifetimes, surface/interface

recombination velocities, and depletion layer width in thin film cells [241].
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Figure 5-6 DBOM excess carrier lifetime measured on sample #70 both
a) before, and b) after CBD CdS deposition.

This technique was applied to one of the subject samples previously

described, and the spatial distribution of the DBOM signal intensity measured

both before and after CBD of CdS. The data are analyzed as excess carrier

lifetimes, based on the assumption of zero interface recombination velocity and
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depletion layer width. The results shown in Figure 5-6 suggest a shorter lifetime

in these samples than in those published previously for CIGS films from NREL.

Dark and illuminated I-V curves were measured at NREL for some of the

samples from these experiments. The maximum efficiency observed on these

samples is 7.1% as shown in Figure 5-7. A comparison shows that the light and

dark I-V curves cross over one another which cannot occur for an ideal diode

which obeys the superposition principle [7]. This can result from

photoconductivity in one or more layers of the device structure, but insufficient

data is available to determine unequivocally whether this is the cause in this

case.
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Figure 5-7 Illuminated current-voltage curve for the best CIS thin-film cell
made by a three-layer codeposition process in the course of this research.
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Epitaxial Growth

The epitaxial growth of CIS has been investigated to better understand the

fundamental properties of these films in the absence of grain boundaries, as well

as to elucidate the effects of surface reactions on their structure and morphology.

The Migration Enhanced Epitaxy (MEE) process variant [60] of molecular

beam epitaxy was utilized to grow CIS epilayers on single-crystal substrates.

Growth was performed in the custom rotating-disc reactor incorporating

separate Langmuir effusion sources for copper and indium, (controlled by a

computer using EIES sensors [242]) and selenium (under temperature control).

The steady-state substrate temperature during film growth was 525±50°C.

Absolute total flux calibration was employed to set the VI/(I+III) molar flux ratio

to 5 and the total incident molar flux of metals (Cu+In) adjusted to provide the

equivalent of 1 unit cell of chalcopyrite CuInSe2 per cycle. The rotation rate of the

substrate platen was 20 rpm (3 sec/cycle). Total film thicknesses were nominally

0.3 µm.

XRD data was acquired with a Philips PW3710 diffractometer using a

copper anode filtered to provide predominately Kα radiation. Film compositions

were measured with a JOEL electron microprobe using a 25keV beam accelerating

voltage and calibrated to a single-crystal CuInSe2 standard provided by NREL.

TEM data were acquired at NREL using a Philips CM30 scanning microscope.

Raman spectra were acquired at the University of Leipzig by Dr. Gerd Lippold
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by means of confocal laser microscopy using an equipment configuration

described more fully in the literature [243].

Heteroepitaxy of CIS on GaAs Substrates

Polished GaAs substrates oriented 2° off the (001) towards the nearest

(110) direction were etched in a 5:1:1 solution of H2SO4:H2O2:H2O at room

temperature for 1 minute, then rinsed sequentially in H2O and in methanol

immediately prior to mounting onto the MEE system's load lock. The substrate

was then heated in-situ to >600°C for 10 minutes before direct exposure to the

selenium source flux for about a minute prior to the beginning of CIS film

growth. Sodium is provided by sublimation of NaF from a Knudsen cell

monitored by a QCM.

A rich diversity of atomic-scale and mesoscopic structures were found in

CIS epitaxial films grown on GaAs by the MEE technique. The growth and

characterization of crystallographic polytypes of the chalcopyrite structure are

first discussed. Subsequently the influence of composition on film morphology

and its implications for the role of defect structures in the process of island

nucleation are discussed. The effects of sodium on both lattice ordering and

morphology will then be described and a unified interpretation of these effects

offered.

CuAu–I (CA) ordering of CuInSe2 epilayers. The type-I CuAu (CA)

crystal structure (space group 123) is a tetragonal distortion of the fcc lattice with
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a c-axis only half that of the corresponding chalcopyrite (CH) structure. Its

growth has been previously reported in CuInS2 [57] but it has never heretofore

been observed in CuInSe2. The possible coexistence of the CA and CH structures

in CuInSe2 had been theoretically predicted [62] and it was shown that the CA

structure can be derived from the CH by simply translating alternating (100)A

cation planes by     a/ 2  in a <110> direction. Since this transformation does not

change the local bonding configuration of any of the atoms, its formation

enthalpy was predicted to be quite low, only 2meV/atom.

A comparison of theoretical dynamical electron diffraction patterns and

TEM diffraction data in Figure 5-8 show that the direction in the CuAu structure

along which copper and indium form alternating cation planes is oriented

parallel to the nominal (001) normal of the GaAs substrate. The CH–CuInSe2

epilayers also orient with cation planes parallel to the surface but both copper

and indium equally populate each. This leads to significant enhancement of the

intensity of (002) and (006) peaks in the XRD spectra as shown in Figure 5-9.
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a)   

b)
Figure 5-8 A comparison of experimental and theoretical TED data.
a) experimental dark-field cross-sections taken with intensities from the
corresponding diffraction spots in the TED pattern along [010] as shown, and
b) theoretical TED patterns of CA and CH structures in CuInSe2, both along [010].
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Figure 5-9 Comparison of the XRD spectra of epitaxial chalcopyrite (upper) and
CuAu (lower) crystallographic polytypes of CuInSe2 on (001) GaAs substrates.
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The Raman spectra of CA–CuInSe2 samples exhibit peaks not observed in

CH– CuInSe2 at 52, 186, and 462 cm-1, which are labeled d, a, and c respectively in

Figure 5-10. The dominant A1 mode at 175 cm-1 and the LO mode at 232 cm-1

typically observed in CH–CuInSe2 are also observed.

Figure 5-10 Macroscopic Raman scattering spectrum of a CA–CuInSe2 epilayer
on GaAs. Peaks labeled by " * " are laser plasma lines; the others are described in
the text.

Peaks d and a are near the estimated acoustic and A1 optical zone

boundary phonon energies, respectively, of CH–CuInSe2. These modes are

rendered optically active by zone-folding resulting from the halving of the unit

cell in the CA–CuInSe2 structure relative to that of the CH–CuInSe2 structure. The
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230–232 cm-1 E and B modes of the chalcopyrite structure exhibit little phonon

dispersion and are not normally as strong as peak b in Figure 5-10. Thus the

intensity observed in the signal at 232 cm-1 is attributed to the superposition of

intensities of zone-center and folded modes, with the 462 cm-1 peak representing

an overtone thereof.

These studies have identified XRD and Raman signatures characteristic of

the CA-CuInSe2 structure, identifiable by enhancement of specific peaks in the

spectra. If this structure were disordered and distributed in the CuInSe2 lattice on

nanoscopic domain scales, it might not be clearly identifiable by these techniques

since the reciprocal-space peaks would be correspondingly broad and not

contribute measurably to those peaks.

Composition effects on film morphology. All of the epitaxial CIS films

grown on single-crystal GaAs substrates exhibit the film + island morphology

characteristic of Stranski-Krastonow mode growth, but a pronounced

morphological dichotomy between indium-rich and copper-rich films is

observed. A dependence on growth morphology on film molecularity is, of

course, widely observed in CIS films synthesized by almost all techniques,

whether epitaxial [244] or polycrystalline [144,245]. However, to the author’s

knowledge no previous reports of In-rich epilayers on GaAs have described

epitaxial island formation.
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Figure 5-11 Spatial distribution and morphology of islands in copper and
indium-rich cases: a) [Cu]/[In] = 1.06 and b) [Cu]/[In] = 0.99.
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The lateral distribution of islands in the two cases of positive (Cu-rich)

and negative (In-rich) molecularity deviation is characteristically distinct for all

samples in this study. A quasiperiodic self-assembled array of similarly sized

islands is observed in the case of copper excess and a spatially disordered

distribution with variable island sizes in the case of indium excess. The stark

contrast between them (Figure 5-11) is strong evidence that island nucleation

occurs by means of fundamentally different mechanisms determined by the ratio

of copper to indium in the incident flux during growth.

Similar island-distributions as shown here for the Cu-rich case have been

reported for CuInS2 grown epitaxially on GaAs under conditions of low sulfur

partial pressure [246], where surface diffusion lengths are long, as they are in

MEE. The islands in this case are highly facetted, with their longer axis oriented

parallel to ripples that form on the epilayer along a {110} direction as

demonstrated by the AFM images in Figure 5-12. Raman analysis shows that the

copper-rich islands contain a mixture of the phases CH–CuInSe2 and β-Cu2−δSe.

This rippling of the epilayer has been previously reported in Cu-rich CH–CuInSe2

epitaxially grown on GaAs by MBE [247] and this analysis fully supports their

conclusions regarding the structure of these islands.
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a)

b)
Figure 5-12 AFM images of CIS islands and epilayers.
a) islands on Cu-rich films and b) islands on In-rich films.
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Quasiperiodic island arrays are also observed to form on surface ripples in

Si/Ge alloy epitaxy on Si. The rippling has been theoretically described as an

instability phenomenon related to total free energy minimization during lattice-

mismatched heteroepitaxy resulting from the interaction between the reduction

of elastic strain energy and increased surface free energy [248]. The axes of the

ripples are aligned along the elastically soft direction in the epilayer in this

model. This locally varying strain energy density leads to a locally varying

difference in chemical potential [249]. This has been shown in the SiGe case to

lead directly to the evolution of ripple peaks into a quasiperiodic array of islands

[250,251]. The strain field has also been shown to drive diffusion, resulting in

structure-correlated composition fluctuations [252] which could, in the CIS

material system, preferentially nucleate the secondary β-Cu2−δSe phase when the

solubility limit for excess copper is locally exceeded in the near-surface transition

layer.

Alternatively it is possible that the island orientation is a consequence of

the 2°B tilt of the GaAs substrate off the singular direction. When the adatom

incorporation lifetimes and mobilities enable diffusion lengths longer than the

mean terrace width, anisotropic terrace or island attachment/detachment

kinetics and the Ehrlich-Shwoebel barrier [253,254] at the terrace edges can result

in anisotropic diffusion fluxes [255,256]. These kinetic mechanisms might

contribute to the elongated growth habit we observe, as previously observed in

homoepitaxial GaAs epilayers [257].
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In contrast, the island morphology in the indium-rich case of MEE growth

(Figure 5-11(b)) consists of rounded mounds with no clear orientation with

respect to the substrate's axes or epilayer's ripples; their spatial and size

distributions are relatively random compared to the copper-rich case. Epilayer

rippling is still observed with AFM, although the period of the ripples is shorter

than in Cu-rich epilayers, in contrast to previous reports of CIS growth by

conventional MBE [247]. Despite their seeming lack of regularity, these islands in

the In-rich case are in fact coherent and epitaxial (Figure 5-13).

Figure 5-13 Cross-sectional TEM on [010]: dark-field using 1/2 (201) spot
showing CH-ordered epitaxial “island” in a sample with [Cu]/[In] = 0.97.



194

A simple rate-equation model has been recently developed to describe the

changes in nucleation kinetics during epitaxial growth introduced by random

point defects [258]. Within a mean-field approximation, and even assuming weak

adatom trapping on the point defects, the model predicts a strong suppression of

nucleation on terrace sites due to adatom capture by clusters nucleated on the

defects [259]. As a consequence, the spatial distribution of clusters is predicted to

reflect the random point defect distribution.

The process of cluster coarsening in the adlayer has been extensively

studied for the case of homogeneous nucleation. Studies of silicon homoepitaxy

provide the strongest experimental support [230] for thermodynamic models

based on a framework of equilibrium step edge fluctuations [260] and ripening

[261]. Their relevant conclusion is that the situation of a slightly supersaturated

(2-D) adatom gas is very similar to that of a slightly supersaturated (3-D) vapor,

for which the nucleation of droplets (2-D islands) is described by classical

homogeneous nucleation theory. Thus a well-defined spatially dependent

chemical potential can be defined for the adatoms, which depends not only on

the incident flux but also on the surrounding topography. In regions with a high

density of subcritical clusters the chemical potential is relatively high due to the

inverse dependence of the chemical potential on island (droplet) radius (the

Gibbs-Thompson effect).

Combining these models leads to the prediction that the distribution of

3-D islands in Stranski-Krastanov mode epitaxy on surfaces with a high density
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of point defects will tend to occur where the local density of point defects is

greatest. The accommodation of excess indium in the CIS lattice has been

predicted theoretically [70] to occur by means of the formation of the

(InCu + 2 VCu) cation neutral-defect-complex (NDC). A recent study [51] has

shown that the EXAFS scattering spectrum of selenium in the compound CuIn3Se5

is best fit by a local structure model having precisely these defect proportions in

the local tetrahedra surrounding Se atoms in the lattice. Further reduction in the

formation enthalpy of these NDC's is predicted when they order along the [110]

direction [70]. This process of NDC aggregation in the near-surface-transition

layer [179] of indium-rich epilayers during growth is the proposed cause of local

composition fluctuations with both a high concentration of indium and of

vacancies, which are conjectured to nucleate the observed 3-D island growth. The

more perfect crystallinity of copper-rich films precludes this defect-initiated

nucleation mechanism.

Sodium effects on ordering and morphology. The addition of sodium to

In-rich CuInSe2 epilayers by dosing the surface with a few monolayers of NaF

during the initial stages of growth has a dramatic effect on the film's growth

morphology. Although islands still form, they are aggregated into "pools"

(Figure 5-14). Electron microprobe measurements directly demonstrate that the

composition of the smooth film areas is within the range of single-phase

homogeneity for CH–CuInSe2 but that the islands are substantially indium-

enriched.
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Figure 5-14 SE–SEM image of an In-rich CIS film on GaAs dosed with a few
monolayers of NaF. The EMP-measured [Cu]/[In] ratios are 0.94 overall, 0.99
between the islands, and 0.81 within the island "pools."

Sodium also has a significant effect on lattice ordering of CuInSe2

epilayers. Micro-Raman characterization shows that both film and island regions

in Figure 5-14 are homogeneous across the samples, and that the smooth film

areas exhibit less CA ordering than samples with nearly the same overall

molecularity but without sodium. A comparison of the Raman spectra (Figure

5-15) of the islands on the sodium-doped sample shown in Figure 5-14 and the

sodium-free sample from Figure 5-11(b) reveals no measurable difference

whatsoever between them. However, the spectra are both significantly

broadened and show no evidence of the Raman peak at 152 to 154 cm-1
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characteristic of the equilibrium indium-rich CIS β–phase [262,263]. These

measured spectra can be fit with a pair of Lorentzians at 175 and 183 cm-1. The

former is characteristic of CH-CuInSe2 which suggests that there is no significant

vacancy population surrounding the selenium atoms in this structure, since it is

the cation vacancies in the CIS β–phase that lead to the shift of this transition to

lower energies. The broadening has been interpreted in previous studies of

radiation-damaged films [264] as indicative of a loss of translational symmetry in

the lattice, which implies a crystallographically disordered structure for these

indium-rich islands.

Figure 5-15 Micro-Raman scattering spectra of islands on two indium-rich CIS

films grown on GaAs (100). The uppermost curve is from an island "pool" on a
sodium-dosed film and the lower two are single and averaged spectra from
isolated islands on the sample without sodium shown in Figure 5-11(b).
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These effects can be explained within the context of the island nucleation

models discussed in the previous section by the hypothesis first described in the

course of this research [148] that sodium acts as a surfactant during the growth of

CuInSe2 by destabilizing the NDC and rejecting excess indium from the growing

film. This model is consistent with that proposed by Contreras and coworkers

[265], and to one proposed by Rockett [72].

Summary of sodium effects. In a traditional chemical context, a surfactant

is a substance that lowers surface tension, thereby increasing spreading and

wetting properties. In the context of crystal growth it is used in a broader sense

as any surface-active additive that tends to flatten the surface of a growing film,

since it is found that the mechanism underlying such effects is sometimes kinetic

[266] rather than thermodynamic [267]. Ordering effects like the CA ordering

observed here have been found in other material systems to result from surface

reconstruction during growth, and surfactants have been reported to interfere

with ordering in those systems [268].

These results clearly show that under our growth conditions minute

quantities of sodium inhibit the incorporation of excess indium into the growing

film. The island clustering exhibited in Figure 5-14 is evidence that the density of

point defects capable of binding subcritical adatom clusters during the initial

stages of growth is significantly reduced by sodium on the surface. A unified

mechanism based on destabilization of the NDC can explain both of these effects,

consistent with recent theoretical results [78]. It is possible that these two effects
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have different causes: there are precedents in the literature [269] for surfactant

effects resulting simply from the occupation of surface vacancies. One specific

consequence of this proposed mechanism on the residual defect structures of the

film bulk is to reduce the composition fluctuations therein, which may be the

structural cause of the large-scale potential fluctuations which have been shown

to characterize carrier transport in indium-rich CIGS thin film absorbers [270].

The addition of sodium to In-rich CuInSe2 epilayers during the initial

stages of epitaxy on GaAs both suppresses the formation of metastable CA–

CuInSe2 crystal polytypes and dramatically changes the film morphology. The

suppression of CA ordering suggests a surface kinetic effect may play a role in its

formation. The morphological effects on indium-rich layers are explained in the

context of current island nucleation theory by the hypothesis [148] that sodium

acts as a surfactant during the growth of CuInSe2 by destabilizing the

(InCu + 2 VCu) NDC in the near-surface transition layer and rejecting excess indium

from the bulk of the growing film to a second indium-rich phase. This could both

reduce the InCu compensating donor density, and homogenize composition

fluctuations resulting from NDC clustering, thereby improving minority carrier

transport.

Heteroepitaxy on ZnTe

ZnTe is a II–VI compound semiconductor with a band-gap of 2.38 eV

which is normally found to be a p-type conductor as a consequence of its native
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defect structure. Extrinisic p-type doping has been achieved in ZnTe by the

addition of both copper and Group V (e.g.: phosphorus) impurities, which are

thought to form substitutional defects on cation or anion lattice sites,

respectively. These properties have led to the suggestion that ZnTe could be

useful as a heteroepitaxial back contact in device structures with Cu–III–VI2

absorber layers [271].

Growth by the MEE process on polished zincblende ZnTe substrates 1x1cm

in size and with two orientations was studied. The substrates were purchased

from Eagle-Picher Research Laboratory and were either oriented 4° off the (001)

towards the nearest (111) direction or were oriented on the singular (111). The

quality of these substrates was quite poor, with inclusions easily visible at 100x

by optical microscopy, and a dislocation density measured by

cathodoluminescence at NREL of >107/cm2.

The first growth experiments were conducted with films that were etched

in a 3 vol.% solution of liquid bromine in methanol at room temperature for 1

minute, then rinsed in pure methanol and blown dry with filtered nitrogen

immediately prior to mounting onto the MEE system's load lock. During a

presentation at the 1999 Electronic Materials Conference, Prof. Takafumi Yao of

Tohoku University presented in-situ surface characterization data of (001) ZnTe

demonstrating that substantially better surface cleanliness and smoothness could

be achieved by following the bromine/ethanol surface etch with a rinse in pure

HF followed by nitrogen drying.
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Epitaxial growth was not achieved in this research until that process was

adopted, and was only successfully demonstrated on the (001) orientation. One

sample was sent to NREL for cross-sectional TEM diffraction analysis, which

verified the preliminary conclusion based on XRD diffraction data shown in

Figure 5-16 that the film was epitaxial. The surface morphology of this sample

was very rough. This sample was grown simultaneously with a GaAs substrate

that also gave epitaxial growth, and the temperature used were significantly

higher than those conventionally used for growth on ZnTe. Some dissociation of

the ZnTe substrate at these high temperature may have occurred.
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Figure 5-16 XRD θ–2θ scan of epitaxial CuInSe2 on (001) ZnTe grown by MEE.
The overall composition of the film was [Cu]=25.5 at.%, [In]=26.3 at.%, and
[Se]=48.2 at.%.
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Heteroepitaxy on SrF2

Polished 1x1cm SrF2 substrates oriented nominally on the singular (111)

were rinsed in methanol immediately prior to mounting onto the MEE system's

load lock. All growth experiments using these substrates were conducted

simultaneously with GaAs samples, however they did not undergo the high

temperature excursion used to desorb volatile oxides from the GaAs substrates

immediately prior to the initiation of growth. This was considered unnecessary

since (111) SrF2 surfaces are terminated by fluorine [272] and hence relatively

unreactive.

CIS films without sodium grown on SrF2 substrates were without

exception found to crack and peel off the substrate within about a minute of

removal from the reactor’s load-lock. This is of course indicative of high residual

stress, but the fact that they did not peel off until removed suggests that Van der

Waals forces between the film and substrate were strong enough in the absence

of air or its components (e.g.: water vapor) to prevent this peeling. The lattice

mismatch between CuInSe2 and the SrF2 substrates is actually quite small:

δa = 
aCISe – aSrF2 

aSrF2 
  = -0.3%      (CuInSe2  on  SrF2)

The addition of sodium during the initial stage of epitaxy allowed the

growth of epilayers of CuInSe2 on SrF2 substrates that did not exhibit these

adhesion problems, and which showed the narrowest linewidths and highest
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peak intensities in XRD data seen from any samples grown in the course of this

research as demonstrated in Figure 5-17.

In view of the hypothesis presented in this dissertation that sodium acts as

a surfactant in the CIS material system, it is important to note that a similar effect

is observed in Sb-mediated growth of non-lattice-matched germanium-silicon

alloys on silicon substrates. It has been explicitly demonstrated in that system

[273] that strain is relieved by the addition of a monolayer of antimony in the

initial stages of epitaxy. The mechanism was found to be the dissociation of

threading dislocations into a pair of Shockley partial dislocations at the surface,

which totally relieved the misfit strain. In studies of silver homoepitaxy, the

surfactant antimony has been shown to cause stacking faults to float with the

growth front, preventing their incorporation into the bulk [274]. No comparable

TEM data is available for the samples investigated here to conclude whether

similar mechanisms might pertain in this case, but the conjecture is plausible.
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Figure 5-17 XRD θ–2θ scan of epitaxial CuInSe2:Na on (111) SrF2 grown by MEE.
The overall composition of the film was [Cu]=23.4 at.%, [In]=26.3 at.%, and
[Se]=50.3 at.%. The higher curve is a reference SrF2 substrate without CuInSe2.
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Epitaxial Growth of CIS Using Activated Reactant Sources

Growth of CIS films using the thermal cracking source at both low (350°C)

and high (928°C) cracking zone temperature and the ECR plasma cracker were

compared  to elucidate the effects of reactant pre-activation on the properties of

the resulting films. Measured film properties included composition, XRD

patterns, and morphology. Substrates included Mo/SLG, GaAs, ZnTe, and SrF2.
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Figure 5-18 XRD θ–2θ scan of epitaxial CuInSe2 on (100) GaAs grown by PMEE.
The overall composition of the film was copper-rich, with [Cu]=28.1 at.%,
[In]=21.1 at.%, and [Se]=50.8 at.%.

No significant and repeatable difference between the use of high and low

cracking zone temperature for the thermal source was observed. On the other

hand, growth using the ECR plasma cracker was characterized by a number of
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significant differences from all other growth experiments conducted in this

course of research, which used the thermal source. The effects on CIS/GaAs

epilayer crystallinity are demonstrated in the XRD data for both copper-rich and

indium-rich overall compositions in Figure 5-18 and Figure 5-19, respectively.
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Figure 5-19 XRD θ–2θ scan of epitaxial CuInSe2 on (100) GaAs grown by PMEE.
The overall composition of the film was indium-rich, with [Cu]=23.1 at.%,
[In]=26.3 at.%, and [Se]=50.6 at.%.

First note that irrespective of composition the background signal levels in

both cases are significantly lower than measured in any sample grown with the

thermal source (see for example Figure 5-9). This reduction in incoherent

scattering by about one order of magnitude, particularly at low angles, is

evidence that growth with the ECR plasma cracker improves epilayer crystallinity
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[275]. The combination of a plasma activated source and MEE has not been

heretofore reported, so this author has entitled this technique Plasma Migration-

Enhanced Epitaxy, or PMEE.

In the copper-rich case shown in Figure 5-18 the composition corresponds

to a valence stoichiometry deviation of +0.11, the highest ever measured in the

course of this research. This directly demonstrates that the composition lies well

into the selenium-rich domain of the equilibrium ternary phase field, but

surprisingly there is very little indication of a diffraction peak corresponding to

the Cu2-δSe binary compound expected to form in equilibrium with CuInSe2

when the overall composition is so copper-rich. In contrast, such a peak is always

seen in significantly copper-rich layers grown with the thermal source.

This might be consistent with coherent intergrowth of β– Cu2-δSe and

CuInSe2 as suggested by other researchers who have studied high-energy ion

beam assisted deposition of CuInSe2 [59]. They explained similar results by

arguing that a non-equilibrium, selenium-enriched Cu2-δSe composition had

formed because the activity of selenium is extremely high and coherent

intergrowth represented an energetically favorable strain relief mechanism.

However, it is also possible that these copper-rich CIS epilayers are single-phase

CuInSe2, which is supersaturated with copper.

The association of the anomalously high valence stoichiometry deviation

with the Cu2-δSe phase in the case of overall copper-rich composition is
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supported by the results for growth in the indium-rich case. The composition for

the sample shown in Figure 6-19 corresponds to a valencey deviation of -0.005.

No notable effect on epilayer morphology was observed in PMEE growth

of either copper or indium-rich layers on GaAs. Both ZnTe and SrF2 substrates

grown simultaneously with the GaAs epilayers described above failed to exhibit

epitaxial growth. The reasons for this are uncertain, but could be related to

differences in substrate preparation procedures.
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CHAPTER 7 
SUMMARY AND CONCLUSIONS

Published results of ternary Cu–In–Se and binary Cu–Se phase diagram

studies have been combined with the published results of ab-initio quantum

mechanical calculations of defect formation energies in CuInSe2 to provide the

first associated solution model for the phase equilibria and defect concentrations

in α-CIS. A novel method was developed to solve this problem, combining a

lattice cluster expansion with the stoichiometric reaction analysis approach.

Comparison of the results of the modeling with the experimental

literature suggests that crystals with metastable defect distributions are

ubiquitous in this material system. Further investigation of the solubility of

indium in the binary Cu2-δSe phase and modeling of valency deviation in the

β-CIS phase are recommended.

A rotating disc reactor has been designed and used to grow ternary α-CIS

polycrystalline thin films and many of the Cu–Se and In–Se compounds found in

their respective binary phase fields. The ternary films were used to fabricate

photovoltaic devices. The reactor was also used to study the migration-enhanced

epitaxy of α-CIS on GaAs, ZnTe, and SrF2 single-crystal substrates. The use of this

method to grow α-CIS has not previously been reported in the literature. The

resulting epilayers were sometimes found to exhibit CuAu (CA) ordering, rather
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than the equilibrium chalcopyrite ordering. Further experimental work to

determine the bandgap of CA-CIS is recommended to elucidate its possible effects

on photovoltaic device performance.

A novel plasma-activated selenium source has been developed in the

course of this research which is significantly different than any other heretofore

reported in the scientific literature of the field. It is microwave-excited,

magnetically-confined helical resonator designed to operate under Electron

Cyclotron Resonance (ECR) conditions at 2.455 GHz. This source is designed to

excite and dissociate the vapor exiting from the aperture of an effusion cell. It

combines the effusion cell vapor flux with a stream of buffer gas injected at the

resonance point. This source was also used to grow epitaxial α-CIS films and their

analysis indicated that plasma activation provides significantly greater selenium

reactivity than effusion or double-oven (thermally activated) sources. The

application of this plasma source to the growth of copper ternaries containing

sulfur is recommended.
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GLOSSARY

CIS Any compound, phase, or mixture formed from the
three elements copper, indium, and selenium

CGS Any compound, phase, or mixture formed from the
three elements copper, gallium, and selenium

CISU
Any compound, phase, or mixture formed from the
three elements copper, indium, and sulfur

CIGS
Any compound, phase, or mixture formed from the
four elements copper, indium, gallium, and
selenium

CISS Any compound, phase, or mixture formed from the
four elements copper, indium, sulfur, and selenium

CIGSS
Any compound, phase, or mixture formed from the
five elements copper, indium, gallium, sulfur, and
selenium

ODC

An Ordered Defect Compound; a compound
wherein vacancies on symmetry-distinct
crystallographic lattice sites are an integral part of
the crystal structure.

NDC

The Neutral Defect Complex in CIS , CGS and CIGS
materials; the defect created by the following three
point cation lattice defects on nearest-neighbor sites:
(InCu + 2 VCu) and/or (GaCu + 2 VCu)

EXAFS Extended X-ray Absorption Fine Structure
SEM Scanning Electron Microscope/Microscopy

SE–SEM Secondary Electron Scanning Electron
Microscope/Microscopy

TEM Transmission Electron Microscope/Microscopy
TED Transmission Electron Diffraction
AFM Atomic Force Microscope/Microscopy
XRF X-Ray Fluorescence
PVD Physical Vapor Deposition
MBE Molecular Beam Epitaxy
ALE Atomic Layer Epitaxy
MEE Migration Enhanced Epitaxy



211

MFD Modulated Flux Deposition
QCM Quartz Crystal Monitor
RGA Residual Gas Analayzer
SLG Soda-Lime Glass
EMP Electron Micro-Probe
EDX Energy Dispersive X-ray spectrometry
QMS Quadrapole Mass Spectrometry/Spectrometer
MOMBE Metal-Organic Molecular Beam Epitaxy
OMVPE OrganoMetallic Vapor Phase Epitaxy
AMU Atomic Mass Units
BEP Beam-Equivalent Pressure
PCM Phase-Contrast Microscopy
CBD Chemical Bath Deposition
SIMS Secondary Ion Mass Spectrometry
WDS Wavelength-Dispersive Spectroscopy
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APPENDIX
CIS DEFECT AND PHASE EQUILIBRIA CALCULATIONS

The solution of quasichemical defect reaction equilibria are used to

compute the defect concentrations in the α and β phases of the ternary Cu–In–Se

solid system. The species in these equilbrium calculations are clusters of

primitive chalcopyrite unit cells within which lattice point defects or their

associates are embedded. The stoichiometric reaction formalism is employed to

implement the computational solution in the Mathematica computer application

environment. The subsequent subsections of this appendix detail the formula

matrices, reaction stoichiometry matrices, and state vectors used to conduct the

calculations. The mathematical solutions are constrained by boundary conditions

derived in the subsection with that title. The final subsection gives the

computational algorithm used to implement the solution, including select

intermediate results as examples, and is written to emphasize the flow of the

calculation.



Formula Matrices

Two primary  species  formula  matrices,  D  and  D0,  will  be  used in the

calculations to ensure that all denumerable  conserved quantities remain invariant

and to calculate  changes  in those  which are  not  strictly  conserved.  Given the

assumption  that  the  thermodynamic  system  is  closed,  the  strictly  conserved

quantities  are the number  of each type of atom and electrical  charge.  The "ith "

element of each column vector d
`
j  within Dij  gives the stoichiometry of species (or

mixture component) j with respect to the ith  conserved quantity.

In constructing these formula matrices, three key considerations are essential

to the internal  consistency of structure element-based  defect reaction analysis [42;

§14.3]. These are conservation of charge, conservation of mass, and maintaining fixed

lattice site proportions  (in this case 1:1:2:4 for the M1, M3, X6, and I sublattices,

respectively). This proportionality is maintained by generating the structural species'

cluster formula matrices from a lattice point defect formula matrix Dab (whose basis

is sL), an ideal (non-defective) unit cell vector, and the cluster size factors in the list

ncL.

The function used to generate D and D0 from Dab creates a mapping from

the lattice species basis sL to the cluster basis set abL. Since the thermodynamic

functions in this model are (by assumption III in the formulation of the problem) first-

degree homogeneous linear function of the numbers of defects of each kind and the

number  of  lattice  sites,  a  homomorphism  exists  between  the  thermodynamic

functions defined with respect to these two bases. The number of species involved
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permits the definition of a computationally  tractable finite algebra on the cluster

basis  set abL  that  yields  the thermodynamic  functions.  This  will  be explicitly

developed  in the  course  of  the  statistical  mechanics  calculations  employed  to

compute the lattice entropy.

The basis vectors for D, D0, and Dab   are a (which specifies the conserved

quantities)  and  the  building  unit  basis  vectors  cE,  cE0  (both  derived  from

cEgrouped), and L_CIS, respectively.  Lattice site proportionality  is maintained by

assigning each species to a lattice cluster which occupies an integral  number of

primitive unit cells. The basis vector cE contains all the lattice building units from the

list abL, whereas cE0 removes those belonging to the secondary b–CIS phase and

appends pseudo-structural  element building units for the secondary Cu2-d Se phase.

Conservation of the eight components of a is expressed with each of these formula

matrices  [158,  §11.2] by the corresponding  sum of the form  ⁄ j=1
32  Dij N j  = Ni

0

(i=1,...,8). The formulas for the lattice-site species with respect to both its row basis a

and column basis L_CIS are given by the matrix Dab:

Dab =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 1 2 0 -1 -2 0 1 2 3 0 2 0 1 0 0 0 1 0
1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3
0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
;
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These formulas may be more easily understood when conjoined with their

corresponding basis vector elements:

Transpose@8Flatten@L_CISD, a .Dab<D êê TableForm

CuCu
x Cu + M1

InIn
x In + M3

SeSe
x Se + X6

Vi I
VCu

x M1
VCu

£ M1 - q

InCu
x In + M1

InCu
‰ In + M1 + q

InCu
‰‰ In + M1 + 2 q

CuIn
x Cu + M3

CuIn
£ Cu + M3 - q

CuIn
££ Cu + M3 - 2 q

VIn
x M3

VIn
‰ M3 + q

VIn
‰‰ M3 + 2 q

VIn
‰‰‰ M3 + 3 q

VSe
x X6

VSe
‰‰ 2 q + X6

Cui
x Cu +I

Cui
‰ Cu + q +I

Cui ∆VCu Cu + M1 +I
CuIn ∆ InCu Cu + In + M1 + M3
VCu ∆ InCu In + 2 M1HVCu ∆ InCu L‰ In + 2 M1 + q
2VCu ∆ InCu In + 3 M1

This function returns the defect's name and its formula in terms of the  basis

elements given the column number and name of the formula matrix:

formula@i_, DabD := 8Flatten@L_CISD, a .Dab<PAll, iT

215



H* the CISa+CISb basis vector *L cE = With@8 b13 = Take@cEgroupedP1, 2T, -1DP1T<,
Join@cEgroupedP1, 1T, Drop@cEgroupedP1, 2T, -1D,

Insert@cEgroupedP1, 3T, b13, -2D, cEgroupedP2T, 8cEgroupedP3T<DD8CISa , VCu
x , VCu

£ , InCu
x , InCu

‰ , InCu
‰‰ , CuIn

x , CuIn
£ ,

CuIn
££ , VIn

x , VIn
‰ , VIn

‰‰ , VIn
‰‰‰ , VSe

x , VSe
‰‰ , Cui

x , Cui
‰ , Cui ∆VCu ,

CuIn ∆ InCu , VCu ∆ InCu , HVCu ∆ InCu L‰, H2VCu ∆ InCu La ,H2VCu ∆ InCu Lb15 , H2VCu ∆ InCu L b13, H2VCu ∆ InCu Lb25, e£ , h‰ , DN<
Length@cED

28

The formula for the ideal primitive unit cell cluster on the lattice, CISa , is

defined  as twice  the sum of the normal  lattice  elements  times  their  respective

sublattice multiplicity, with the help of three subgroup bases corresponding to the

unit lattice site cluster, the elements in ideal proportion, and the charge:

NL = 80, 0, 0, 0, 1, 1, 2, 4<; aL = 81, 1, 2, 0, 0, 0, 0, 0<; qL = 80, 0, 0, 1, 0, 0, 0, 0<;
cL = 2 Plus üü Array@HaL + qL + NLLDabPAll, #T &, 4D82, 2, 4, 0, 2, 2, 4, 8<

There are 8 conserved quantities and 27 distinct species in D. Therefore a 27

species  formula  matrix  is  used,  and initialized  with each column given by the

product of the appropriate cluster size factor and the unit cluster vector cL:

D = Array@cL ncLPPosition@abL, cEP#TDP1, 1TT &, 25D;
D = Join@D, Outer@Times, 8-1, 1<, qLD, 8NL<D;

Note that both charge carriers and the lattice number deviation basis vector

have also been appended, expanding D to 27 columns in length.

These lattice cluster formulas in the column vectors of D are corrected by
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adding two terms to the initialized matrix.  The first term subtracts the normal site

atoms from the sites within the cluster occupied by the defect, and the second adds

the defect atoms and charge back in. Both of these terms are computed using the

defect's lattice site formula from the matrix Dab.

Array@Join@Array@1 &, 4D, Array@0 &, 4DD
Plus üü Table@DabP4 + i, #T DabPAll, iT, 8i, 4<D &, 25D;

Array@Join@Array@1 &, 4D, Array@0 &, 4DD DabPAll, #T &, 25D - %;H*include b-phase dilute NDC cluster,
with the same deviation as for the a-phase: *L
Append@Drop@%, 4D, Take@%, -1DP1TD;H*include b-phase intermediate NDC cluster,
also with the same deviation as for the a-phase: *LAppend@%, Take@%, -1DP1TD;H*include b-phase concentrated NDC cluster,
with twice the deviation of the dilute cluster: *LAppend@%, 2 Take@%, -1DP1TD;H*add zero vectors for CISa , e£ , h‰ , and DN deviations: *L

Join@8#<, PadRight@%, 27, 8#<DD &@Array@0 &, 8DD;
D = Transpose@D + %D;
Dimensions@DD88, 28<

The representations of the building units of the a–phase lattice (the first 22

columns)  and  the  band-delocalized  electrons  and  holes  (the  two  columns

immediately  preceding  the  last)  with  respect  to  the  constituent  basis  a  are

straightforward,  although the reasons for the choice of cluster sizes are not obvious.

This issue will be discussed in detail when the lattice statistics are evaluated in a

subsequent section.

The last column, corresponding to the basis element DN, allows for removal of

lattice sites from the system in the proper ratios, without the transfer of any atoms.
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This is necessary because the lattice sites have been effectively defined as conserved

quantities so that reactions cannot change their proportions, which would violate a

key requirement for validity of the structure element approach. Thus DN provides a

mechanism for the free energy minimization procedure to adjust the total number of

lattice sites over which the atoms and real lattice vacancies which have energetic

costs associated with their formation are distributed.  Obviously it is essential that

their be no similar energetic cost directly associated with this accounting device, only

the indirect effect due to the increased concentration of the  energetically meaningful

defects on the remaining lattice sites. This normalization effect will be made explicit

in the next subsection.

The formula display function is extended to the formula matrix D to return

the name and cluster formula associated with a given column number:

formula@i_, DD := 8cE, a .D<PAll, iT
The following table pairs up the column basis elements with the  contraction

of the row basis and species formula matrix to facilitate their direct comparison,

compiling the results of the formula display function applied to the entire cluster

formula matrix D.
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Transpose@8cE, a .D<D êê TableForm

CISa 2 Cu + 2 In + 2 M1 + 2 M3 + 4 Se + 4 X6 + 8I
VCu

x 5 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
VCu

£ 5 Cu + 6 In + 6 M1 + 6 M3 - q + 12 Se + 12 X6 + 24 I
InCu

x 5 Cu + 7 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
InCu
‰ 5 Cu + 7 In + 6 M1 + 6 M3 + q + 12 Se + 12 X6 + 24 I

InCu
‰‰ 5 Cu + 7 In + 6 M1 + 6 M3 + 2 q + 12 Se + 12 X6 + 24 I

CuIn
x 7 Cu + 5 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I

CuIn
£ 7 Cu + 5 In + 6 M1 + 6 M3 - q + 12 Se + 12 X6 + 24 I

CuIn
££ 7 Cu + 5 In + 6 M1 + 6 M3 - 2 q + 12 Se + 12 X6 + 24 I

VIn
x 6 Cu + 5 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I

VIn
‰ 6 Cu + 5 In + 6 M1 + 6 M3 + q + 12 Se + 12 X6 + 24 I

VIn
‰‰ 6 Cu + 5 In + 6 M1 + 6 M3 + 2 q + 12 Se + 12 X6 + 24 I

VIn
‰‰‰ 6 Cu + 5 In + 6 M1 + 6 M3 + 3 q + 12 Se + 12 X6 + 24 I

VSe
x 6 Cu + 6 In + 6 M1 + 6 M3 + 11 Se + 12 X6 + 24 I

VSe
‰‰ 6 Cu + 6 In + 6 M1 + 6 M3 + 2 q + 11 Se + 12 X6 + 24 I

Cui
x 7 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I

Cui
‰ 7 Cu + 6 In + 6 M1 + 6 M3 + q + 12 Se + 12 X6 + 24 I

Cui ∆VCu 6 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
CuIn ∆ InCu 6 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
VCu ∆ InCu 8 Cu + 11 In + 10 M1 + 10 M3 + 20 Se + 20 X6 + 40 IHVCu ∆ InCu L‰ 8 Cu + 11 In + 10 M1 + 10 M3 + q + 20 Se + 20 X6 + 40 IH2VCu ∆ InCu La 7 Cu + 11 In + 10 M1 + 10 M3 + 20 Se + 20 X6 + 40 IH2VCu ∆ InCu L b15 7 Cu + 11 In + 10 M1 + 10 M3 + 20 Se + 20 X6 + 40 IH2VCu ∆ InCu L b13 3 Cu + 7 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 IH2VCu ∆ InCu L b25 4 Cu + 12 In + 10 M1 + 10 M3 + 20 Se + 20 X6 + 40 I
e£ -q
h‰ q
DN M1 + M3 + 2 X6 + 4I

Formation of the b phase of CIS is analyzed as a collective phenomena which 

occurs due to the aggregation of H2VCu ∆ InCu L  cation Neutral Defect Complexes 

(NDC) and their resulting interactions. These complexes and a part of the lattice in 
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their immediate neighborhood that remains unperturbed are treated here as a 

secondary phase, and no other defects are included in that phase. An unequivocal 

determination of the long-range crystallographic structure of the b–CIS phase is not 

yet available. The lattice entropy calculations for both the a and b phases of CIS, 

which will be described in a later section, employ a cluster-based approach based on 

a 16-site cluster of four normally-occupied tetrahedra [118, figure 4.12]. The local 

crystallographic structure representing the lowest-energy  arrangement of the three 

point defects that form a single NDC [70] places them on three adjacent M1 sites  

along  the (110) or (1 1
êê

 0) directions. A minimum of three 16-site clusters connected 

along one of these {110} diagonals is necessary to include this configuration, but an 

additional two clusters are required to completely internalize all these defects and 

their first coordination shell counterions.   The resulting supercluster is shaped like a 

right hexagonal solid stretched along that diagonal and can be used as the basis for a 

Bravais lattice. Transfer of a single H2VCu ∆ InCu L  NDC within this supercluster 

from the   a to the b phase results in the conversion of this portion of the lattice in the 

neighborhood of that defect to the b phase according to the quasichemical reaction:

Cu7  In11  Se20H bL  F H2VCu ∆ InCu La +7 CuCu
x +10 InIn

x +20 SeSe
x +40 Vi . 

The primitive unit cell of the chalcopyrite lattice is included among the b–CIS 

phase building units so that this does not implicitly fix the stoichiometry limit of the 

b phase at X = 7ÅÅÅÅÅÅÅ11 , as this model does the a phase.

If two NDC are transferred with the same size supercluster, they will 

unavoidably share counterions with neighboring superclusters and the reaction 
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formula becomes: 

CuIn3  Se5  F 2 H2VCu ∆ InCu La +4 CuCu
x +10 InIn

x +20 SeSe
x +40 Vi .   

   This cluster's inclusion in the basis fulfills the requirement that the NDC 

are sufficiently aggregated that they interact strongly, the mechanism underlying the 

additional enthalpy reduction associated with their ordering [70].

The Cu3  In7  Se12  compound (X > 0.43) can be constructed from the previously 

described supercluster of three 16-site clusters connected along a common {110} 

diagonal in a close-packed array according to the formation reaction:

Cu3  In7  Se12 F  H2VCu ∆ InCu La +3 CuCu
x +6 InIn

x +12 SeSe
x +24 Vi .

This is particularly intriguing since  Cu3  In7  Se12  was studied in conjunction 

with a published defect analysis [148] of a long-range crystallographic structure 

proposed [276] for the b–CIS phase based on the I 4
êê

 2 m  point group symmetry. It 

was found to be the only composition with no defects on one of the I 4
êê

 2 m  point 

group sublattices, so if that long-range structure is eventually found to apply to 

b–CIS, it is in a sense the stoichiometric composition of this phase. Regardless, the 

fact that an ordered structure can be constructed for this composition entirely as a 

Bravais lattice with a basis consisting simply of a linear chain of 3 primitive unit cells 

of the related chalcopyrite structure, each containing exactly one defect on the same 

site, means that it represents a composition for the non-stoichiometric b–CIS phase 

that could possess long-range order based on a compact unit cell. This cluster is 

included in the basis.

These three clusters are indexed by the number of NDC and number of 
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chalcopyrite unit cells from which each created. The second index is related to the 

second index of the pair (n,m) used in the previously published NDC ordering model 

[70] of the b–CIS phase by a factor of two, since there are two formula units per 

chalcopyrite primitive unit cell. These reactions combine to provide a mechanism for 

modeling stoichiometry variation within the CIS  b phase. The overall stoichiometry 

in that phase is determined by the weighted average of the numbers of these three 

types of superclusters and chalcopyrite unit cell, which can vary throughout the 

1ÅÅÅÅ3 ≤ X ≤1 molecularity range limits of this calculation.H* the CISa+Cu2Se basis vector *L cE0 = Flatten@
Join@Drop@Take@Flatten@abLD, 23D, 820<D, RotateRight@Drop@cEgrouped, 81, 1<DDDD8CISa , VCu

x , VCu
£ , InCu

x , InCu
‰ , InCu

‰‰ , CuIn
x , CuIn

£ , CuIn
££ , VIn

x , VIn
‰ , VIn

‰‰ ,
VIn
‰‰‰, VSe

x , VSe
‰‰ , Cui

x, Cui
‰ , Cui ∆VCu , CuIn ∆ InCu , VCu ∆ InCu ,HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , CuCu2Se , Cu2_dSe, e£ , h‰ , DN<

There are 8 conserved quantites and 27 distinct species in D0. Therefore  an

8ä27 species formula matrix must be employed, which is derived for the secondary

Cu2-d Se  phase  problem  from  D  by  dropping  the  b–CIS  phase  species  and

substituting two column vectors representing incremental Cu segregation to Cu2-d Se

and that phase itself:

D0 = Drop@Transpose@DD, 823, 25<D;
D0 = Insert@D0, 81, 0, 0, 0, 0, 0, 0, 0<, 823<D;
D0 = Transpose@Insert@D0, 82 - d, 0, 1, 0, 0, 0, 0, 0<, 824< DD;
Dimensions@D0D88, 27<

The secondary  phase  definitions  are fundamentally  different  in this case.

Unlike  the  preceding  case,  the  cation  sublattices  of  a–CIS  and  Cu2-d Se  are
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incoherent.  Thus transfer of physical constituents  to the secondary Cu2-d Se phase

does not reassign lattice sites to it. In order to transfer physical  constituents  to a

crystallographically  incoherent  secondary  phase  without  violating  the  essential

requirement  that the site number  ratios  remain unchanged  with respect  to any

allowed  quasichemical  reaction,  the  species  representing  the  secondary  phase

physical constituents cannot be assigned  to any of the four sublattices. In the case of

transfers between the a and b phases of ternary CIS, lattice site transfer is physically

meaningful  since the two lattices are coherent;  lattice sites are in reality neither

created nor destroyed. In the case of transfers between the a and Cu2 Se phases, site

numbers are not conserved: the number of lattice sites removed from the a phase is

not equal to the number created in the binary phase. The formula display function

can be extended to the formula matrix D0:

formula@i_, D0D := 8cE0, a .D0<PAll, iT
All of these cluster formula are tabulated below:
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Transpose@8cE0, a .D0<D êê TableForm

CISa 2 Cu + 2 In + 2 M1 + 2 M3 + 4 Se + 4 X6 + 8I
VCu

x 5 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
VCu

£ 5 Cu + 6 In + 6 M1 + 6 M3 - q + 12 Se + 12 X6 + 24 I
InCu

x 5 Cu + 7 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
InCu
‰ 5 Cu + 7 In + 6 M1 + 6 M3 + q + 12 Se + 12 X6 + 24 I

InCu
‰‰ 5 Cu + 7 In + 6 M1 + 6 M3 + 2 q + 12 Se + 12 X6 + 24 I

CuIn
x 7 Cu + 5 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I

CuIn
£ 7 Cu + 5 In + 6 M1 + 6 M3 - q + 12 Se + 12 X6 + 24 I

CuIn
££ 7 Cu + 5 In + 6 M1 + 6 M3 - 2 q + 12 Se + 12 X6 + 24 I

VIn
x 6 Cu + 5 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I

VIn
‰ 6 Cu + 5 In + 6 M1 + 6 M3 + q + 12 Se + 12 X6 + 24 I

VIn
‰‰ 6 Cu + 5 In + 6 M1 + 6 M3 + 2 q + 12 Se + 12 X6 + 24 I

VIn
‰‰‰ 6 Cu + 5 In + 6 M1 + 6 M3 + 3 q + 12 Se + 12 X6 + 24 I

VSe
x 6 Cu + 6 In + 6 M1 + 6 M3 + 11 Se + 12 X6 + 24 I

VSe
‰‰ 6 Cu + 6 In + 6 M1 + 6 M3 + 2 q + 11 Se + 12 X6 + 24 I

Cui
x 7 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I

Cui
‰ 7 Cu + 6 In + 6 M1 + 6 M3 + q + 12 Se + 12 X6 + 24 I

Cui ∆VCu 6 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
CuIn ∆ InCu 6 Cu + 6 In + 6 M1 + 6 M3 + 12 Se + 12 X6 + 24 I
VCu ∆ InCu 8 Cu + 11 In + 10 M1 + 10 M3 + 20 Se + 20 X6 + 40 IHVCu ∆ InCu L‰ 8 Cu + 11 In + 10 M1 + 10 M3 + q + 20 Se + 20 X6 + 40 IH2VCu ∆ InCu La 7 Cu + 11 In + 10 M1 + 10 M3 + 20 Se + 20 X6 + 40 I
CuCu2Se Cu

Cu2_dSe Se + Cu H2 - dL
e£ -q
h‰ q
DN M1 + M3 + 2 X6 + 4I

Turning now to D0 and cE0, by (empirically supported) assumption, only Cu

and Se (but not In) may be transferred between the a and Cu2-d Se phases, according

to  the  reaction:

(2 – d) CuCu
x + SeSe

x F Cu2_dSe + (2 – d) VCu
x +VSe

x .
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     The Cu2 Se phase has a very wide compositional range of phase stability

which can extend to as much as ~36.5 at.% selenium. To model this phase properly, a

mechanism must therefore be provided for independently transfering each of these

components between the phases. The underlying mechanism by which stoichiometry

deviations  are accomodated  in the crystalline  structure of Cu2-d Se are discussed

extensively  in [160] and [176].  Its crystallographic  structure is  characterized by

partial occupancy of the eight available tetrahedral copper sites for all compositions,

including  the stoichiometric  where d = 0.  Deviation  from stoichiometry  towards

copper-rich compositions (d < 0) is not observed in most studies and is negligible in

those where it is reported. Deviation towards selenium-rich  compositions  (d>0) is

accomplished  by an  increase  in copper  vacancies.  Hence  it  is  the independent

exchange of copper between Cu2-d Se and a-CuInSe2  which must be accomodated

within the formal framework of this calculation. This is accomplished by dividing the

formation reaction above into two component reactions. The first:

(2 - dmin ) CuCu
x + SeSe

x F Cu2_dmin Se + (2 - dmin ) VCu
x +VSe

x  

transfers both in the proportions  that yield the minimum stable selenium

content in the Cu2-d Se phase required to prevent formation of the copper phase as

detailed in the subsequent boundary conditions section. The second:

 CuCu
x FCuCu2Se +VCu

x

permits the independent  transfer of copper between the phases since their

combined  equilibrium  could  require  excess  segregation  of  copper  above  the

minimum required for the Cu2-d Se phase's stability. These considerations lead to the
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values shown in the last two (29th  and 30th ) columns of D0. The basis elements

CuCu2Se  and Cu2_dSe are not actually building units (as precisely defined in the last

section) of the Cu2-d Se phase,  since neither of them are associated with specific

lattice sites within that binary phase itself. A structural element model for Cu2-d Se

will not be employed for this two-phase equilibrium calculation. Its Gibbs energy of

formation and the dependence thereof on the value of d as determined in a recent

assessment of the Cu–Se binary system [176] will be utilized instead. Note, however,

that this  cited assessment  is  itself  based on a sublattice  solution  model  for the

Cu2-d Se phase  which  will  be  described  in detail  in the  subsequent  boundary

conditions section of this treatise. The number of lattice sites on which the model's

structural  elements reside is given by a sum over those elements in the a and b

phases alone and that this is the number which must be employed for lattice-density

normalizations of concentration, the XN j \.

Many of the defect clusters in the basis cE0 will be found to effectively vanish

in the temperature range below the a–b–d eutectoid. The practical criterion used for

this characterization  is based on numerical convergence of the solution algorithm,

but typically that occurs when a species has dropped to a calculated specific molar

probability  of substantially  less than a single defect  per  mole,  and has therefore

effectively vanished. In anticipation of  the need to eliminate those species from the

basis, the subset basis cE00 comprised of the species persisting at lower temperatures

is also defined at this time. Most of the results of the defect equilibria calculations

will be presented with respect to this species basis.
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cE00 = Drop@Drop@Drop@Drop@cE0, 823<D, 816, 17<D, 810, 13<D, 84, 6<D8CISa , VCu
x , VCu

£ , CuIn
x , CuIn

£ , CuIn
££ , VSe

x , VSe
‰‰ , Cui ∆VCu , CuIn ∆ InCu ,

VCu ∆ InCu , HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , Cu2_dSe, e£ , h‰ , DN<
D00 = Transpose@

Drop@Drop@Drop@Drop@Transpose@D0D, 823<D, 816, 17<D, 810, 13<D, 84, 6<DD;
Finally, in preparation for the next section's development the ranks of D and

D0 are determined:

rankD = Length@Transpose@DDD - Length@NullSpace@DDD;
rankD0 = Length@Transpose@D0DD - Length@NullSpace@D0DD;
Length@DD === Length@D0D === 8 Ï rankD === rankD0 === 5

True

Since the rank of D and D0 do not equal the number of their rows, this means

that all of their columns are not linearly independent of one another. This is evidence

that the problem has been correctly constructed to maintain lattice site proportions,

since  this  fixed  proportionality  means  that  the  lattice  site  numbers  are  not

independently  conserved quantities,  of which there are only five. Hence the total

number of independent  quasichemical  reactions (after eliminating those which are

dependent on the remaining ones by virtue of the conservation constraints) will be

reduced in both cases by the number of independent constraints to 22 (= 27 - rankD

or rankD0).
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Reaction Stoichiometry  Matrices

Next the  reaction stoichiometry  matrices  n  and n0, whose 22 component

column vectors nr
`  correspond  to the preceding  reduced set of  22 independent

reactions, are found by solving the matrix equation D·n = 0 for the unknown column

vectors nr
`  which span the nullspace of D:

n = Transpose@NullSpace@DDD;
MatrixForm@nDi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

17 0 0 13 6 4 4 1 1 -3 -3 -6 -6 0 -3 -3 -3 -3 -6 -6 -6 0 0

-4 -1 1 -4 -2 -2 -2 -2 -1 0 0 0 1 -2 -4 -3 -2 -1 2 1 0 -2 -1

0 1 -1 0 0 0 0 1 0 0 0 1 0 2 3 2 1 0 -2 -1 0 2 1

2 0 0 -2 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

-4 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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Dimensions@nD828, 23<
Any of these independent reactions may be displayed in a more readable form

by taking the inner product of the corresponding column nr
`  with the basis vector, for

which the following function is defined:

rxn@i_, nD := nPAll, iT.cE

The sixth reaction is used to demonstrate this function:

rxn@7, nD
4 CISa - InCu

x - 2VCu
x + H2VCu ∆ InCu La

The seventh reaction states that transfer of the three isolated point defects that

comprise the NDC into the complex "cleans up" four unit cells of the chalcopyrite

structure, consistent with the idea that to form the complex the point defects on the

lattice must be more concentrated than if they are non-interacting. 

n0 = Transpose@NullSpace@D0DD;
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MatrixForm@n0Di

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

17ÅÅÅÅÅÅ
2

0 0 3 H-3 + dL -3 4 1 1 -3 -3 -6 -6 0 -3 -3 -3 -3 -6 -6 -6 0 0

-2 -1 1 2 - d 1 -2 -2 -1 0 0 0 1 -2 -4 -3 -2 -1 2 1 0 -2 -1

0 1 -1 0 0 0 1 0 0 0 1 0 2 3 2 1 0 -2 -1 0 2 1

1 0 0 0 0 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

-2 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Dimensions@n0D827, 22<

The function  "rxn" is extended to use the appropriate  basis (cE0) for the

reactions in n0:

rxn@i_, n0D := n0PAll, iT.cE0

The thirteenth reaction is used to demonstrate this function:

rxn@13, n0D
-2VCu

x - VSe
x +VSe

‰‰ + 2VCu
£
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The thirteenth reaction shows that ionization of a selenium vacancy results in

the ionization of two copper vacancies, without creation of any free carriers; it is an

explicit example of charge exchange  compensation.  All of these formulas will be

discussed in the results section after  their equilibrium extents and stoichiometry

dependence thereof are computed.

Each of the 22 column vectors nr
`  in the reduced stoichiometric reaction matrix

has elements  njr  which  are the  number  of moles  of species  j  involved  in the

independent reaction r (the ordering of the basis for the rows n j
`  remains the same as

it is for the columns of the species formula matrix D). Each of these independent

reactions must be in equilibrium for the entire system to be in equilibrium.  The

mathematical formulation for these 22 equilibria in terms of the partial molar Gibbs

energy Gêêê
j  for each species is given by the Gibbs–Duhem equation: ‚

j=1

27
 njr G

êêê
j  = 0.

There are, however only 22 equations here and 27 unknowns (the number of each

species in equilibrium, N j ). The remaining 5 equations are provided by the original

conservation equations which were eliminated by transforming from the D matrix to

the n matrix and are ⁄ j=1
27  Dij N j  = Ni

0  (i=1,...,4),  and for the lattice site numbers

N5
0 = N0 , N6

0 = N0 , N7
0 = 2 N0 , and N8

0 = 4 N0 , so the conserved quantity  N0  can be

calculated from any one of these. These conservation equations are easily converted

to an intensive quantity based on a total of one mole of the quasimolecular species as

derived previously: M=1flN j  = ∞N j ¥*NAvo . Dividing both sides of the conservation

equation by NAvo  and defining the building unit molar concentration vector c with

respect to the basis cE as cj  = ∞N j ¥, the set of equations ⁄ j=1
27  Dij c j  = Ni

0 *HNAvo L-1  is
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derived, where the right hand side is the initial number of moles of the conserved

quantity with index i in a mole of the quasimolecule.

Conservation  of these five quantities  and the simultaneous  solution of the

Gibbs-Duhem equations can be handled in a computationally  efficient manner by

introducing the extent of reaction variable xr  for each independent reaction r. Then

the final mole fraction of each species j (since the total number of moles of the

quasimolecule is M=1, a constant) is given by c j  = c j
0 + ⁄r=1

22  n jr xr  (where 0 ≤ xr  ≤ 1).

These  27  equations  implicitly  include  the  five  conservation  equations  via  the

stoichiometry  matrix  n,  and may be combined with the 22 independent  reaction

equilibria equations to provide 22 relations between the 22 extents of reactions. This

is accomplished by writing the partial molar Gibbs energy (the chemical potential)

for each species as: m jU Gêêê
j =Gêêê

j
0 +RT log[aj ] > mêê j

0 +RT Log[c j ], where c j  is the mole

fraction of the " jth " species  [15,  §11.4].  Substituting  this  relation into the Gibbs-

Duhem equation yields:‚
j=1

27
 njr  Imêê j

0 + R T Log @ c j
0 + ⁄r=1

22  n jr xr DM  = 0.

This is  the system of 22 simultaneous  equations  that must  be solved  to

determine the equilibrium reaction extent vector x, and therefrom the extent of phase

segregation and equilibrium concentrations of defects.

Boundary Conditions

The most important information  required to complete  this calculation is to

select the boundary conditions that will be employed to calculate the reference state

chemical potential  for the various building units m j
0 . As discussed in the preceding
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literature  review,  the  structure  of  the  relatively  indium-rich  CIS  b–phase  is

controversial  and there is little agreement  on the phase boundary between it and

a–CIS. Also, recent results [27] suggest that the composition of the CIS a–phase in

equilibrium with the non-stoichiometric  compound Cu2 –d Se at STP is itself non-

stoichiometric.

The most reliable invariant data for the ternary phase field is probably the

eutectoid decomposition of the d–CIS high-temperature sphalerite disordered  phase.

A recent study using the solid electrolyte EMF technique [173] includes a review of

the various studies thereof. There is good agreement among these studies that the

a–CIS  phase  in  equilibrium  with  b–Cu2-d Se  at  the  eutectoid  temperature  of

1025-1083K is stoichiometric (i.e.: d=0). Furthermore, the binary Cu–Se phase diagram

has been recently assessed [176], so consistent analytical expressions for the Gibbs

energy  of  the  binary  Cu–Se  compounds are  available  as  functions  of  both

temperature and composition.  A reference temperature of 1048.15K is chosen near

this critical point as the upper temperature limit, and the lower limit is taken to be

the  temperature  at  STP.  Ternary  equilibrium  calculations  will  be  restricted  to

temperatures less than the eutectoid decomposition of the indium-rich d–CIS phase

at 600°C.

tSTP = 298.15;
tRef = tSTP + 750
tMaxab = tSTP + 575

1048.15
873.15
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Therefore  the Gibbs-Duhem  equations  are first  solved  for  the two-phase

Cu2-d Se/a–CuInSe2  equilibrium phase boundary using the stoichiometry matrix n0

and corresponding  state  vectors.  The resulting state vectors and thermodynamic

potential  functions  define the boundary  conditions for the solution of the a–CIS

single phase and CIS a–b two phase equilibrium defect structure as a function of the

state variables T, X, and to a limited extent Z, with P constant.

Thermodynamic Functions

The thermodynamic energy functions for each compound at its reference state

(stoichiometric)  composition  are calculated  as the inner product  of a list  of the

coefficients  for  each  compound  and  another  list  containing  polynomial  and

transcendental functions of the temperature which are the same for all compounds.

Off@General::spellD Ï Off@General::spell1D;H*Avogadro' s number in units Mole-1*LnAvo = First@AvogadroConstantD
6.02214 µ 1023H*the molar gas constant in units Joules.Mole-1.Kelvin-1*LrG = 8.314472145136097`;H*the molar gas constant value built into

Mathematica is not used because of an internal inconsistency. *L
First@MolarGasConstantD - First@AvogadroConstantD * First@BoltzmannConstantD
rG - First@AvogadroConstantD * First@BoltzmannConstantD

-1.45136 µ 10-7

0.

g_HSER@cThermo_, tK_D :=

cThermo.:1, tK, tK Log@tKD, tK2, tK-1, tK3, tK4, "######tK , tK7 , tK-9>
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s_entropy@cThermo_, tK_D := cThermo.:0, -1, -1 - Log@tKD, -2 tK, tK-2, -3 tK2, -4 tK3, -1 í J2 "######tK N, -7 tK6, 9 tK-10>
h_HSER@cThermo_, tK_D :=

cThermo.:1, 0, -tK, -tK2, 2 tK-1, -2 tK3, -3 tK4, "######tK í 2, -6 tK7 , 10 tK-9>
cP@cThermo_, tK_D := cThermo.:0, 0, -1, -2 * tK, -2 * tK-2, -6 * tK2, -12 * tK3, 1 í J4 * "######tK N, -42 tK6, -90 * tK-10>
identity10 = Array@1 &, 10DH*test value for cThermo*L81, 1, 1, 1, 1, 1, 1, 1, 1, 1<H*verify G=H-TS*Lg_HSER@identity10, tKD -

h_HSER@identity10, tKD + tK * s_entropy@identity10, tKD êê Simplify

0H*verify ∑GÅÅÅÅÅÅÅÅ∑T =-S*L∑tK g_HSER@identity10, tKD === -s_entropy@identity10, tKD
TrueH*verify cP = ∑HÅÅÅÅÅÅÅÅÅ∑T *L∑tK h_HSER@identity10, tKD === cP@identity10, tKD
True

Clear@identity10D
The thermodynamic  coefficients  for  solid  elemental  copper  [165],  indium

[165], and selenium [167] are:

cThermo_Cu@tK_D ê; 1357.7 ¥ tK ¥ tSTP := 8-7770.45775, 130.485222,
-24.11239, -2.65684 * 10-3, 0.0524778 * 106, 0.129222833 * 10-6, 0, 0, 0, 0<
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H*solid hexagonal ü STP, superheated solid ü tK>429.75*L
cThermo_In@tK_D ê; tK ¥ tSTP Ï tK § 429.75 := 8-6978.89, 92.3338115,

-21.8386, -5.72566 * 10-3, -22906, -2.120321 * 10-6, 0, 0, 0, 0<
cThermo_In@tK_D ê; tK ¥ 429.75 Ï tK § 3800 := 8-7033.516, 124.476588,

-27.4562, -0.54607 * 10-3, -211708, -0.08367 * 10-6, 0, 0, 0, 3.53 * 1022<H*superheated solid for tK>494.3*LcThermo_Se@tK_D ê; 760 > tK ¥ tSTP :=8-6657, 92.53969, -19.14, -12.295 * 10-3, 0, 2.677 * 10-6, 0, 0, 0, 0<
cThermo_Se@tK_D ê; 1200 ¥ tK ¥ 760 := 8-9059.17, 150.33422, -28.552, 0, 0, 0, 0, 0, 0, 0<

Finally, a 3-element vector that will be used for computations is constructed of

these three coefficient  lists. Note that the ordering of these is the same as the first

three elements in the vector "a" that specifies the conserved quantities.

a_thermo@tK_D := 8cThermo_Cu@tKD, cThermo_In@tKD, cThermo_Se@tKD<
Compounds

Binary copper selenides

First the thermodynamic coefficients for the two phases (a and b) of Cu2-d Se

[160] found in equilibrium with a–CuInSe2  [27] are given. The self-consistent critical

temperature for the aØb binary phase transformation is also calculated.

tCrit_a2b2 = 395.000442936354;

cThermo_Cu2Se_a@tK_D ê; tCrit_a2b2 ¥ tK ¥ tSTP :=8-80217.34, 288.16728, -59.0572, -37.5096 * 10-3, 0, 0, 0, 0, 0, 0<
cThermo_Cu2Se_a@tK_D ê; 1373 ¥ tK > tCrit_a2b2 :=8-98588.35, 664.34671, -120.0866, 37.85 * 10-3, 1019900, -6.9635 * 10-6, 0, 0, 0, 0<
cThermo_Cu2Se_b@tK_D ê; tK ¥ tSTP :=

cThermo_Cu2Se_a@tKD + 86830, -17.29114, 0, 0, 0, 0, 0, 0, 0, 0<
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The composition dependence of the Gibbs energy of the two phases (a and b)

of  Cu2-d Se have been assessed on the basis of a triple sublattice model described asHCu, VaL1 HSe, VaL1 HCuL1 , where the subscript denotes the multiplicity of (in Kröger's

notation) the M1, X, and M2 sublattices. The optimized parameters in the resulting

analytical description are [176]:

G0a101@tK_D := 50000 + 2 g_HSER@cThermo_Cu@tKD, tKD
G0a001@tK_D := 90000 + g_HSER@cThermo_Cu@tKD, tKD
G0a011@tK_D :=

40000 + g_HSER@cThermo_Cu2Se_a@tKD, tKD - g_HSER@cThermo_Cu@tKD, tKD
L0ai101 = 20000;
L0a10i1@tK_D := 11180 + 10 tK
L1a10i1 = -56789;

G0b101@tK_D := 50000 + 2 g_HSER@cThermo_Cu@tKD, tKD
G0b001@tK_D := 80000 + 36 tK + g_HSER@cThermo_Cu@tKD, tKD
G0b011@tK_D :=

30000 + 36 tK + g_HSER@cThermo_Cu2Se_b@tKD, tKD - g_HSER@cThermo_Cu@tKD, tKD
L0bi101 = 20000;
L0b10i1@tK_D := -32004 + 14.0367 tK
L1b10i1@tK_D := -19864 + 11.2002 tK
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The third (M2) sublattice in this model [176] is always completely filled with

copper, and since only two species are found on each of the other two sublattices,

only two parameters are required to define the state of the entire lattice. These are the

lattice site occupation probability for copper on the first sublattice XCu\M1
Cu2Se , and the

lattice site occupation probability for selenium on the second sublattice XSe\X
Cu2Se . For

the following calculations define y1=XCu\M1
Cu2Se  and y2=XSe\X

Cu2Se . Thus XVa\M1
Cu2Se =1-

y1 and XVa\X
Cu2Se =1-y2. The full Gibbs energy expressions in terms of y1 and y2 as

given in [176] are:

G0a@tK_, y1_, y2_D := y1 y2 g_HSER@cThermo_Cu2Se_a@tKD, tKD +
y1 H1 - y2L G0a101@tKD + H1 - y1L y2 G0a011@tKD + H1 - y1L H1 - y2L G0a001@tKD

G_idl_a@tK_, y1_, y2_D :=
rG tK Hy1 Log@y1D + H1 - y1L Log@1 - y1D + y2 Log@y2D + H1 - y2L Log@1 - y2DLH*ê;1>y1>0Ï1>y2>0*L

G_xs_a@tK_, y1_, y2_D := y1 H1 - y1L Hy2 HL0a10i1@tKD + H2 y1 - 1L L1a10i1L +H1 - y2L HL0a10i1@tKD + H2 y1 - 1L L1a10i1LL +
y2 H1 - y2L Hy1 L0ai101 + H1 - y1L L0ai101L

G_Cu2Se_a@tK_, y1_, y2_D := G0a@tK, y1, y2D + G_idl_a@tK, y1, y2D + G_xs_a@tK, y1, y2D
G0b@tK_, y1_, y2_D := y1 y2 g_HSER@cThermo_Cu2Se_b@tKD, tKD +

y1 H1 - y2L G0b101@tKD + H1 - y1L y2 G0b011@tKD + H1 - y1L H1 - y2L G0b001@tKD
G_idl_b@tK_, y1_, y2_D :=

rG tK Hy1 Log@y1D + H1 - y1L Log@1 - y1D + y2 Log@y2D + H1 - y2L Log@1 - y2DLH*ê;1>y1>0Ï1>y2>0*L
G_xs_b@tK_, y1_, y2_D := y1 H1 - y1L Hy2 HL0b10i1@tKD + H2 y1 - 1L L1b10i1@tKDL +H1 - y2L HL0b10i1@tKD + H2 y1 - 1L L1b10i1@tKDLL +

y2 H1 - y2L Hy1 L0bi101 + H1 - y1L L0bi101L
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G_Cu2Se_b@tK_, y1_, y2_D := G0b@tK, y1, y2D + G_idl_b@tK, y1, y2D + G_xs_b@tK, y1, y2D
The  calculated  equilibrium  specific  molar  values  of  selenium  vacancy

concentration (1–y2) predicted by this model [176] vary from 2.07ä10-17 to 2.23ä10-4 .

These values are quite small compared to the variation in equilibrium values of y1.

This could be approximated as zero, but the result would be divergence of the ideal

mixing entropy due to the logarithmic  singularity in the term (1– y2)äLog[1– y2].

Instead, it is set to 1ä10-6  based on its nominal calculated values in the range of

800-400K.

y2 = 1 - 10-6;

As for the case of CIS, these lattice site occupation variables y1 and y2 must be

related to the overall composition of the compound Cu2-d Se. The value of d in the

formula  Cu2-d Se  is  given  by  the  solution  of  Cu1+y1  Sey2 = Cu2-d Se,  or  2-

d =
1+y1ÅÅÅÅÅÅÅÅÅÅÅÅÅy2 fl d = 2-

1+y1ÅÅÅÅÅÅÅÅÅÅÅÅÅy2 . In this approximation d>1-y1. Inverting the definition of the

binary mole fraction variable x_Se = y2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+y1+y2  gives:

y1@x_Se_D :=
y2 H1 - x_SeL - x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x_SeH* ê; 1ÅÅÅÅ3 §x_Se§Htemperature-dependent upper limitL *L
This verifies the calculated self-consistent peritectoid temperature:

G_Cu2Se_a@tK, y1@x_SeD, y2D - G_Cu2Se_b@tK, y1@x_SeD, y2D ê.
Thread@8tK, x_Se< Ø 8tCrit_a2b2, 1 ê 3<D

-1.54909 µ 10-12
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Finally, note that in [27] it has been found that a-CuInSe 2  is in equilibrium

with a-Cu2-d Se at room temperature and with b-Cu2-d Se at high temperature,

with a transition detected by DTA between these two structures in equilibrium with

a-CuInSe2  at 143°C>416K. There is an apparent inconsistency in that reported value

in their discussion and the data in Figure 1 of their paper (which is lower). Another

study [277] found this transition at 134°C>405K so the value of the transition is set

for these  calculations  at the calculated  self-consistent  critical  point  temperature,

corresponding  nearly to the assessed Cu/a-Cu2-d Se/b-Cu2-d Se peritectoid critical

point temperature of 396K. The eutectoid decomposition of b-Cu2-d Se into a-Cu2-d Se

and Cu3  Se2  at the assessed temperature [176] of 291K is included approximately by

definition of a two-phase region. A single piece-wise continuous analytic function is

thus defined for the computation of the Gibbs energy and partial molar properties of

Cu2-d Se for all its allowable compositions and the entire temperature range between

STP and the melting point of Cu2-d Se, 298.15K ≤ T ≤ 1357.7K.

The Gibbs energies were derived above for HCu, VaL1 HSe, VaL1 HCuL1 , which

contains  y1+y2+1  moles  of atoms.  Inverting  the definition  of x_Se provides the

required normalization:

x_Se = y2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+y1+y2 fl  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+ y1+ y2  = x_SeÅÅÅÅÅÅÅÅÅÅy2

The Gibbs energy per mole of Cu1-x  Sex  based on the binary mole

fractions of Cu (= 1– x_Se) and Se, is Gêêê
[T,xSe ] as given by the following function:
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G_CuSeX@tK_, x_Se_D ê; HtSTP - 7L § tK < tCrit_a2b2 Ï 0.346 < x_Se § 0.360 :=

WithB:xbMin = 0.360 - H0.360 - 0.346L 
tK - HtSTP - 7L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tCrit_a2b2 - HtSTP - 7L ,

ma =
x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2

* G_Cu2Se_a@tK, y1@x_SeD, y2D, mb =
x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2

* G_Cu2Se_b@tK, y1@x_SeD, y2D>,ikjjjUnitStep@xbMin - x_SeD ikjjj ma HxbMin - x_SeL + mb Hx_Se - 0.346L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

xbMin - 0.346
y{zzzy{zzz +HUnitStep@x_Se - xbMinD mbLF

G_CuSeX@tK_, x_Se_D ê; tSTP § tK < tCrit_a2b2 Ï 0.360 < x_Se :=
x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2

* G_Cu2Se_b@tK, y1@x_SeD, y2D
G_CuSeX@tK_, x_Se_D ê; HtSTP - 7L § tK < tCrit_a2b2 :=

x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2

* G_Cu2Se_a@tK, y1@x_SeD, y2D
G_CuSeX@tK_, x_Se_D ê; tCrit_a2b2 § tK § tMaxab :=

x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2

* G_Cu2Se_b@tK, y1@x_SeD, y2D
G_CuSeX@tK_, x_Se_D ê; tMaxab < tK § 1357.7 :=

x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2

* G_Cu2Se_b@tK, y1@x_SeD, y2D
Boundary conditions for the solution of the ternary phase diagram  based on

its building unit model will be provided by this Gibbs energy function for the two

binary Cu2-d Se compound components  in that model whose molar concentrations

enter  into  the  Gibbs-Duhem  equation,  ∞CuCu2Se ¥  and  ∞Cu2_dSe¥ ,  solved  self-

consistently to determine the Cu2-d Se/a–CuInSe2  two-phase equilibrium boundary

composition  as a  function  of temperature.  To do this  it  is  useful  to explicitly

determine the partial molar Gibbs energy Gêêê
j = Gêêê

j
0 +RT Log[g j c j ] for CuCu2Se . The

partial molar Gibbs energies for Cu and Se in Cu1-x  Sex  are given by [158, §8.2]: 

Gêêê
Cu =Gêêê

[ T ,xSe ]  –  x _Seä
∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x_Se ,  and                            

Gêêê
Se =Gêêê

[T,xSe ] – (1–x_Se)
∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x_Se = Gêêê
[T,xSe ]+(1–x_Se)

∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x_Se =Gêêê

Cu +
∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x_Se .
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Note that x_Se ä Gêêê
Se + (1–x_Se) ä Gêêê

Cu = Gêêê
[T,xSe ] as required by the definition  of a

partial molar quantity in a binary system. The derivative 
∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x_Se  can be further

simplified  by  substituting  from  the  functional  definition  of

Gêêê
[T,xSe ] = x_Se ä G_Cu2Se_ab ä y2-1 , and using the chain rule to give: 

∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x_Se = (G_Cu2Se_ab + x_Se ä 

∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x_Se ) ä y2-1  

fl Gêêê
Cu = Gêêê

[T,xSe ] - x_Se ä 
∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x_Se = – x_Se2 ä
∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x_Se ä y2-1

fl Gêêê
Se = Gêêê

Cu
0 +

∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x_Se = (G_Cu2Se_ab + (x  (1-x) ä

∑Gêêê@T,xSe DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x_Se )) ä y2-1

Since the defining expressions for G_Cu2Se_a and G_Cu2Se_b are in terms of the

variable y1, they are most efficiently calculated using the chain rule again, giving

∑ G_Cu2Se_abÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ x_Se = ∑ G_Cu2Se_abÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ y1 ä ∑ y1ÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ x_Se .  Combining  these  expressions  to compute,  the

partial molar quantities are given by:

G_Cu_CuSeX@tK_, x_Se_D ê; tSTP § tK < tCrit_a2b2 :=
-x_Se2 * ∑y G_Cu2Se_a@tK, y, y2D * ∑x y1@xD * y2-1 ê.

Thread@8x, y< ß 8x_Se, y1@x_SeD<DH*Ï x0_Se§x_Se<0.346*L
G_Cu_CuSeX@tK_, x_Se_D ê; tCrit_a2b2 § tK § 1357.7 :=

-x_Se2 * ∑y G_Cu2Se_b@tK, y, y2D * ∑x y1@xD * y2-1 ê.
Thread@8x, y< ß 8x_Se, y1@x_SeD<DH*Ï x0_Se§x_Se<0.368*L

G_Se_CuSeX@tK_, x_Se_D ê; tSTP § tK < tCrit_a2b2 :=HG_Cu2Se_a@tK, y1@x_SeD, y2D + x_Se H1 - x_SeL * ∑y G_Cu2Se_a@tK, y, y2D * ∑x y1@xDL 

y2-1 ê. Thread@8x, y< ß 8x_Se, y1@x_SeD<DH*Ï x0_Se§x_Se<0.346*L
G_Se_CuSeX@tK_, x_Se_D ê; tCrit_a2b2 § tK § 1357.7 :=HG_Cu2Se_b@tK, y1@x_SeD, y2D + x_Se H1 - x_SeL * ∑y G_Cu2Se_b@tK, y, y2D * ∑x y1@xDL 

y2-1 ê. Thread@8x, y< ß 8x_Se, y1@x_SeD<DH*Ï x0_Se§x_Se<0.368*L
Although explicit upper limits on the range of compositional applicability of

these functions  have not been included in their definition,  a two-phase region is

present in the phase field above the upper limit of selenium that defines the single-
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phase stability range of the non-stoichiometric  compound Cu2-d Se. Over the entire

temperature range, this boundary is defined by the equilibrium between Cu2-d Se

and a number of different phases. Rather than solve all these equilibria explicitly

here, published solution values [176] for the relevant critical points are used to define

a function which returns the approximate upper limits over the temperature range of

the calculations  for  the a-CIS/Cu2-d Se equilibrium,  the  goal  of  these  auxillary

derivations.

xMax_Cu2Se@tK_D ê; tSTP § tK < 385 := 0.360 + H0.365 - 0.360L 
tK - HtSTP - 7L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
385 - HtSTP - 7L

xMax_Cu2Se@tK_D ê; 385 § tK < 650 := 0.365 + H0.368 - 0.365L 
tK - 385

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
650 - 385

xMax_Cu2Se@tK_D ê; 650 § tK < 796 := 0.368 + H0.364 - 0.368L 
tK - 650

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
796 - 650

xMax_Cu2Se@tK_D ê; 796 § tK § tMaxab := 0.364 + H0.360 - 0.364L 
tK - 796

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - 796

Over the entire temperature range of interest, the  b–Cu2-d Se binary copper

selenide's  copper-rich  single-phase  domain  boundary  is  determined  by  its

equilibrium with fcc Cu with a finite solubility  of selenium [176]. Thus perfectly

stoichiometric  Cu2 Se is not stable to decomposition  in the binary model, and the

Cu2-d Se binary-ternary equilibrium composition is limited by the minimum value of

x_Se (i.e.: the maximum self-consistent  copper composition)  for which the copper

partial molar Gibbs free energy (its chemical potential) is zero. A function that solves

for the value of the minimum selenium content of the  b–Cu2-d Se phase as a function

of temperature is defined as:
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xMin_Cu2Se@tK_?NumericQD ê; tSTP § tK § 1357.7 :=
x_Se ê. FindRoot@G_Cu_CuSeX@#, x_SeD ã 0, 8x_Se, 1 ê 3<D &@tKD

ParametricPlot@8Evaluate@HxMin_Cu2Se@TD - 1 ê 3L 1*^6D, T<,8T, tSTP, tRef<, AxesLabel -> 8"@ppmD", "T @KD"<,
PlotLabel Ø "Cu2-dSe Minimum Selenium Content: Deviation from 1ê3"D

200 400 600 800 1000 1200
@ppmD400

500

600

700

800

900

1000

T @KD

Figure A.1 Temperature dependence of the deviation from one-third of the 
minimum stable excess selenium content of Cu2-d Se sufficient to inhibit metallic 
copper phase segregationH* confirm the Cu2Se partial molar sum relation*L
x_Se µ G_Se_CuSeX@tK, x_SeD + H1 - x_SeL µ G_Cu_CuSeX@tK, x_SeD - G_CuSeX@tK, x_SeD ê.

Thread@8tK, x_Se< Ø 8tRef, xMin_Cu2Se@tRefD<D
0.

The  foregoing  development  of  mathematical  expressions  describing  the

energetic properties  of binary copper selenide have been defined in terms of the

binary mole fraction phase composition formula Cu1-x  Sex . Subsequent interphase

reactions  will be analyzed in terms of the secondary phase compound's  formula
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Cu2-d  Se.  For  any  given  value  of  x_Se  for  the  binary  Cu1-x  Sex  phase,  the

corresponding Cu2-d Se stoichiometry deviation parameter d is determined:

formula@24, D0D8Cu2_dSe, Se + Cu H2 - dL<
part2ndF@D0D881, 2 - d<, 80, 0<, 80, 1<, 80, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<<H2 - part2ndF@D0DP1, 2TL êê Simplify

d

formula@24, D0D8formula@24, D0DP2, 1T ê Hformula@24, D0DP2, 1T + formula@24, D0DP2, 2TL,
part2ndF@D0DP3, 2T ê Hpart2ndF@D0DP3, 2T + part2ndF@D0DP1, 2TL< êê Simplify8Cu2_dSe, Se + Cu H2 - dL<: Se

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Cu + Se - Cu d

,
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 - d

>
The mole fraction of selenium in the secondary phase, x_Se is equivalent toH3 - dL-1 . Whenever x_Se for the secondary Cu1-x  Sex  phase assumes its minimum

stable  value,  the  excess  copper  segregation  due  to  CuCu2Se  is  zero  and the

corresponding Cu2-d Se stoichiometry deviation d is given by:

:SolveBx ==
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 - d

, dF>
:::d Ø

-1 + 3 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x
>>>

dmin@tK_?NumericQD := WithB8x_Se = xMin_Cu2Se@tKD<, -1 + 3 x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x_Se
F
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:xMin_Cu2Se@tRefD, dmin@tRefD,:"numerical error",
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + 2 - dmin@tRefD - xMin_Cu2Se@tRefD>>80.333336, 0.0000245812, 8numerical error, 0.<<

Similarly,  whenever  x_Se for  the  secondary  Cu1-x  Sex  phase  assumes  its

maximum stable  value,  the corresponding  Cu2-d  Se  stoichiometry  deviation  d  is

given by:

dmax@tK_?NumericQD := WithB8x_Se = xMax_Cu2Se@tKD<, -1 + 3 x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x_Se
F

:xMax_Cu2Se@tMaxabD, dmax@tMaxabD,:"numerical error",
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + 2 - dmax@tMaxabD - xMax_Cu2Se@tMaxabD>>80.36, 0.222222, 8numerical error, 0.<<

The minimum  stable  composition  is  nearly  stoichiometric  Cu2 Se at high

temperature,  reflecting the limited solubility  of Se in fcc Cu (about 3 ppm at this

temperature).  The reference  state  total  Gibbs energy,  Gêêê
Cu2Se
0 , and partial  molar

quantities, Gêêê
Cu
0  and Gêêê

Se
0 , are given by evaluating these expressions at the reference

composition x_Se = xMin_Cu2Se:

G0_CuSeX@tK_D ê; tSTP § tK § tRef := G_CuSeX@tK, x_SeD ê. x_Se Ø xMin_Cu2Se@tKD
G0Cu_Cu2Se@tK_D ê; tSTP § tK § tRef :=

G_Cu_CuSeX@tK, x_SeD ê. x_Se Ø xMin_Cu2Se@tKD
G0Se_Cu2Se@tK_D ê; tSTP § tK § tRef := G_Se_CuSeX@tK, x_SeD ê. x_Se Ø xMin_Cu2Se@tKD

246



H*The free energy in the binary compound in its reference state
is associated entirely with the chemical potential of selenium *L

G0Cu_Cu2Se@tRefD
x_Se * G0Se_Cu2Se@tKD - G_CuSeX@tK, x_SeD ê.

Thread@8tK, x_Se< Ø 8tRef, xMin_Cu2Se@tRefD<D
1.06957 µ 10-7

-7.12898 µ 10-8

The domain over which a binary Cu–Se mixture is single-phase Cu2-d Se lies

between these upper and lower limits of the mixture's selenium mole fraction:

xRangeCu2Se = ListPlot@8tRef - #, xMax_Cu2Se@tRef - #D - xMin_Cu2Se@tRef - #D< & êü Range@175, 750, 5D,
PlotJoined Ø True, AxesLabel Ø 8"T@KD", "Dx"<, AxesOrigin Ø 8tSTP, 0.0257<,
PlotLabel Ø " Cu2-dSe Single-phase Homogeneity Domain

\n Cu1-xSex Binary Selenium Mole Fraction Range"D

300 400 500 600 700 800
T@KD0.026

0.028

0.03

0.032

0.034

Dx

Figure A.2 Temperature dependence of the maximum selenium binary mole fraction 
of single-phase Cu2-d Se
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Now the activity coefficients can be computed. The computation is performed

using the expression RT Log[g j  xj ]= Gêêê
j –Gêêê

j
0 flg j =xj

-1 ExpB Gêêê
j  –  Gêêê

j

0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅRT F :

g_Cu_Cu2Se@tK_, x_Se_D ê; tSTP § tK § 1357.7 :=H1 - x_SeL-1 * Exp@HG_Cu_CuSeX@tK, x_SeD - G0Cu_Cu2Se@tKDL ê HrG tKL-1DH*Ï xMin_Cu2Se§x_Se<0.346*L
g_Se_Cu2Se@tK_, x_Se_D ê; tSTP § tK § 1357.7 :=

x_Se-1 * Exp@HG_Se_CuSeX@tK, x_SeD - G0Se_Cu2Se@tKDL ê HrG tKL-1DH*Ï xMin_Cu2Se§x_Se<0.368*L8g_Cu_Cu2Se@tK, x_SeD, g_Se_Cu2Se@tK, x_SeD< ê.
Thread@8tK, x_Se< Ø 8tRef, xMin_Cu2Se@tRefD<D81.50001, 2.99997<

Note that the asymptotic activities in the reference state are correct since the

excess partial molar Gibbs energies vanish for both species:8Log@H1 - x_SeL µ g_Cu_Cu2Se@tK, x_SeDD, Log@x_Se µ g_Se_Cu2Se@tK, x_SeDD< ê.
Thread@8tK, x_Se< Ø 8tRef, xMin_Cu2Se@tRefD<D80., -5.07269 µ 10-7 <

This completes the derivation of the expressions for the functional dependence

of the energetics of copper and selenium in the secondary Cu2-d Se boundary phase

on its temperature and composition. It remains to determine the function d[T] (or

equivalently x[T] in the molar formula Cu1-x  Sex ) for the Cu2-d Se/a–CuInSe2  two-

phase equilibrium boundary composition as a function of temperature.  To do so

requires further specification of the energetics for the elements in the ternary phase,

which will be developed in the next subsection.
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Ternary compound CuInSe2

The standard  state  thermodynamic  functions  for  the ideal  stoichiometric

compound CuInSe2  are developed here, along with their connections to the structure

element model for the ternary phase. Since the exchange of copper and selenium

determine the equilibrium between Cu2-d Se and a–CIS, the partial molar Gibbs free

energy of the elements Cu and Se must be the same in both at their mutual phase

boundary [158, §6.6]. Thus the solutions determined in the previous section for Gêêê
Cu

and  Gêêê
Se  represent constraints that may be used to determine  Gêêê

In  from a knowledge

of  G[T,X,Z] for the values of X and Z of the ternary in equilibrium with the binary.

As mentioned earlier, there is good agreement in the literature that the  a–CIS

phase formed by eutectoid decomposition of the d–CIS sphalerite (disordered cubic)

phase is stoichiometric in equilibrium at the 1025-1083K invariant temperature of the

transition  with b–Cu2-d Se. In principle some solubility  of indium in the binary

copper selenide is expected, but insufficient information is available in the literature

to estimate its solubility at high temperature, and at room temperature it is found to

be immeasurable.  Thus it is assumed that the solubility of indium in  b–Cu2-d Se is

negligible at all temperatures in the range of these calculations.

A recent  study  using the  solid  electrolyte  EMF technique [173] directly

measured this equilibrium. They found the a–d phase transition to lie in the range of

1025-1050K, in the lower part of the range reported in the literature. They computed

the molar Gibbs energy of mixing (or reaction in this case) based on the net chemical

reaction 2 Cu2 Se+InVa–CuInSe2 +3 Cu in the experimental range 949-1044K,  using
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the Nernst equation to analyze their electrochemical  data. The result was given by

the expression (in J/mole) DGêêê
RXN
0 =95760-119.80*T.  They went on to calculate the

standard  Gibbs  energy  of  formation  for  a–CuInSe2  using  the  equation

Gêêê
RXN
0 =DGêêê

a
f -2DGêêê

Cu2  Se
f ,  but used an expression for the standard  Gibbs energy of

formation for stoichiometric  Cu2 Se based on older literature values.  For internal

consistency,  DGêêê
a
f  is recomputed using the  DGêêê

Cu2  Se
f  calculated  from the assessed

values detailed in the previous section and their experimental result for  Gêêê
RXN
0  given

above:

DG_CuInSe2_EMF@tK_D ê; 1050 ¥ tK ¥ 949 :=
95760 - 119.80 tK + 2 Hg_HSER@cThermo_Cu2Se_b@tKD, tKD -

2 g_HSER@cThermo_Cu@tKD, tKD - g_HSER@cThermo_Se@tKD, tKDL
This recomputation of the standard Gibbs energy of formation for a–CuInSe2

increases its value in the range of interest by about 2.7% from that calculated using

their expression of -35.6-0.1718T kJ·mole-1 :H*Barin & Knacke: Dg0f_Cu2Se=-65.68-.026 tK kJ.mole-1*L
95.76 - 0.1198 * tK + 2 * H-65.68 - .026 * tKL êê Simplify

-35.6 - 0.1718 tKHDG_CuInSe2_EMF@tKD - 1000 * H-35.6 - 0.1718 tKLL êH1000 * H-35.6 - 0.1718 tKLL ê. tK Ø tRef

0.0265269

DG_CuInSe2_EMF@tKD ê. tK Ø tRef

-221393.
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The assessed free energy expression for indium [161] can be combined with

the above free energy of formation calculated for a–CuInSe2  to compute the total

molar Gibbs energy for the stoichiometric ternary at the reference temperature using

the equation  Gêêê
a–CuInSe2

U Gêêê
Cu
SER +Gêêê

In
SER +2 Gêêê

Se
SER +DGêêê

a
f :H*The molar Gibbs energy of stoichiometric CuInSe2 at the reference temperature *L

G0_CuInSe2_ad = g_HSER@cThermo_Cu@tKD, tKD + g_HSER@cThermo_In@tKD, tKD +
2 g_HSER@cThermo_Se@tKD, tKD + DG_CuInSe2_EMF@tKD ê. tK Ø tRef

-467736.

To provide  boundary  conditions  over the entire range  of this calculation,

extension of DGêêê
a
f  to temperatures below those experimentally accessible by the EMF

method  is  required.  Very  little  relevant  experimental  data  is  available  in the

literature.  The heat capacity has been measured at low temperatures  and used to

calculate the standard state entropy [174], and was later measured over the range of

300-500K [175]. Combining these results to provide the temperature dependence of

the thermodynamic  parameters for a–CuInSe2 , and varying the value of DGêêê
a
f  at

absolute zero to match the value calculated from the EMF results at the reference

temperature gives:

cThermo_CuInSe2_aH*ê;tRef¥tK¥tSTP*L :=8-271466.0778919991, 476.405, -93.2, -14.845 * 10-3, 95750, 0, 0, 0, 0, 0<H*The Gibbs energy at the reference temperature
has been fit to match the EMF results in Pankajavelli, et al. *L

g_HSER@cThermo_CuInSe2_a, tKD - G0_CuInSe2_ad ê. tK Ø tRef

0.
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H*The heat capacity has been set to the results of Neumann, et al.*L
cP@cThermo_CuInSe2_a, tKD

93.2 -
191500
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

tK2 + 0.02969 tKH*The standard state entropy has been set to the results of Bachmann, et al.*L
s_entropy@cThermo_CuInSe2_a, tKD ê. tK Ø tSTP

157.74H*The standard state enthalpy of formation is about 8 % less than
the mean of the literature values compiled in Pankajavelli et al.,

but very near the mean of their own results from EMF *L
h_HSER@cThermo_CuInSe2_a, tKD ê. tK Ø tSTP

-241717.

For future use the excess Gibbs energy of mixing of a–CuInSe2  is defined over

the entire temperature range:

DG_CuInSe2_a@tK_D ê; tRef ¥ tK ¥ tSTP :=
g_HSER@cThermo_CuInSe2_a, tKD - Hg_HSER@cThermo_Cu@tKD, tKD +

g_HSER@cThermo_In@tKD, tKD + 2 g_HSER@cThermo_Se@tKD, tKDL
The partial molar Gibbs energy for indium (its chemical potential) in ternary

a–CuInSe2  in equilibrium with binary  Cu2-d Se at the  reference  temperature  of

1048.15K must be zero since it has been assumed that  indium is insoluble in the

binary. Using the equation:

 Ga–CuInSe2
=  Gêêê

Cu
CuSex +Gêêê

In
a–CuInSe2 +2  Gêêê

Se
CuSex fl  Gêêê

In
0 =  Ga–CuInSe2

-  Gêêê
Cu
CuSex -

 2 Gêêê
Se
CuSex = 0, and solve for the value of x to determine the stoichiometry  of the

Cu2-d Se phase in equilibrium.
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x0_Se@tK_D :=
x_Se ê. FindRoot@g_HSER@cThermo_CuInSe2_a, #D - G_Cu_CuSeX@#, x_SeD - 2 

G_Se_CuSeX@#, x_SeD ã 0, 8x_Se, 1 ê 3<D &@tKD
When  x_Se  for  the  secondary  Cu1-x  Sex  phase  assumes  this  value,  the

stoichiometry  deviation parameter of the binary phase in terms of the compound

formula Cu2-d Se is:

d00@tK_?NumericQD := WithB8x_Se = x0_Se@tKD<, -1 + 3 x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x_Se
F

:d00@tRefD, :"numerical error",
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + 2 - d00@tRefD - x0_Se@tRefD>>80.000125725, 8numerical error, 0.<<

Off@FindRoot::cvnwtD Ï Off@FindRoot::frmpD;
dx0_Se = ParametricPlot@8Evaluate@Hx0_Se@TD - xMin_Cu2Se@TDL 106D, T<,8T, tSTP, tRef<, AxesLabel Ø 8"@ppmD", "T @KD"<,

PlotLabel Ø "Cu2-dSe Stoichiometry Deviation from Minimum\n if in
Equilibrium with Stoichiometric CuInSe2", DisplayFunction Ø IdentityD;

On@FindRoot::cvnwtD Ï On@FindRoot::frmpD;Hx0_Se@#D - xMin_Cu2Se@#DL 106 &@847.431940394D
-2.09832 µ 10-8

tK000 = 847.431940394;
tK000 - 273.15

574.282

Since the predicted  equilibrium value  of the Cu1-x  Sex  phase's  selenium

content is less than the minimum required to prevent segregation of the nearly-pure

fcc copper phase, this analysis provides the first significant result of this calculation:

the  prediction  that  below  a temperature  of about  847.4K  (~575°C)  the  binary
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Cu1-x  Sex  phase cannot be in equilibrium with stoichiometric  ternary a–CuInSe2

alone. Since a three-phase equilibrium in a ternary system is a critical point and a

two-phase equilibrium between binary copper selenide and a–CIS is known to occur,

the latter must deviate from stoichiometry in equilibrium with the former at lower

temperatures.  To quantitatively model this predicted stoichiometry deviation of the

a–CIS phase, its building unit model must be developed, which is the next task.

State Vectors

The supplementary vectors required to implement a solution to the problem

are defined next. These are the reference state chemical potential vector m0  with 27

components m j
0 , the reaction extent vector x with 22 components xr , and the initial

species concentration vector c0  with 27 components c j
0 . The solution concentration

vector  c  is  implicitly  dependent   on  x  as  a  consequence  of  the  relation

c j  = c j
0 +⁄r=1

22  n jr xr .

As previously  described,  the  two-phase  Cu2-d Se/a–CuInSe2  equilibrium

values of c j  are determined first in order to provide the chemical potentials of each

species via the relation mêê j = mêê
j
0 +RT ln[c j ]. These solution values become the basis for

the standard state vectors, c0  and m0 , for the solution of the a–CIS single phase and

CIS a/b  two phase equilibria.  To avoid  unnecessarily  complicated  notation,  the

initial state vectors for the first problem will be labeled with two zeros and the

second by one zero in the Mathematica code, but distinguished in this discussion text

only by context.
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Initial Concentration Vector

The initial configuration must be determined by a function of the independent

thermodynamic variables T, X, and Z only. The final building unit concentrations in

c0  must  also  correctly  reflect  the atomic  stoichiometry.   For this  purpose their

connection via sum rules with respect to the strictly conserved subset (the first four

elements:  Cu, In, Se, q) of the basis set a is developed.  The function mx, defined

below, operates on a species concentration  vector and returns the quasimolecule

formula numbers and charge. This list of four numbers each equals the number of

moles of the corresponding atomic or electronic  basis element in one mole of the

quasimolecule (M=1). The elements of the list mx[c] are multinary generalizations of

the factors y2 and 1+y1 used in the preceding sublattice solution model for the binary

compound Cu1+y1  Sey2 .   It will use be used to verify the internal consistency of  c0

and to switch between the partial molar and building unit normalizations as required.

mx@c_?VectorQ, D_D ê; Length@cD ã Dimensions@DDP2T := Take@D, 4D.c
ax@c_?VectorQ, D_D ê; Length@cD ã Dimensions@DDP2T :=

mx@c, DD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Plus üü mx@c, DD

The atomic fraction function  ax,  also operates  on a species  concentration

vector and for this multinary system returns the list of values corresponding to the

atomic fractions x_Se and 1-x_Se, the variable(s)  in the partial  molar Gibbs energy

functions for the binary Cu1-x  Sex . As in the binary case, since the fractions must

sum to one, the number of independent parameters in the vector ax is Length[ax]-1.
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This  function  is  distinct  from  the  function  that  return  the  atomic  fractions

corresponding to the thermodynamic variables X and Z:

xAt@X_, Z_D := WithB8nAt = 2 H1 + XL + Z H3 + XL<, : 2 X
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
nAt

,
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
nAt

,
Z H3 + XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

nAt
>F

The atomic fraction function xAt,  given the values of the thermodynamic

variables X and Z, returns the list of values corresponding to the atomic

fractions x_Se and 1– x_Se, the variable(s) in the partial  molar Gibbs energy

functions for the binary Cu1-x  Sex . As in the binary case, since the fractions must

sum to one, the number of independent parameters in the vector xAt is Length[ax]– 1.

These functions are used to define another function, which return the values

of X and Z for any concentration  vector supplied as its argument,  although the

formula matrix for that vector's species must also be specified:

cXZ@c_?VectorQ, D_D ê; Length@cD ã Dimensions@DDP2T :=: mx@c, DDP1T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
mx@c, DDP2T ,

2 mx@c, DDP3T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
mx@c, DDP1T + 3 mx@c, DDP2T >

These  functions  are  applied  to the  basis  set elements  for the  two-phase

Cu2-d Se/a–CuInSe2  equilibrium problem, cE0. The results are used to compute the

values of X and Z for each cluster. Since every possible configuration that can be

expressed in this model is a non-negative  linear combination of the cluster basis

elements, these results can be analyzed to determine the limits on X and Z and used

to avoid evaluation of this model outside its limits of applicability.
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clusterXZ0 = Module@8im27<, With@8im27 = IdentityMatrix@27D <,
Array@Flatten@8#, cE0P#T, cXZ@im27P#T, D0D<D &, 22DDD;

c0Limits = Module@8x00min, x00max, z00min, z00max<, With@8x00min = Min@%PAll, 3TD, x00max = Max@%PAll, 3TD, z00min = Min@%PAll, 4TD,
z00max = Max@%PAll, 4TD<, 8x00min, x00max, z00min, z00max<DD: 7

ÅÅÅÅÅÅÅÅÅ
11

,
7
ÅÅÅÅÅ
5

,
11
ÅÅÅÅÅÅÅÅÅ
12

,
8
ÅÅÅÅÅ
7

>
It is simple to construct a list of those clusters that match these limiting values:8cE0P#T, #< & êüHJoin@Take@HPosition@clusterXZ0PAll, 3T, #D & êü c0LimitsLPAll, All, 1T, 2D,

Drop@HPosition@clusterXZ0PAll, 4T, #D & êü c0LimitsLPAll, All, 1T, 2DDL;
Array@FlattenAt@8c0LimitsP#T, %P#T<, 2D &, Length@c0LimitsDD êê

TableFormH* limit cluster index *L
7ÅÅÅÅÅÅÅ11 H2VCu ∆ InCu La 22

7ÅÅÅÅÅ5

CuIn
x

CuIn
£

CuIn
££

7
8
9

11ÅÅÅÅÅÅÅ12
VSe

x

VSe
‰‰

14
15

8ÅÅÅÅÅ7

VIn
x

VIn
‰

VIn
‰‰

VIn
‰‰‰

10
11
12
13

The initial concentration vector c0  for any permissible X and Z values can be

constructed  entirely  of the  species  H2VCu ∆ InCu La ,  CuIn ,  VSe ,  and VIn .  The

maximum allowed value of X in the overall problem is 1, and since both CuIn  and

VIn  have X > 0, only the latter, which has the maximum Z value of any cluster, is

required to maximize the possible range of Z for this restricted range of X. Since it is

also electrically neutral, c0  will be initialized using a basis vector set that is further
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restricted to include only the normal valence forms of H2VCu ∆ InCu La , VSe , VIn ,

and CISa .

c000basis = 81, 10, 14, 22<;
clusterXZ0P#T & êü c000basis êê TableFormH*index cluster X Z *L

1 CISa 1 1

10 VIn
x 6ÅÅÅÅÅ5

8ÅÅÅÅÅ7

14 VSe
x 1 11ÅÅÅÅÅÅÅ12

22 H2VCu ∆ InCu La
7ÅÅÅÅÅÅÅ11 1

Inspecting the table, it is clear that the anion/cation ratio of VSe
ä  is Z = 11/12

and it and its ionized form are the only defect clusters with a ratio less than 1. This

establishes the minimum possible value of Z in this model. Similarly, the only cluster

with an X value of less than 1 is H2VCu ∆ InCu La . The first correction to c0  will be

made by combining only CISa  and H2VCu ∆ InCu La  to achieve the specified value of

X, then Z will be adjusted by exchanging CISa  for appropriate linear combinations of

the others.

The stoichiometry matrix  formalism is applicable to this solution,  with the

formula  matrix  reduced  to the restricted c0  basis  and the conserved  quantities

restricted to the first four, the set {Cu, In, Se, q}:

D000 = Transpose@Transpose@Take@D0, 4DDP#T & êü c000basisD;
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cE0P#T & êü c000basis
D000 êê MatrixForm8CISa , VIn

x , VSe
x , H2VCu ∆ InCu La <i

k
jjjjjjjjjjjjjj

2 6 6 7
2 5 6 11
4 12 11 20

0 0 0 0

y
{
zzzzzzzzzzzzzz

formula@i_, D000D := 8cE0P#T & êü c000basis, Take@a, 4D .D000<PAll, iT
Array@formula@#, D000D &, Length@c000basisDD êê TableForm

CISa 2 Cu + 2 In + 4 Se
VIn

x 6 Cu + 5 In + 12 Se

VSe
x 6 Cu + 6 In + 11 SeH2VCu ∆ InCu La 7 Cu + 11 In + 20 Se

n000 = Transpose@NullSpace@D000DD;
MatrixForm@n000Di

k
jjjjjjjjjjjjjj

-67

8
12
2

y
{
zzzzzzzzzzzzzz

rxn@i_, n000D := n000PAll, iT.HcE0P#T & êü c000basisL
Array@rxn@#, n000D &, Dimensions@n000DP2TD êê TableForm

-67 CISa + 8VIn
x + 12VSe

x + 2 H2VCu ∆ InCu La

With 4 species and 3 nonvanishing conserved quantities, the only reaction that

leaves both X and Z unchanged is the one shown above. There are also two  reactions

between CISa  and the others that leave X unchanged.  These are:
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H* using c000basisØ8c1,c10,c14,c22<,
are the X' s for the vectors 8c1,0,0,0< and 80,0,c14,0< always equal? *L

cXZ@8c1, 0, 0, 0<, D000DP1T === cXZ@80, 0, c14, 0<, D000DP1T
TrueH* how does Z vary for their linear combination? *L

cXZ@81 - c14, 0, c14, 0<, D000D êê Simplify:1,
4 + 7 c14
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 + 8 c14

>H* what is the extremal value of Z? *L %P2T ê. c14 Ø 1

11
ÅÅÅÅÅÅÅÅÅ
12H* does any normalized linear combination of the vectors 80,c10,0,0< and80,0,0,c22< always furnish the same X value as 8c1,0,0,0<? *LSolve@

cXZ@8c1, 0, 0, 0<, D000DP1T == cXZ@8c1 - c10 - c22, c10, 0, c22<, D000DP1T, 8c22<D::c22 Ø
c10
ÅÅÅÅÅÅÅÅÅÅÅÅ

4
>>H* how does Z vary for that linear combination? *L

cXZ@81 - c10 - c22, c10, 0, c22<, D000D ê. % êê Simplify::1,
8 + 24 c10
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 + 21 c10

>>H* what is the extremal value of Z for that linear combination? *L %P1, 2T ê. c10 Ø 8 ê 10

34
ÅÅÅÅÅÅÅÅÅ
31

These results provide all the additional information required to correctly limit

the range of X and Z, and to initialize c0 . The latter is set to a linear combination of

the  four  vectors  {c1, 0, 0, 0},  {0, 0, 0, c22},  {0, 0, c14, 0},  and  {0, c10, 0, c10/4}

determined by the values of X and Z. The limits list is redefined so that both the

minimum and maximum permissible  Z values are unity at the minimum X value

where the system can only consist of c22, which is H2VCu ∆ InCu La .

260



c0Limits = ModuleB8x00min, x00max, z00min, z00max<,
WithB:x00min = 7 ê 11, x00max = 1, z00min =

11
ÅÅÅÅÅÅÅÅÅ
12

+
11 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

48
,

z00max =
34
ÅÅÅÅÅÅÅÅÅ
31

-
33 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

124
>, 8x00min, x00max, z00min, z00max<FF: 7

ÅÅÅÅÅÅÅÅÅ
11

, 1,
11
ÅÅÅÅÅÅÅÅÅ
12

+
11 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

48
,

34
ÅÅÅÅÅÅÅÅÅ
31

-
33 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

124
>H* test examples for 7ê11§X§1 Ï Z§1 *L

Solve@8X0, Z0< ã cXZ@8c1 - c14, 0, c14, 1 - c1<, D000D, 8c1, c14<D;8cXZ@8c1 - c14, 0, c14, 1 - c1<, D000D,
mx@8c1 - c14, 0, c14, 1 - c1<, D000D, 8c1 - c14, 0, c14, 1 - c1<< ê. %;

% ê. Thread@8X0, Z0< Ø 81, 1<D êê Simplify
%% ê. Thread@8X0, Z0< Ø 87 ê 11, 1<D êê Simplify
%%% ê. Thread@8X0, Z0< Ø 815 ê 22, 1<D êê Simplify
%%%% ê. Thread@8X0, Z0< Ø 89 ê 11, 23 ê 24<D êê Simplify
%%%%% ê. Thread@8X0, Z0< Ø 81, 11 ê 12<D êê SimplifyH* 8X,Z<,8molesCu,In,Se,q<,8c1,c10,c14,c22< *L8881, 1<, 82, 2, 4, 0<, 81, 0, 0, 0<<<::: 7

ÅÅÅÅÅÅÅÅÅ
11

, 1>, 87, 11, 20, 0<, 80, 0, 0, 1<>>::: 15
ÅÅÅÅÅÅÅÅÅ
22

, 1>, : 24
ÅÅÅÅÅÅÅÅÅ
5

,
176
ÅÅÅÅÅÅÅÅÅÅÅÅ
25

,
324
ÅÅÅÅÅÅÅÅÅÅÅÅ
25

, 0>, : 11
ÅÅÅÅÅÅÅÅÅ
25

, 0, 0,
14
ÅÅÅÅÅÅÅÅÅ
25

>>>::: 9
ÅÅÅÅÅÅÅÅÅ
11

,
23
ÅÅÅÅÅÅÅÅÅ
24

>, :6,
22
ÅÅÅÅÅÅÅÅÅ
3

,
161
ÅÅÅÅÅÅÅÅÅÅÅÅ
12

, 0>, : 1
ÅÅÅÅÅÅÅÅÅ
12

, 0,
7

ÅÅÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅÅ
3

>>>:::1,
11
ÅÅÅÅÅÅÅÅÅ
12

>, 86, 6, 11, 0<, 80, 0, 1, 0<>>

261



H* test examples for 7ê11§X§1 Ï Z¥1 *L
Solve@8X0, Z0< ã cXZ@81 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<, D000D, 8c10, c22<D;8cXZ@81 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<, D000D,

mx@81 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<, D000D,81 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<< ê. %;
% ê. Thread@8X0, Z0< Ø 81, 1<D êê Simplify
%% ê. Thread@8X0, Z0< Ø 87 ê 11, 1<D êê Simplify
%%% ê. Thread@8X0, Z0< Ø 815 ê 22, 1<D êê Simplify
%%%% ê. Thread@8X0, Z0< Ø 820 ê 22, 33 ê 31<D êê Simplify
%%%%% ê. Thread@8X0, Z0< Ø 81, 34 ê 31<D êê SimplifyH*8X,Z<,8molesCu,In,Se,q<,8c1,c10,c14,c22< *L8881, 1<, 82, 2, 4, 0<, 81, 0, 0, 0<<<::: 7

ÅÅÅÅÅÅÅÅÅ
11

, 1>, 87, 11, 20, 0<, 80, 0, 0, 1<>>::: 15
ÅÅÅÅÅÅÅÅÅ
22

, 1>, : 24
ÅÅÅÅÅÅÅÅÅ
5

,
176
ÅÅÅÅÅÅÅÅÅÅÅÅ
25

,
324
ÅÅÅÅÅÅÅÅÅÅÅÅ
25

, 0>, : 11
ÅÅÅÅÅÅÅÅÅ
25

, 0, 0,
14
ÅÅÅÅÅÅÅÅÅ
25

>>>::: 10
ÅÅÅÅÅÅÅÅÅ
11

,
33
ÅÅÅÅÅÅÅÅÅ
31

>, : 2480
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
483

,
2728
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
483

,
1892
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
161

, 0>, : 403
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1449

,
688

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1449

, 0,
358

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1449

>>>:::1,
34
ÅÅÅÅÅÅÅÅÅ
31

>, : 31
ÅÅÅÅÅÅÅÅÅ
5

,
31
ÅÅÅÅÅÅÅÅÅ
5

,
68
ÅÅÅÅÅÅÅÅÅ
5

, 0>, :0,
4
ÅÅÅÅÅ
5

, 0,
1
ÅÅÅÅÅ
5

>>>
The total quantities of each of the three elements and charge in one mole of the

quasimolecular  species   Cu 2 XÅÅÅÅÅÅÅÅÅÅ1+X
 In 2ÅÅÅÅÅÅÅÅÅÅ1+X

 Se Z  H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X
  must  be  distributed  among  the

structural species via the initial concentration vector. The foregoing calculations were

performed on vectors normalized to unity sum, so they correctly reflect the values of

X and Z as well as the corresponding proportions of the different clusters, but not

this required overall normalization of c0 . This can be demonstrated  by comparing

the  mole  numbers  from  the  last  example  with  the  quasimolecule's  formula

coefficients for the same values of X and Z:
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:%P1, 2T, : 2 X
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + X

,
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + X

,
Z H3 + XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + XL , 0>> ê. Thread@8X, Z< Ø %P1, 1TD

ArrayB %P2, #T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
%P1, #T &, 3F

:: 31
ÅÅÅÅÅÅÅÅÅ
5

,
31
ÅÅÅÅÅÅÅÅÅ
5

,
68
ÅÅÅÅÅÅÅÅÅ
5

, 0>, :1, 1,
68
ÅÅÅÅÅÅÅÅÅ
31

, 0>>: 5
ÅÅÅÅÅÅÅÅÅ
31

,
5

ÅÅÅÅÅÅÅÅÅ
31

,
5

ÅÅÅÅÅÅÅÅÅ
31

>
Clear@X0, Z0, c1, c10, c14, c22D

The latter result above shows how the normalization  factor for the cluster

fraction vector can be calculated as a ratio of any one of the quasimolecule formula

numbers and the atomic mole numbers for the cluster fraction vector computed

using the function mx[c000].

This completes  the derivation  of the mathematical  expressions  needed to

initialize  the  principal  components  of the  concentration  vector c0 .  To avoid

logarithmic divergence of the entropies associated with their chemical potentials and

still approximate  their infinite dilution reference  state, the initial concentration  of

every lattice species in the full basis cE0 must be set to at least a minute value (except

DN, which has no entropy).  The formula matrix  D0  and reaction stoichiometry

matrix n0 are used to distribute these. Linear combinations of any of the reactions

represented  by the  columns  of n0  may be added to the  initial  vector  without

changing any of the conserved quantities, although as derived above a limited set of

reactants  is  available  to draw upon for any permissible  value of X and Z.

A particularly useful linear combination for this purpose is derived as follows:
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Plus üü Rest@Array@rxn@#, n0D &, 22DD êê Simplify
% - rxn@1, n0D êê Simplify8Length@%%D, Length@%D<

Cu2_dSe + h‰ + Cui ∆VCu + CuIn ∆ InCu + VCu ∆ InCu +HVCu ∆ InCu L‰ - 54 CISa + 3 d CISa + CuCu2Se + Cui
x + Cui

‰ +
CuIn

x + 2 InCu
x + InCu

‰ + InCu
‰‰ - 13VCu

x - dVCu
x + VIn

x + VIn
‰ +

VIn
‰‰ +VIn

‰‰‰ + VSe
‰‰ + H2VCu ∆ InCu La + e£ + CuIn

£ + 10VCu
£ + CuIn

££

Cu2_dSe + h‰ - DN + Cui ∆VCu + CuIn ∆ InCu + VCu ∆ InCu +HVCu ∆ InCu L‰ -
125 CISaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
+ 3 d CISa + CuCu2Se + Cui

x + Cui
‰ +

CuIn
x + InCu

x + InCu
‰ + InCu

‰‰ - 11VCu
x - dVCu

x + VIn
x + VIn

‰ + VIn
‰‰ +

VIn
‰‰‰ + 2VSe

x +VSe
‰‰ + H2VCu ∆ InCu La + e£ + CuIn

£ + 10VCu
£ + CuIn

££827, 29<H* remove CuCu2Se *L
Plus üü Rest@Array@rxn@#, n0D &, 22DD - rxn@1, n0D + 7 rxn@4, n0D - rxn@5, n0D êê Simplify
Length@%D

8 Cu2_dSe + h‰ - DN + Cui ∆VCu + CuIn ∆ InCu + VCu ∆ InCu +HVCu ∆ InCu L‰ -
245 CISaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
+ 24 d CISa + Cui

x + Cui
‰ + CuIn

x +

InCu
x + InCu

‰ + InCu
‰‰ + 2VCu

x - 8 dVCu
x + VIn

x + VIn
‰ +VIn

‰‰ +VIn
‰‰‰ +

9VSe
x + VSe

‰‰ + H2VCu ∆ InCu La + e£ + CuIn
£ + 10VCu

£ + CuIn
££

28

x000init = Array@1 &, 22D - 2 Array@KroneckerDelta@1, # D &, 22D +
7 Array@KroneckerDelta@4, # D &, 22D - Array@KroneckerDelta@5, # D &, 22D8-1, 1, 1, 8, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

Plus üü Hx000init Array@rxn@#, n0D &, 22DL êê Simplify
Length@%D

8 Cu2_dSe + h‰ - DN + Cui ∆VCu + CuIn ∆ InCu + VCu ∆ InCu +HVCu ∆ InCu L‰ -
245 CISaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
+ 24 d CISa + Cui

x + Cui
‰ + CuIn

x +

InCu
x + InCu

‰ + InCu
‰‰ + 2VCu

x - 8 dVCu
x + VIn

x + VIn
‰ +VIn

‰‰ +VIn
‰‰‰ +

9VSe
x + VSe

‰‰ + H2VCu ∆ InCu La + e£ + CuIn
£ + 10VCu

£ + CuIn
££

28
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The final expression above shows that 26 of 27 basis elements in cE0 are

represented  in the preceding expression  (CuCu2Se  is  omitted),  which is  a linear

combination of all 22 reactions (except five, which generates CuCu2Se ) with extents

given by the vector x000init, and which consumes only CISa  and DN, yielding every

other species  in cE0  (except  CuCu2Se )  as a reaction  product.   By  appropriately

adjusting the limits on Z the distribution of initial clusters from the restricted basis

set c000basis can be constrained to always retain enough CISa  to permit this net

reaction to proceed sufficiently to populate these "trace" species. The appearance of

DN as a reactant is a reflection of the need to expand the lattice to accomodate the

many vacancies created by this reaction. Note that the amount of CuCu2Se  is set to the

minimum stable value of d for the Cu2-d Se  phase at the reference temperature, and

the Cu2_dSe species will also be initialized to that composition.

The reaction extent vector x000init will be scaled by a factor of  1µ10-26  so that

the concentrations of the "trace" species and total quantity of  CISa  involved in those

reactions correspond to less than a single cluster per mole. These adjustments are

computed  using  the expression  cj  = cj
0 + ⁄r=1

22  n jr xr .  The  foregoing  results  are

applied to define the following function of Z, which returns the initial concentration

vector c0  for X=1:

c0Limits = ModuleB8x00min, x00max, z00min, z00max<,
WithB:x00min =

14011
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
22000

, x00max = 1, z00min =
11
ÅÅÅÅÅÅÅÅÅ
12

+
11 H1 - X + 5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ10000 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

48
,

z00max =
34
ÅÅÅÅÅÅÅÅÅ
31

-
33 H1 - X + 5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ10000 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

124
>, 8x00min, x00max, z00min, z00max<FF;
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c0Limits ê. X Ø c0LimitsP1T H* no Z deviation possible in model at minimum X *L8c0LimitsP3T, c0LimitsP4T< ê. X Ø 1 H* maximum Z deviation is possible for X=1 *L: 14011
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
22000

, 1, 1, 1>: 29337
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32000

,
271967
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
248000

>
% êê N H* approximate maximum limits of Z deviation *L80.916781, 1.09664<
Solve@81, Z< ã cXZ@8c1 - c14, 0, c14, 1 - c1<, D000D, 8c1, c14<D;88c1 - c14, 0, c14, 1 - c1<, mx@8c1 - c14, 0, c14, 1 - c1<, D000DP1T-1< ê. %:::1 +

4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0, -

4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0>,

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 24 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z + 2 I1 + 4 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z M >>

Solve@81, Z< ã cXZ@81 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<, D000D, 8c10, c22<D;881 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<,
mx@81 - 5 c10 ê 4 - c22, c10, 0, c22 + c10 ê 4<, D000DP1T-1< ê. %:::1 +

10 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H-8 + 7 ZL , -

8 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H-8 + 7 ZL , 0, -

2 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H-8 + 7 ZL >,

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 62 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 H-8+7 ZL + 2 I1 + 10 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 H-8+7 ZL M >>
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c000@Z_D ê; 29337
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32000

§ Z § 1 :=

ModuleB8c000<, WithB:c4Zminus = :1 +
4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0, -

4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0>,

mCuInv1 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 24 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z + 2 I1 + 4 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z M >, c000 = Plus üü MapThread@

ReplacePart@Array@0 &, Length@cE0DD, #1, #2D &, 8c4Zminus, c000basis<D;
c000 = ReplacePart@c000, -dmin@tRefD x000initP4T 1*^-26, 23D;
c000 = mCuInv1 Hc000 + Hn0 ê. d Ø dmin@tRefDL.x000init 1*^-26L;
ReplacePart@c000, 1, 27DFF

c000@Z_, tK_D ê; 1 < Z §
271967
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
248000

:= ModuleB8c000<,
WithB:c4Zplus = :1 +

10 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H-8 + 7 ZL , -

8 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H-8 + 7 ZL , 0, -

2 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 H-8 + 7 ZL >,

mCuInv2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 62 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 H-8+7 ZL + 2 I1 + 10 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 H-8+7 ZL M >, c000 = Plus üü MapThread@

ReplacePart@Array@0 &, Length@cE0DD, #1, #2D &, 8c4Zplus, c000basis<D;
c000 = ReplacePart@c000, dmin@tRefD x000initP4T 2*^-26, 23D;
c000 = mCuInv2 Hc000 + Hn0 ê. d Ø dmin@tRefDL.x000init 1*^-26L;
ReplacePart@c000, 1, 27DFF
Note that the extra lattice site reservoir DN is set to 1 mole by this function

that provides for the specified Z value (since X = 1) the initial c0  that will be used in

the equation cj  = cj
0 + ⁄r=1

22  n jr xr  to solve the Gibbs-Duhem equation for the two-

phase Cu2-d Se/a–CuInSe2  equilibrium problem. For that problem X has been set to

one, but once that solution is complete, many of the equations derived above will be

used to derive c0  for the subsequent solution of the CIS a–b two phase equilibrium.

This is an example showing the initial quasichemical species concentration vector for

the mixture corresponding to exactly stoichiometric CuInSe2 :
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c000@1D êê N80.5, 9.99902 µ 10-27 , 5. µ 10-26 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 ,
5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 4.5 µ 10-26,
5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 , 5. µ 10-27 ,
5. µ 10-27 , 5. µ 10-27 , -9.83246 µ 10-31, 4. µ 10-26, 5. µ 10-27 , 5. µ 10-27 , 1.<

1 ê 2 - c000@1DP1T êê N H* total CISa deviation from 1ê2 *L
0.81, 1< - cXZ@c000@1D, D0D ê. d Ø 0H* deviation from X=Z=1 *L81, 1< - cXZ@c000@1D, D0D ê.

d Ø 1H* the value of d is irrelevant to the normalization *L80., 0.<80., 0.<
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Reference State Chemical Potential Vector

The total chemical potential of a mole of the normal lattice cluster, CISa ,  is

given by GaCIS
CL = GCuInSe2

SER + DGaCIS
MIX . The excess Gibbs energy for the normal lattice

cluster,  CISa ,  is  not  known a priori,  nor  can it  be  directly  computed  from the

boundary conditions derived previously for a–CuInSe2 , since those values are based

on experimental data measured for the (presumably) stoichiometric compound in its

defective equilibrium state. Instead this becomes a parameter which will be set by

requiring that the equilibrium solution gives a predicted total Gibbs energy that

matches Ga–CuInSe2
 when X = Z = 1. Note also that unlike every other cluster species 

in this model, the reference state for CISa  is its state of pure aggregation, whereas the

reference state for the other defects is their infinite dilution in a solvent lattice of

CISa . The unknown specific molar free energy of the ideal CISa  cluster is expressed

in terms  of its deviation  from the empirical  function  for  the same quantity  of

equilibrium (defective) a–CIS:

formula@1, DD8CISa , 2 Cu + 2 In + 2 M1 + 2 M3 + 4 Se + 4 X6 + 8I<
g0acl@tK_D := 2 g_HSER@cThermo_CuInSe2_a, tKD + Dg0acl@tKDH* the specific molar free energy for the ideal cluster as a pure

substance in terms of its deviation from the empirical data *L
The total chemical  potential  of a mole of each defective CIS building unit

cluster is computed on the basis of its deviation from that of the same quantity of

non-defective CIS, and is given by G j
CL =  G j

0 + DG j
CL . The reference state free energy

is G0@mD = m *GaCIS , where m is the number of 16-site clusters in the given defect
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cluster type j and GaCIS  has been computed above. Combining these expressions and

separating out the  effect of changing the total number of atoms yields:

G j
CL = m * HGCuInSe2

SER + DGaCIS
MIX L + DG j

SER + DH j
XS + DS j

MIX .  

Note  that  this  approach  insures  the  total  Gibbs  energy  of any possible

combination of clusters with the same total number of lattice sites is a sum

of that of an equivalent number of CISa  plus the deviation due to the defects.

This satisfies  assumption  III in the formulation  of the problem.  The  next task is to

calculate  DG j
MIX  for each defect cluster type j.

The first term in  DG j
MIX  for each defect cluster type j is the deviation of the

elemental contribution from m *GCuInSe2
SER , DG j

SER , computed as the cluster's elemental

stoichiometry deviation from m * CISa  times the SER molar Gibbs energies of those

elements. This quantity is derived for each of the lattice clusters in the basis abL. The

secondary  phase  chemical  potentials  have  already  been  derived  and  are  not

computed on the basis of this building unit model.H* the list of unit cell multiplicities for each of the defect clusters *L
mcl = Array@ncLPPosition@abL, cEP#TDP1, 1TT &, 25D81, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 3, 5<
g0cl@tK_D := mcl g0acl@tKD ;H* the Hdefect-freeL reference

state free energy for the supercluster Has a pure substanceL
within which each corresponding defect will be embedded *L

Dg0cl_HSER@tK_D := Hg_HSER@#, tKD & êü a_thermo@tKDL.Transpose@
Drop@Transpose@Take@D, 3DD, -3D - mcl Array@Take@D, 3DPAll, 1T &, 25DDH* Hg_HSER@#,tKD&êüa_thermo@tKDL.Take@D,3D returns the
length 25 vector of clusters' specific molar G0_SER' s *L
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Transpose@8Drop@cE, -3D, Dg0cl_HSER@tSTPD<D êê TableForm

CISa 0.
VCu

x 9883.67

VCu
£ 9883.67

InCu
x -7305.96

InCu
‰ -7305.96

InCu
‰‰ -7305.96

CuIn
x 7305.96

CuIn
£ 7305.96

CuIn
££ 7305.96

VIn
x 17189.6

VIn
‰ 17189.6

VIn
‰‰ 17189.6

VIn
‰‰‰ 17189.6

VSe
x 12602.1

VSe
‰‰ 12602.1

Cui
x -9883.67

Cui
‰ -9883.67

Cui ∆VCu 0.
CuIn ∆ InCu 0.

VCu ∆ InCu 2577.71HVCu ∆ InCu L‰ 2577.71H2VCu ∆ InCu La 12461.4H2VCu ∆ InCu L b15 12461.4H2VCu ∆ InCu L b13 12461.4H2VCu ∆ InCu L b25 24922.8

The excess enthalpies, DH j
XS , are derived immediately for the defect clusters

by molar renormalization  of the published atomic-scale  formation  enthalpies  for

individual  lattice  defect  species  calculated  by  ab-initio  quantum  mechanical

calculations and reported in [70, Tables II and IV] and (for X6 sublattice defects) [78].

The values included for the VCu ∆ InCu  and HVCu ∆ InCu L‰  defects  are calculated

271



here from unpublished calculations (S.-H. Wei) that the interaction energy for the add-

ition of the first copper vacancy is -3.10 eV, much greater than that for the addition of the

second that completes the NDC. This leads to a formation enthalpy value of 0.84 eV for

VCu ∆ InCu . Note that there is no entry in this list for the normal lattice cluster, CISa .

Because of their choice of the VBM as the zero of electromagnetic  potential,

that  contribution  is  subtracted  from the  enthalpy  of positively  charged  defects,

whereas it is added to the negative defects' formation enthalpy. The energies of the

delocalized  charge  carriers  must  be consistent  with this  choice  of VBM as the

potential  reference.  Excitation of an electron from the VB to the CB requires an

amount  of energy equal to the forbidden gap, and since the electron's  charge is

negative, the energetic contribution to its enthalpy is positive, just as with the other

negatively charged species. A hole is located at the VBM so long as the carriers are

under low-injection (as in equilibrium), so the electromagnetic potential contribution

to  its  energy  vanishes.  Likewise  since  the  ionization  transition  level  of  the

VCu ∆ InCu  neutral was estimated at Ec - 0.2 = 0.84 eV  (exactly equal to its formation

enthalpy), the reference enthalpy of HVCu ∆ InCu L‰  vanishes.

Hf_defect_CIS := 80.6, 0.63, 3.34, 2.55, 1.85, 1.54, 1.83, 2.41, 3.04, 3.21, 3.62,
4.29, 3.0, 2.06, 2.88, 2.04, 1.52, 0.65, 0.84, 0, 0.33, 0, -0.13, -0.12, eG, 0<H*the conversion factor from eV Ø Joules*L

eV2Joule = First@Convert@1 ElectronVolt, JouleDD
1.60218 µ 10-19

DhXSab = Join@80<, Hf_defect_CIS * nAvo * eV2JouleD;
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Transpose@8Drop@cE, -1D, DhXSab<D êê TableForm

CISa 0
VCu

x 57891.2

VCu
£ 60785.8

InCu
x 322261.

InCu
‰ 246038.

InCu
‰‰ 178498.

CuIn
x 148588.

CuIn
£ 176568.

CuIn
££ 232530.

VIn
x 293316.

VIn
‰ 309718.

VIn
‰‰ 349277.

VIn
‰‰‰ 413922.

VSe
x 289456.

VSe
‰‰ 198760.

Cui
x 277878.

Cui
‰ 196830.

Cui ∆VCu 146658.
CuIn ∆ InCu 62715.5

VCu ∆ InCu 81047.7HVCu ∆ InCu L‰ 0H2VCu ∆ InCu La 31840.2H2VCu ∆ InCu L b15 0H2VCu ∆ InCu L b13 -12543.1H2VCu ∆ InCu L b25 -11578.2

e£ 96485.4 eG
h‰ 0

The atomic species are presumed to have no internal  structure that would

effect  their  entropy  other  than  unpaired  electron  spin  degeneracy  [278].  The

configurational  excess  entropies  are  calculated  using  a  simple  mixing  model

incorporating Hagemark's nearest-neighbor site exclusion correction [279], adapted to

273



this three-sublattice  model. The rationale for this is that a set of complexes has been

incorporated whose interaction enthalpies have been independently calculated, so to

permit point defects to occupy adjacent sites without any corresponding change in

their energies due to those interactions would circumvent the value of incorporating

their complexes as independent structural species. Likewise, if the exclusion zone for

defect complexes is too small to incorporate all the nearest  neighboring sublattice

sites  on  which  the  complex  resides,  the  statistical  ensemble  will  include

configurations that do not properly reflect the energetics.

This is  implemented  here  by computing  the configurational  entropy

for each lattice defect on a cluster comprised of an integral number of the 16-site

(including the I sublattice) clusters identical to the 8-atom, 16-bond cluster used for

published binary zincblende alloy cluster expansion calculations  [118, figure 4.12],

which in one defect-free configuration is the primitive unit cell of the chalcopyrite

structure,  CISa .  The allowable  lattice positions of a defect  within its cluster are

restricted to those sufficiently interior to prevent a defect on a neighboring lattice

cluster  from approaching  close  enough  to  interact  with  it  in a  configuration

equivalent to complex formation. These are the considerations that led to the integers

in the list mcl, which give the number of primitive unit cells in the cluster associated

with the lattice site defects in the basis set abL. The total entropy of the lattice is then

calculated using a cluster expansion.

The specific molar mixing entropy deviation for each cluster type, DS j
MIX , is

initialized to zero, then the computed internal configurational  entropy change for
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each defect cluster is added. This is divided into two parts by DS j
MIX = DS j

IDL + DS j
XS .

First the partition  functions  for the species in a normal defect-free  48-site lattice

cluster are computed independently  for each sublattice,  because of their different

multiplicities:

DsIDLcl = Array@0 &, 25D;
DsXScl = Array@0 &, 25D;

Surrounding every point defect on a normally-occupied site are 4 atoms in its

first counterion coordination shell, and 12 in its second coordination shell (which

contains only the same sublattice type: M or X) for a total of 16 atoms plus the defect.

Thus if the point defect itself is restricted to a single site interior to the cluster, the 48-

site exclusion zone is sufficient to guarantee that all these will be defect-free (which is

not true for the next smaller 32-site, 16-atom cluster). There are six M1 and six M2

sublattice sites in each 48-site cluster. Since the metal vacancy is restricted to only one

site  on its  sublattice  within  the  cluster,  there  is  no additional  configurational

degeneracy associated with its location.  Similarly, the five remaining atoms on the

same sublattice have only five lattice sites to occupy, so their is no change in the total

configurational entropy. Identical arguments pertain to metal antisite defects.

The internal configurational  entropy for selenium vacancy defect clusters do

not vanish,  however.  The VSe  defect  is  not  involved  in any defect  complexes

entering into this model, in contrast to every other point defect considered. Thus it

has no exclusion zone associated with it and is permitted to occupy any X6 site in its

associated cluster, of which there are 12. In the reference state there are 12 selenium
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atoms to occupy those 12 sites, so there is no entropy contribution due to those

selenium atoms' configuration on the X6 sublattice.  The 11 selenium atoms in the

cluster associated with the selenium vacancy can occupy any of the 12 sites so their

configurational entropy contribution is Boltzmann's constant times the logarithm of

the binomial 
ikjjj12
11

y{zzz . This yields for a mole of either VSe
ä  or VSe

‰‰  clusters:

sConfig48clXV = rG Log@Binomial@12, 11DD;
DsIDLcl = DsIDLcl + Plus üüHReplacePart@Array@0 &, Length@DsIDLclDD, sConfig48clXV, #1D & êü 814, 15<L;8cEP#T, DsIDLclP#T< & êü 814, 15<88VSe

x , 20.6607<, 8VSe
‰‰ , 20.6607<<H* This is equivalent to calculating the number of sites on

which the one vacancy could be located: *L Binomial@12, 11D === 12

True

The internal  configurational  entropy  for  the  sole  interstitial  point  defect

included in this model, Cui , does not vanish either. Their is an exclusion zone for the

copper interstitial, unlike the selenium vacancy, since the former is component of the

Cui ∆VCu  complex. Although there are an equal number of normally-occupied and

interstitial  sites  in  this  model,  their  tetrahedral  coordination  make  the  four

interstitials  nearest  to  any normally-occupied  site  equivalent.  Since the  copper

vacancy in the Cui ∆VCu  complex is restricted to a single site on the same sized

cluster as the interstitital, the isolated interstitial will be allowed to occupy any of

those same four in the absence of the vacancy. This yields for a mole of either Cui
ä  or

Cui
‰  clusters:
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sConfig48clCuI = rG Log@4D;
DsIDLcl = DsIDLcl + Plus üüHReplacePart@Array@0 &, Length@DsIDLclDD, sConfig48clCuI, #1D & êü 816, 17<L;8cEP#T, DsIDLclP#T< & êü 816, 17<88Cui

x, 11.5263<, 8Cui
‰ , 11.5263<<

The next correction is for the three defect complexes also associated  with a 48-

site exclusion zone cluster,  Cui ∆VCu , InCu ∆ CuIn , and H2VCu ∆ InCu Lb1_3 . The first

two are restricted  to nearest-neighbor  site pairs.  The copper interstitial/vacancy

complex has exactly the same degeneracy as the lone interstitial since the vacancy is

restricted to one site. The InCu ∆ CuIn  complex occupies two sites, one on the M1 and

one on the M3 sublattice, but as with the corresponding isolated point defects each is

restricted to a single (but different) site on the cluster so there is no configurational

entropy difference between it and its reference state. The b1_3 NDC occupies three

unit cells, which collectively possess only six M1 sublattice sites. Only three of these

are internal to the cluster and the component lattice point defects of the associate are

restricted to these. Thus there is no internal configurational  degeneracy associated

with the b1_3 NDC cluster.

sConfig48clCuIV = rG Log@4D;
DsIDLcl = DsIDLcl + Plus üüHReplacePart@Array@0 &, Length@DsIDLclDD, sConfig48clCuIV, #1D & êü 818<L;8cEP#T, DsIDLclP#T< & êü818<88Cui ∆VCu , 11.5263<<

The  remaining  VCu ∆ InCu ,  and  H2VCu ∆ InCu L  defect  complex  cluster

entropy deviations are computed using the 80-site exclusion zone (comprised of five
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16-site  clusters)  previously  described in conjunction  with the NDC aggregation

model of b–CIS phase formation. By using the same exclusion zone for the NDC in

both a  and b–CIS, the existence  of a two-phase domain between them (a NDC

miscibility gap) is not a presumed result of the statistical  thermodynamics  of this

model. The neutral and ionized VCu ∆ InCu  double-site complex is afforded the same

exclusion  zone  as  the  triple-site  complexes  to  insure  a  distinction  in  the

configurational  degeneracy  between  the  combinations  2 VCu +InCu ,

VCu +HVCu ∆ InCu L , and H2VCu ∆ InCu L , which occupy nine, eight, and five 16-site

clusters respectively.

The  remaining  corrections  are  for  the  defect  complexes  HVCu ∆ InCu Lä ,HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , H2VCu ∆ InCu L b1_5 , and H2VCu ∆ InCu L b2_5 . Note that

their component point defects occur only on the M1 sublattice of which there are

only 10 in a cluster this size.   Also recall that the corresponding  enthalpies  are

computed for the component point defects of these complexes arrayed on nearest-

neighbor M1 sites along one of the two equivalent {110} directions (since tetragonal

distortion makes the {101} directions inequivalent). Finally, the indium antisite must

be  between  the  two  copper  vacancies,  further  restricting  the  configurational

degeneracy  of these defect  complexes  on the cluster.  Given these constraints the

triple-defect complexes have only one possible configuration,  but the double-defect

clusters have a degeneracy due to the equivalence of the two sites for the VCu .
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sConfig80cl2M1 = rG Log@2D;
DsIDLcl = DsIDLcl +

Plus üü HReplacePart@Array@0 &, Length@DsIDLclDD, sConfig80cl2M1, #1D & êü820, 21<L;8cEP#T, DsIDLclP#T< & êü 820, 21<88VCu ∆ InCu , 5.76315<, 8HVCu ∆ InCu L‰ , 5.76315<<
DsIDLcl80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20.6607, 20.6607,

11.5263, 11.5263, 11.5263, 0, 5.76315, 5.76315, 0, 0, 0, 0<
The excess entropy due to two-fold  electron spin degeneracy  will next be

added to DS j
XS for those charged defects with an unpaired electron spin [278]. The

correction will be based on the assumption that they are unpaired if there are an odd-

integral number of them. The correction obviously applies to electrons and holes,

since they are unpaired.

sSpin = rG Log@2D;
DsXScl =

DsXScl + Plus üü HReplacePart@Array@0 &, Length@DsIDLclDD, sSpin, #1D & êü83, 5, 8, 11, 13, 17, 21<L;8cEP#T, DsXSclP#T< & êü 83, 5, 8, 11, 13, 17, 21<88VCu
£ , 5.76315<, 8InCu

‰ , 5.76315<, 8CuIn
£ , 5.76315<, 8VIn

‰ , 5.76315<,8VIn
‰‰‰ , 5.76315<, 8Cui

‰ , 5.76315<, 8HVCu ∆ InCu L‰ , 5.76315<<
The entropy of  defect ionization will next be added to those cases, using an

approximation due to van Vechten [168, 169] that equates these with the entropy of

the forbidden gap. The latter quantity can be calculated from the coefficients of the

Varshni equation,  a  and b,  using the equation DSg = -∑T Eg  = aT (T + 2b)/HT + bL2

[280]. These coefficients have been determined for CIS based on optical measurements

near room temperature of single crystals  by Nakanishi  and coworkers  [85], who
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found  b = 0  and a = 1.1x10-4  eV·K-1 .  Since  b  vanishes,  the  preceding  relation

simplifies to DScv = a, which is added to the excess entropy of each charged defect.

DsXScl =
DsXScl + Drop@HAbs@#D ê Max@1, Abs@#DD & êüDP4TL, -3D H11*^-5L * nAvo * eV2Joule80, 0, 16.3765, 0, 16.3765, 10.6134, 0, 16.3765, 10.6134, 0, 16.3765,

10.6134, 16.3765, 0, 10.6134, 0, 16.3765, 0, 0, 0, 16.3765, 0, 0, 0, 0<
Although it would be appropriate to add other mixing entropy deviations like

the vibrational correction for the cluster, insufficient data is available in the literature

to compute the effect of the individual defects on the phonon spectrum except for the

two H2VCu ∆ InCu Lb  defects. In their case it is known that the selenium A1  breathing

mode of the lattice shifts between a–CIS and b–CIS from 175 cm-1  to 152 cm-1 . The

specific molar total internal  mixing entropy deviations of the defect clusters from

their reference states are tabulated below:
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Transpose@8Drop@cE, -3D, HDsIDLcl + DsXSclL<D êê TableForm

CISa 0
VCu

x 0

VCu
£ 16.3765

InCu
x 0

InCu
‰ 16.3765

InCu
‰‰ 10.6134

CuIn
x 0

CuIn
£ 16.3765

CuIn
££ 10.6134

VIn
x 0

VIn
‰ 16.3765

VIn
‰‰ 10.6134

VIn
‰‰‰ 16.3765

VSe
x 20.6607

VSe
‰‰ 31.2741

Cui
x 11.5263

Cui
‰ 27.9029

Cui ∆VCu 11.5263
CuIn ∆ InCu 0

VCu ∆ InCu 5.76315HVCu ∆ InCu L‰ 22.1397H2VCu ∆ InCu La 0H2VCu ∆ InCu L b15 0H2VCu ∆ InCu L b13 0H2VCu ∆ InCu L b25 0

The foregoing results are combined using DG j
CL =DG j

SER + DH j
XS - T DS j

CL  to

compute the specific molar free energy deviations of the defect clusters from their

reference state. Since DH j
XS  does not vanish for electrons, the charge carriers are

added here and the bandgap energy specified. The temperature dependence of the

forbidden gap is included using the Varshni equation Eg = Eg
0 -aT2 /HT + bL  [87].
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The reference  value is  taken to be 1.048 eV at 102K as measured  by Niki and

coworkers [86] on single-crystal epilayers.

eGa@tK_D := 1.048 - 1.1 10-4  HtK - 102L
With@8Ds00 = Join@DsIDLcl + DsXScl, 80, 0<D<,

Dg00@tK_D := Join@Dg0cl_HSER@tKD, 80, 0<D + HDhXSab ê. eG Ø eGa@tKDL - tK Ds00D
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Transpose@8Drop@cE, -1D, Dg00@tSTPD, Dg00@tK000D, Dg00@tRefD<D êê TableForm

CISa 0. 0. 0.
VCu

x 67774.9 94619.5 107385.

VCu
£ 65786.8 83636. 93114.1

InCu
x 314955. 299876. 294147.

InCu
‰ 233849. 209774. 200758.

InCu
‰‰ 168028. 147118. 139259.

CuIn
x 155893. 170973. 176702.

CuIn
£ 178992. 185076. 187518.

CuIn
££ 236671. 245921. 249520.

VIn
x 310505. 352429. 370923.

VIn
‰ 322025. 354954. 370161.

VIn
‰‰ 363302. 399397. 415761.

VIn
‰‰‰ 426229. 459158. 474365.

VSe
x 295898. 316743. 327421.

VSe
‰‰ 202038. 217052. 225601.

Cui
x 264558. 231382. 216303.

Cui
‰ 178627. 136456. 118090.

Cui ∆VCu 143221. 136890. 134577.
CuIn ∆ InCu 62715.5 62715.5 62715.5

VCu ∆ InCu 81907.2 90506.6 96385.9HVCu ∆ InCu L‰ -4023.24 -4419.18 -1826.87H2VCu ∆ InCu La 44301.6 82911.1 102712.H2VCu ∆ InCu L b15 12461.4 51070.9 70872.2H2VCu ∆ InCu L b13 -81.7145 38527.8 58329.1H2VCu ∆ InCu L b25 13344.5 90563.6 130166.

e£ 99034.9 93205.1 91074.8
h‰ 0 0 0

The  foregoing  results  are  combined  to  give  the  reference  state  specific

chemical potentials of each of the basis species as given by m j
0  = G0@mD+DG j :

m00ab@tK_D := Join@Join@g0cl@tKD, 80, 0<D + Dg00@tKD, 80<D
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The  chemical  potential  of  the  entire  CIS  lattice  is  given  by a  cluster

decomposition of its defect distribution with respect to the basis comprised of the

clusters  whose individual  reference  state  specific  free energies  are given by the

function above. The overall problem has now been made tractable by separating the

strong short–range interactions between the point defects in the initial problem into

internal interactions within clusters which can now be treated as weakly-interacting.

The chemical  potentials  of  the  delocalized  charge  carriers  must  also  be

corrected to account for Fermi-Dirac statistics. Rather than employ that full integral

relation, an asymptotic approximation is used which has been shown to be within a

factor of two over the range n  d 50 Nc  (and presumably p  d 50 Nv ) [157, § 7.11].

With the zero of electrical potential at the VBM, the relations n  = Nc ExpA h-EgÅÅÅÅÅÅÅÅÅÅÅÅÅkT E  and

p  = Nv Exp@ -hÅÅÅÅÅÅÅkT D  approximate the Fermi-Dirac electron occupation probability of the

CB and the complement  of that probability  for the VB, respectively.  In the ideal

lattice reference  state  there are no ionic  defects  so charge neutrality  reduces  to

n0  = p0  and therefrom h0  = 3 k  TÅÅÅÅÅÅÅÅÅÅÅÅ4 LogA mhÅÅÅÅÅÅÅÅÅme
E +

EgÅÅÅÅÅÅÅ2  [281, p. 245]. This is the value used

to initialize variational free energy minima searches with ionized defects included.

The parabolic band effective-mass approximation can be   applied to  estimate

the density of band states using Nc = 2 gc  I 2 p me
*  k  TÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh2 M3ê2

 and Nv = 2 gv  I 2 p mh
*  k  TÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh2 M3ê2

,

where gc  and gv  are the band degeneracies. These quantum mechanical density-of-

states (DOS) expressions are per unit volume, and the concentrations in this model

are molar.  The conversion  of units below takes the specific  molar volume to be

independent of composition,  but uses empirical data to correct for thermal volume
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expansion.  The reduced mass and temperature are factored out of the expressionI 2 p me
*  k ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh2 M  to give I 2 p me  k ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh2 M me

*

ÅÅÅÅÅÅÅÅme
 T and the constant prefactor converted to units of

mole-1  of CIS.H* units of cm-3êmole *L
molVolCIScc@tK_D := With@8linTCE = 6.60 10-6 , molVolSTP = 58.281<,

molVolSTP H1 + HtK - tSTPL linTCEL3D
ConvertBikjjj 2 p ElectronMass BoltzmannConstant 1 Kelvin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PlanckConstant2

y{zzz3ê2
, HCenti MeterL-3F

2.41469 µ 1015

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Centi3 Meter3

molDOSaCIS@tK_D := WithB:qmDOSfree =

FirstBConvertBikjjj 2 p ElectronMass BoltzmannConstant 1 Kelvin
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

PlanckConstant2
y{zzz3ê2

,HCenti MeterL-3FF>, molVolCIScc@tKD 2 qmDOSfree tK3ê2F
cbDOSaCIS@tK_D :=

WithA8meReduced = 0.09, gCB = 1<, gCB molDOSaCIS@tKD meReduced3ê2E
vbDOSaCIS@tK_D := WithA8mhReduced = 0.73, gVB = 1<,

gVB molDOSaCIS@tKD mhReduced3ê2E8cbDOSaCIS@tRefD, vbDOSaCIS@tRefD<82.61728 µ 1020 , 6.04604 µ 1021 <
mF0aeV@tK_D := WithB8meReduced = 0.09, mhReduced = 0.73, gCB = 1, gVB = 1,

eVBoltzmann = First@Convert@BoltzmannConstant 1 Kelvin, ElectronVoltDD<,
1
ÅÅÅÅÅ
2

 ikjjjeGa@tKD +
3
ÅÅÅÅÅ
2

 eVBoltzmann tK LogB mhReduced
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
meReduced

Fy{zzzF
The electrochemical  potentials he  and hh  reduce to the chemical potential me

and mh  in the absence of an applied electrostatic  potential  since h U m + q f.  The
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product of the two carrier concentrations is np = Nc  Nv ExpA -EgÅÅÅÅÅÅÅÅÅÅkT E , constant  for any

given temperature in this approximation.  Thus neither can their concentrations nor

their chemical potentials both be independent variables. This is of course a reflection

of the fact that a (free) hole is an unoccupied single-electron valence band state and is

thus defined implicitly as the absence of an electron. The conduction band electron

concentration is taken here as the independent variable, with the hole concentration

given by the expression for the np product given above divided by n. This permits

both  of  the  charge  carriers'  chemical  potentials  to be derived  from the usual

expressions for enthalpy plus the band entropy with only one variable, n.

npa@tK_D :=

WithB8eVBoltzmann = First@Convert@BoltzmannConstant 1 Kelvin, ElectronVoltDD <,
cbDOSaCIS@tKD vbDOSaCIS@tKD ExpB -eGa@tKD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tK eVBoltzmann

FF
npacc@tK_D :=

npa@tKD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
molVolCIScc@tKD2

H* band entropy of charge carriers in eVêcarrier at the intrinsic point *L
rG tRef

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
nAvo eV2Joule:LogB"#####################npa@tRefD í cbDOSaCIS@tRefDF, LogB"#####################npa@tRefD í vbDOSaCIS@tRefDF>8-0.330162, -0.613762<H* Gibbs energy for charge carriers in eVêcarrier at the intrinsic point *L8eGa@tRefD, 0< + %80.613762, -0.613762<

mF0aeV@tRefD
0.613762
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H* the electron-hole equilibrium is satisfied *L Plus üü %%

0.H* Gibbs energy for charge carriers in eVêcarrier *L WithB8n = 3*^20 <,
rG tRef

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
nAvo eV2Joule

:Log@n ê cbDOSaCIS@tRefDD, LogB npa@tRefD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n
ì vbDOSaCIS@tRefDF> +8eGa@tRefD, 0<F80.95625, -0.95625<

eGa@tRefD
0.943924H* the equilibrium electron and hole molar concentrations in intrinsic defect-

free CuInSe2 at tRef *L
WithB8eVBoltzmann = First@Convert@BoltzmannConstant 1 Kelvin, ElectronVoltDD<,:cbDOSaCIS@tRefD ExpB -HeGa@tRefD - mF0aeV@tRefDL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tRef eVBoltzmann

F,
vbDOSaCIS@tRefD ExpB - mF0aeV@tRefD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tRef eVBoltzmann

F>F86.76623 µ 1018 , 6.76623 µ 1018 <
The specific molar chemical potential of each type of basis cluster  within their

mixture that represents the actual state of the lattice is given by m j = m j
0 + DG j

CNFG .

The concentrations  entering  into the computation  of mixing  entropies  must  be

normalized to the total of only those that are actually on the lattice, including the

b–CIS building units but excluding the charge carriers and DN. To calculate DG j
CNFG

the expression DG j
CNFG = R T Log@n j D  is used [158, §8.8]. A cluster associated with

any given defect type is in a distinguishable configuration when centered on any of

the unit cells in the lattice. Thus it is not the molar concentrations, the c j , which enter

into the configurational entropy calculations, but rather the number of a given cluster
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type normalized to the total number of unit cells.

Inasmuch as they are confined in this model to the a–CIS  phase, the charge

carriers'  band entropy  contributions  to their  respective  specific  molar chemical

potentials  must use band DOS normalized to the total mole fraction of the CISa

species  alone.  This corrects  for changes in the number  of band states when the

number of unit cells on the lattice that form those bands change. The additive term in

the electrons' chemical potential corresponds to the enthalpy of the electron, and that

term vanishes for holes since the zero of potential is the VBM.

m0ab@c_, tK_D ê; Length@cD ã Length@cED :=

WithB8n = Hmcl Take@c, 25DL ê Plus üü Hmcl Take@c, 25DL, nCISa = nAvo c ê First@cD<,
m00ab@tKD +

rG tK JoinBLog@ nD, :LogB nCISaP25T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F, LogB nCISaP26T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

The cluster basis set for the Cu2-d Se/a–CIS  two-phase equilibrium problem

does not include the b–CIS  clusters, so a different function must be defined for the

secondary phase reference state chemical potentials in that case. The corresponding

species in the cluster chemical  potential vector m00ab   are replaced by the partial

molar  free energy functions  for  binary  copper  selenide  derived in a preceding

section.  The chemical  potential  of  Cu2-d Se  is related to that of Cu1-x  Sex  by a

normalization  factor  of (3 – d)  since that secondary phase's  specific  molar Gibbs

energy was derived for a total of one mole of its consitutent atoms. The value of d

associated  with  the  species  Cu2_dSe  will  always  be taken to correspond  to its

minimum stable value, given by the function dmin[T].  The specific  molar Gibbs
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energy associated with the species CuCu2Se  is the difference between the Cu2-d Se

phase's  total  Gibbs  energy when  it's  total  copper  content  is  the  sum of  both

contributions,  and its  reference  state  (minimum  selenium  content)  value.  This

formulation assures that the total Gibbs energy of the secondary phase (which is

calculated as the inner product of the chemical potential and solution concentration

vectors) is always equal to the product of the number of moles of Cu2_dSe and its

specific Gibbs energy for the net value of d.

The mixing  entropy  calculation  for  this  problem  must  also  include  the

Cu2-d Se components as a single distinct species. The mixing entropy is associated

entirely  with the species Cu2_dSe,  since the division of that phases  total copper

content  between  the  two  species  Cu2_dSe  (with  d = dmin )  and  CuCu2Se  is  a

computational construct which allows the solution algorithm to vary the secondary

phase's  equilibrium  composition  via  an  independent  variable  in  search  of  the

system's complete  equilibrium.  One consequence of this is that CuCu2Se  must be

constrained to be negative.8cE0P23T, cE0P24T<8CuCu2Se, Cu2_dSe<
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m00@c_, tK_D ê; Length@cD ã Length@cE0D :=

WithB8n = H# ê Plus üü #L &@Join@Take@mcl Take@c, 25D, 22D, 8cP24T<DD,
dm = dmin@tKD, d0 = dmin@tKD - cP23T ê cP24T, nCISa = nAvo c ê First@cD<,

ReplacePart@ReplacePart@Drop@m00ab@tKD, 825<D, HH3 - d0L G_CuSeX@tK, H3 - d0L-1D -H3 - dmL G_CuSeX@tK, H3 - dmL-1DL Hdm - d0L-1, 23D,H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 24D + rG tK JoinBLog@Drop@n, -1DD,:0, Log@Last@nDD, LogB nCISaP25T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F, LogB nCISaP26T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

Now the  total  free  energy of the  entire  system  in its  initialized   (non-

equilibrium) configuration can be expressed as the weighted sum of its component

species' chemical potentials.

g00@Z_, tK_D := c000@ZD m00@c000@ZD, tKD
g00@1, tRefD ê. Dg0acl@tRefD Ø 08-467736., -3.20483 µ 10-20 , -1.6027 µ 10-19, -1.51221 µ 10-20 ,

-1.55891 µ 10-20, -1.58966 µ 10-20, -1.57093 µ 10-20 ,
-1.56553 µ 10-20, -1.53453 µ 10-20, -1.47382 µ 10-20 , -1.47421 µ 10-20 ,
-1.45141 µ 10-20, -1.4221 µ 10-20, -1.3374 µ 10-19, -1.54649 µ 10-20,
-1.55113 µ 10-20, -1.60024 µ 10-20, -1.592 µ 10-20, -1.62793 µ 10-20,
-2.54434 µ 10-20, -2.59344 µ 10-20, -2.54117 µ 10-20 , 3.11054 µ 10-27 ,
-3.03204 µ 10-20, -1.81597 µ 10-21, -2.40816 µ 10-21 , 0<

g_HSER@cThermo_CuInSe2_a, tRefD - Plus üü %H* computes the difference between the literature reference
value and the model value for this non-equilibrium c000@ZD *L

0.
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Reaction Extents Vector

The functional dependence of the total chemical potentials have already been

computed in terms of the temperature and concentration vector, so the latter must

now be connected to the reaction extents via the relationship cj  = c j
0 + ⁄r=1

22  n jr xr .

Although the stoichiometry matrix  in the Gibbs-Duhem relation ⁄ j=1
27  njr  m j = 0  is

constrained  by  its  common  basis  with  the  chemical  potential  vector,  the

stoichiometry  matrix  used to calculate the concentration  vector is not so limited.

Since its component  column vectors nr
`  form a nullspace basis for the set of all

reactions  that  leave  the  conserved  quantitites  unchanged,  homogeneous  linear

combinations of them may also be used to span the nullspace.

Computing the equilibrium defect cluster concentration vector by determining

the reaction extents  that satisfy the Gibbs-Duhem  relations is  facilitated by first

restructuring the original reaction stoichiometry matrix n   to isolate the relatively

large free energy contributions due to the reference state CISa  clusters found in every

reaction therein.  Linear combinations  are also chosen to eliminate the ideal CISa

cluster from all ionization reactions, giving their ionized state energies in terms of

reactions between the neutral defect and the charge carriers. The ionization equilibria

can thereafter be  parameterized using the electrochemical potential.

Inspection of the neutral species free energies per primitive unit cell at the

maximum temperature of the calculation (sorted by increasing excess free energy in

the table below) show that the most energetically favorable  defect clusters are the

NDC, its dissociation components, and the cation antisite pair InCu ∆ CuIn :
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RotateRightBSortB
RotateRightBExtractBTransposeB:cE,

Hm00ab@tRefD ê. Dg0acl@tRefD Ø 0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Join@mcl, 81, 1, 1<D >F, 881<, 82<,84<, 87<, 810<, 814<, 816<, 818<, 819<, 820<, 822<<F, 80, 1<FF, 80, 1<F êê TableForm

CISa -935471.

VCu ∆ InCu -916194.H2VCu ∆ InCu La -914929.

CuIn ∆ InCu -914566.
VCu

x -899676.

Cui ∆VCu -890612.
CuIn

x -876571.

Cui
x -863370.

InCu
x -837422.

VSe
x -826331.

VIn
x -811830.

This suggests  that consolidating  these defects into a smaller number of the

basis reactions could reduce the number of reaction extents with a dominant effect on

the  overall  equilibrium.  Implementing  these  principles  lead  to  the  following

preferred basis:
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n0x = n0;
n0x =

Transpose@ReplacePart@Transpose@n0xD, n0PAll, 1T + 2 n0PAll, 4T + n0PAll, 6T, 1DD êê
Simplify;

n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 3T + n0PAll, 2T, 3DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, -n0PAll, 6T + n0PAll, 8T, 6DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 7T + n0PAll, 3T - n0PAll, 8T, 7DD;
n0x =

Transpose@ReplacePart@Transpose@n0xD, n0PAll, 8T + n0PAll, 12T + n0PAll, 20T, 8DD;
n0x = Transpose@ReplacePart@Transpose@n0xD,

n0PAll, 11T + n0PAll, 3T - n0PAll, 12T, 11DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 12T - 2 n0PAll, 10T, 12DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 13T + 2 n0PAll, 3T, 13DD;
n0x = Transpose@

ReplacePart@Transpose@n0xD, n0PAll, 14T + 3 n0PAll, 3T - n0PAll, 17T, 14DD;
n0x = Transpose@ReplacePart@Transpose@n0xD,

n0PAll, 15T + 2 n0PAll, 3T - n0PAll, 17T, 15DD;
n0x = Transpose@ReplacePart@Transpose@n0xD,

n0PAll, 16T + n0PAll, 3T - n0PAll, 17T, 16DD;
n0x = Transpose@ReplacePart@Transpose@n0xD,

n0PAll, 17T + n0PAll, 12T - n0PAll, 20T, 17DD;
n0x = Transpose@ReplacePart@Transpose@n0xD,

n0PAll, 18T + 2 n0PAll, 2T - n0PAll, 20T, 18DD;
n0x = Transpose@ReplacePart@Transpose@n0xD,

n0PAll, 19T + n0PAll, 2T - n0PAll, 20T, 19DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 20T - 2 n0PAll, 9T, 20DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 21T + 2 n0PAll, 3T, 21DD;
n0x = Transpose@ReplacePart@Transpose@n0xD, n0PAll, 22T + n0PAll, 3T, 22DD;
rxn@i_, n0xD := n0xPAll, iT.cE0
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Array@8#, rxn@#, n0xD< &, 22D êê TableForm

1 2 Cu2_dSe + DN + H- 11ÅÅÅÅÅÅÅ2 + 6 dL CISa - 2 dVCu
x + H2VCu ∆ InCu La

2 h‰ - VCu
x + VCu

£

3 h‰ + e£

4 Cu2_dSe + 3 H-3 + dL CISa + H2 - dLVCu
x + VSe

x

5 -3 CISa + CuCu2Se + VCu
x

6 VCu ∆ InCu - 3 CISa + VCu
x - H2VCu ∆ InCu La

7 -HVCu ∆ InCu L + HVCu ∆ InCu L‰ + e£

8 VCu ∆ InCu - 11 CISa + Cui
x + CuIn

x

9 CuIn ∆ InCu - 3 CISa

10 Cui ∆VCu - 3 CISa

11 -Cui
x + Cui

‰ + e£

12 -2 HCui ∆VCu L + Cui
x + VCu

x

13 -VSe
x +VSe

‰‰ + 2 e£

14 -VIn
x + VIn

‰‰‰ + 3 e£

15 -VIn
x + VIn

‰‰ + 2 e£

16 -VIn
x + VIn

‰ + e£

17 -3 CISa + Cui
x - CuIn

x + VIn
x

18 2 h‰ - CuIn
x + CuIn

££

19 h‰ - CuIn
x + CuIn

£

20 -2 HCuIn ∆ InCu L + CuIn
x + InCu

x

21 -InCu
x + InCu

‰‰ + 2 e£

22 -InCu
x + InCu

‰ + e£

The chemical potential minimization procedure employed varies the values of

the reaction extent vector x 's components, with all other parameters in the equations⁄ j=1
27  njr  m j  =‚

j=1

27
 njr  Im j

0 + R T Log @ c j
0 + ⁄r=1

22  n jr xr DM  = 0  fixed.  Thus  the  only

independent variables are the 22 components of x.

x000 = 8x001, x002, x003, x004, x005, x006, x007, x008, x009, x0010, x0011, x0012,
x0013, x0014, x0015, x0016, x0017, x0018, x0019, x0020, x0021, x0022<;

Protect@x000D;
c0x@Z_, tK_D := c000@ZD + Hn0x ê. d Ø dmin@tKDL.x000
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Defect Quasichemical Reaction Equilibria Calculation

Solution of the Gibbs-Duhem  relation  ⁄ j=1
27  njr  m j = 0  can be expedited  by

using a functional defined to return its left-hand-side,  the list of reaction affinities

[158, §11.8]:

gd0CIS@Z_, tK_, Dg0CISacl_D :=HHm00@c0x@#1, #2D, #2D ê. Dg0acl@#2D Ø #3L.Hn0 ê. d Ø dmin@#2DLL &@Z, tK, Dg0CISaclD
Computation of the solution of this complete set of simultaneous reactions is

simplified by first approximately solving only the strongly-coupled neutral (charge-

free) reactions, of which there are ten.

neutralRxns = 81, 4, 5, 6, 8, 9, 10, 12, 17, 20<;
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8neutralRxns<DD êê TableForm

1 2 Cu2_dSe + DN + H- 11ÅÅÅÅÅÅÅ2 + 6 dL CISa - 2 dVCu
x + H2VCu ∆ InCu La

4 Cu2_dSe + 3 H-3 + dL CISa + H2 - dLVCu
x + VSe

x

5 -3 CISa + CuCu2Se + VCu
x

6 VCu ∆ InCu - 3 CISa + VCu
x - H2VCu ∆ InCu La

8 VCu ∆ InCu - 11 CISa + Cui
x + CuIn

x

9 CuIn ∆ InCu - 3 CISa

10 Cui ∆VCu - 3 CISa

12 -2 HCui ∆VCu L + Cui
x + VCu

x

17 -3 CISa + Cui
x - CuIn

x + VIn
x

20 -2 HCuIn ∆ InCu L + CuIn
x + InCu

x

The CISa  cluster appears in all these reactions except 12 and 20, which couple

to CISa  via reactions eight, nine and ten. Since the Cui
ä  and CuIn

ä  species couple all

these to reaction 17 but do not appear in any other neutral reactions, the complete set

of neutral reactions decomposes into two subspaces coupled strongly by reactions six
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and eight which both contain the dominant  defect  at the reference  temperature,

VCu ∆ InCu . The remaining reactions all involve charged species but no CISa :

ionizationRxns = Complement@Array@# &, 22D, neutralRxnsD82, 3, 7, 11, 13, 14, 15, 16, 18, 19, 21, 22<
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8ionizationRxns<DD êê TableForm

2 h‰ - VCu
x + VCu

£

3 h‰ + e£

7 -HVCu ∆ InCu L + HVCu ∆ InCu L‰ + e£

11 -Cui
x + Cui

‰ + e£

13 -VSe
x +VSe

‰‰ + 2 e£

14 -VIn
x + VIn

‰‰‰ + 3 e£

15 -VIn
x + VIn

‰‰ + 2 e£

16 -VIn
x + VIn

‰ + e£

18 2 h‰ - CuIn
x + CuIn

££

19 h‰ - CuIn
x + CuIn

£

21 -InCu
x + InCu

‰‰ + 2 e£

22 -InCu
x + InCu

‰ + e£

The Gibbs-Duhem functional on the neutral reaction set is defined as:

gd00CIS@Z_: 1, tK_, Dg0CISacl_: 0D :=
Extract@gd0CIS@Z, tK, Dg0CISaclD, Thread@8neutralRxns<DD

The initial concentration vector prior to any reactions is far from the correct

solution, for which every reaction's affinity should be zero:

initialAffinities = gd0CIS@1, tRef, 0D ê. Thread@x000 Ø Array@0 &, 22DD81.37837 µ 106, -481877., -362951., -1.72105 µ 106, -401897., 610483., 106967.,
205424., -449442., -377581., -793044., -694587., -121457., 142199., 83838.1,
38482.1, 39488.4, -480161., -542407., -553466., -155375., -93632.2<

296



The convergence of the solution algorithm will be characterized by the total

standard deviation from zero of the calculated reaction affinities:

sSD@list_?VectorQD := Plus üü
"#########list2

sSD@initialAffinitiesD
9.83418 µ 106

The initial solution is estimated by manual variation  of the list  of neutral

species  concentrations,  with  general  guidance  provided  by  the  preceding

compilation of their free energies per primitive unit cell:
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80.00018 , 0.3*^-11 , -1.82*^-8, 6.3*^-6 ,
5.4*^-10, 0.000124, 3.08*^-8, -5.397*^-10, 1.*^-18, 1.5*^-16<;

Fold@Insert@#, 0, #2D &, %, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;
Thread@x000 Ø %D;
Thread@8neutralRxns, Hgd00CIS@1, tRef, 0D ê. %L, Hgd00CIS@1, tRef, 0D ê. %L ê

Extract@initialAffinities, Thread@8neutralRxns<DD<D êê TableForm8"neutral solution convergence sSD", sSD@%PAll, 2TD<
Extract@Thread@8cE0, c000@1D + Hn0x ê. d Ø dmin@tRefDL.%%%%<D,881<, 82<, 84<, 87<, 810<, 814<, 816<, 818<, 819<, 820<, 822<, 823<, 824<<D êê ScientificForm

1 198909. 0.144308

4 -168208. 0.0977357
5 13229.6 -0.032918
6 17785.9 0.0291342
8 1238.47 0.00602887

9 20.325 -0.0000452228
10 -156.002 0.000413161
12 -608.37 0.000875872
17 -950.934 -0.0240814

20 -1259.56 0.002275768neutral solution convergence sSD, 402367.<88CISa , 4.98619 µ 10-1<, 8VCu
x , 6.27242 µ 10-6<,8InCu

x , 1.5 µ 10-16<, 8CuIn
x , 5.4 µ 10-10<, 8VIn

x , 1. µ 10-18 <,8VSe
x , 3. µ 10-12<, 8Cui

x , 3.00001 µ 10-13<, 8Cui ∆VCu , 3.18794 µ 10-8<,8CuIn ∆ InCu , 1.24 µ 10-4<, 8VCu ∆ InCu , 6.30054 µ 10-6<,8H2VCu ∆ InCu La , 1.737 µ 10-4<, 8CuCu2Se, -1.82 µ 10-8<, 8Cu2_dSe, 3.6 µ 10-4<<
solvedRxns = 86, 8, 9, 10, 12, 17, 20<;
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8solvedRxns<DD êê TableForm

6 VCu ∆ InCu - 3 CISa + VCu
x - H2VCu ∆ InCu La

8 VCu ∆ InCu - 11 CISa + Cui
x + CuIn

x

9 CuIn ∆ InCu - 3 CISa

10 Cui ∆VCu - 3 CISa

12 -2 HCui ∆VCu L + Cui
x + VCu

x

17 -3 CISa + Cui
x - CuIn

x + VIn
x

20 -2 HCuIn ∆ InCu L + CuIn
x + InCu

x
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The FindRoot  functional  in Mathematica  uses a Newton-Raphson  algorithm

that  can be used to refine  the  approximate  solution  determined  above  and to

automate its adjustment to changes in the parameters of the equation such as Z and

Dg0CISacl.

Off@FindRoot::"frmp"D80.00018 , 0.3*^-11 , -1.82*^-8, 6.3*^-6 ,
5.4*^-10, 0.000124, 3.08*^-8, -5.397*^-10, 1.*^-18, 1.5*^-16<;

Fold@Insert@#, 0, #2D &, %, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;HFindRoot@Extract@Hgd0CIS@1, tRef, 0D ê. Extract@Thread@x000 Ø %D,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DDL,

Thread@8solvedRxns<DD ã Array@0 &, Length@solvedRxnsDD, ##D & üü
Extract@Thread@8x000, %<D, Thread@8solvedRxns<DDL;

Extract@Thread@x000 Ø %%D, Thread@8Complement@neutralRxns, solvedRxns D<DD;
Extract@Thread@x000 Ø %%%D, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;
subspaceSoln = Join@%, %%, %%%D;
Thread@8solvedRxns, Extract@Hgd0CIS@1, tRef, 0D ê. %L, Thread@8solvedRxns<DD<D êê

TableForm8"neutral solution convergence sSD", sSD@gd00CIS@1, tRefD ê. subspaceSolnD<
On@FindRoot::"frmp"D

6 4.65661 µ 10-10

8 -2.26663 µ 10-12

9 0.

10 0.

12 -5.58794 µ 10-9

17 0.

20 0.8neutral solution convergence sSD, 357436.<
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The order of the solutions returned by the FindRoot code above cannot be

directly put into the concentration relation cj  = cj
0 + ⁄r=1

22  n jr xr  because the order in

which they are returned  does not coincide with the ordering  of the basis. The

following function reorders the solution reaction extent vector:

basisOrderx000@soln_D ê; Length@solnD ã Length@x000D :=
Fold@ReplacePart@ #, solnP#2P2TT, #2P1TD &, Array@0 &, 22D,

MapIndexed@Flatten@8#2, Position@solnPAll, 1T, #D<D &, x000DD
The unsolved neutral reactions (one, four, and five) are different from all the

others, insofar as they are the only ones that involve the species that are not part of

the lattice:  CuCu2Se , and Cu2_dSe. The following calculations shows that the excess

Gibbs energy of the ideal lattice cluster Dg0acl [T] does not cancel out of the total

Gibbs energy calculation for these reactions.

Extract@Array@8#, rxn@#, n0xD< &, 22D,
Thread@8Complement@neutralRxns, solvedRxnsD<DD êê TableForm

1 2 Cu2_dSe + DN + H- 11ÅÅÅÅÅÅÅ2 + 6 dL CISa - 2 d VCu
x + H2VCu ∆ InCu La

4 Cu2_dSe + 3 H-3 + dL CISa + H2 - dLVCu
x + VSe

x

5 -3 CISa + CuCu2Se +VCu
x

Extract@
Thread@8cE0, m00@Hc000@1D + Hn0x ê. d Ø dmin@tRefDL.x000 ê. subspaceSolnL, tRefD<D,881<, 82<, 814<, 822<, 823<, 824<, 827<<D êê Simplify êê TableForm

CISa -935503. + Dg0acl@1048.15D
VCu

x -2.77164 µ 106 + 3 Dg0acl@1048.15D
VSe

x -2.55918 µ 106 + 3 Dg0acl@1048.15DH2VCu ∆ InCu La -4.63005 µ 106 + 5 Dg0acl@1048.15D
CuCu2Se -5280.54
Cu2_dSe -317070.
DN 0
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Thus  these  reactions  can  be  simultaneously  solved  only  by  correctly

determining both the extent of each reaction and the value of Dg0acl [T]. The fourth

neutral reaction is solved first among those remaining.

solvedRxns = Union@solvedRxns, 84<D;
Complement@neutralRxns, solvedRxnsD81, 5<
Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
basisOrderx000@subspaceSolnDPAll, 2T;HFindRoot@Extract@Hgd0CIS@1, tRef, 0D ê. Extract@Thread@x000 Ø %D,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DDL,
Thread@8solvedRxns<DD ã Array@0 &, Length@solvedRxnsDD,

##, MaxIterations Ø 50D & üü
Extract@Thread@8x000, %<D, Thread@8solvedRxns<DDL;

Extract@Thread@x000 Ø %%D, Thread@8Complement@neutralRxns, solvedRxns D<DD;
Extract@Thread@x000 Ø %%%D, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;
subspaceSoln = Join@%, %%, %%%D;8"neutral solution convergence sSD", sSD@gd00CIS@1, tRefD ê. subspaceSolnD<
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8neutral solution convergence sSD, 148517.<H* calculation of total Gibbs energy as c0x@Z,tKD*m00@c0x@Z,tKD,tKD *L
xsCISclG = 0;8"reference value" g_HSER@cThermo_CuInSe2_a, tRefD,

"current model estimate" Plus üü Hc0x@1, tRefD *Hm00@c0x@1, tRefD, tRefD ê. Dg0acl@tRefD Ø xsCISclGL ê. subspaceSolnL<
"difference" Hg_HSER@cThermo_CuInSe2_a, tRefD -

Plus üü Hc0x@1, tRefD * Hm00@c0x@1, tRefD, tRefD ê. Dg0acl@tRefD Ø xsCISclGL ê.
subspaceSolnLL8-467736. reference value, -467773. current model estimate<

37.2759 difference
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The first reaction is solved next, using this calculated deviation of the current

solution estimate's total Gibbs energy from the literature reference value as an initial

estimate.

Extract@Array@8#, rxn@#, n0xD< &, 22D,
Thread@8Complement@neutralRxns, solvedRxnsD<DD êê TableForm

1 2 Cu2_dSe + DN + H- 11ÅÅÅÅÅÅÅ2 + 6 dL CISa - 2 d VCu
x + H2VCu ∆ InCu La

5 -3 CISa + CuCu2Se +VCu
x

solvedRxns = Union@solvedRxns, 81<D;
Complement@neutralRxns, solvedRxnsD85<
Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
xsCISclG = 37.275884476548526`;
Extract@basisOrderx000@subspaceSolnD, Thread@8neutralRxns <DDPAll, 2T;
Fold@Insert@#, 0, #2D &, %, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;HFindRoot@Extract@Hgd0CIS@1, tRef, xsCISclGD ê. Extract@Thread@x000 Ø %D,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DDL,
Thread@8solvedRxns<DD ã Array@0 &, Length@solvedRxnsDD,

##, MaxIterations Ø 25D & üü
Extract@Thread@8x000, %<D, Thread@8solvedRxns<DDL;

Extract@Thread@x000 Ø %%D, Thread@8Complement@neutralRxns, solvedRxns D<DD;
Extract@Thread@x000 Ø %%%D, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;
subspaceSoln = Join@%, %%, %%%D;8"neutral solution convergence sSD",

sSD@gd00CIS@1, tRef, xsCISclGD ê. subspaceSolnD<
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8neutral solution convergence sSD, 59803.8<
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g_HSER@cThermo_CuInSe2_a, tRefD;
Plus üüHc0x@1, tRefD * Hm00@c0x@1, tRefD, tRefD ê. Dg0acl@tRefD Ø xsCISclGL ê. subspaceSolnL;H%% - % + xsCISclGL "new xsCISclG estimate"

728.347 new xsCISclG estimate

The last remaining neutral reaction is solved using the most recent estimate of

the excess Gibbs energy of the ideal lattice cluster:

Extract@Array@8#, rxn@#, n0xD< &, 22D,
Thread@8Complement@neutralRxns, solvedRxnsD<DD êê TableForm

5 -3 CISa + CuCu2Se +VCu
x

solvedRxns = Union@solvedRxns, 85<D;
Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
xsCISclG = 728.3471014881507`;
basisOrderx000@subspaceSolnDPAll, 2T;HFindRoot@Extract@Hgd0CIS@1, tRef, xsCISclGD ê. Extract@Thread@x000 Ø %D,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DDL,
Thread@8solvedRxns<DD ã Array@0 &, Length@solvedRxnsDD,

##, MaxIterations Ø 25D & üü
Extract@Thread@8x000, %<D, Thread@8solvedRxns<DDL;

Extract@Thread@x000 Ø %%D, Thread@8Complement@neutralRxns, solvedRxns D<DD;
Extract@Thread@x000 Ø %%%D, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;
subspaceSoln = Join@%, %%, %%%D;8"neutral solution convergence sSD",

sSD@gd00CIS@1, tRef, xsCISclGD ê. subspaceSolnD<
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8neutral solution convergence sSD, 1.50953 µ 10-9<
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g_HSER@cThermo_CuInSe2_a, tRefD;
Plus üüHc0x@1, tRefD * Hm00@c0x@1, tRefD, tRefD ê. Dg0acl@tRefD Ø xsCISclGL ê. subspaceSolnL;H%% - % + xsCISclGL "new xsCISclG estimate"

1204.98 new xsCISclG estimate

Since the calculated deviation of the current solution estimate's total Gibbs

energy still deviates from the literature reference value, the solution algorithm is next

extended to optimize all the neutral reaction variables, including xsCISclG to which

Dg0acl [tRef]  will subsequently be set. The discrepancy between the reference value

of the total Gibbs energy and the model's value is thereby eliminated.
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
Clear@xsCISclGD;
basisOrderx000@subspaceSolnDPAll, 2T;HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL -

g_HSER@cThermo_CuInSe2_a, tRefDLD ê.
Append@Extract@Thread@x000 Ø %D,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,
Dg0acl@tRefD Ø xsCISclGDL,

Append@Thread@8solvedRxns<D, 8Length@x000D + 1<DD ã
Array@0 &, Length@solvedRxnsD + 1D,

##, MaxIterations Ø 25D & üü
Append@Extract@Thread@8x000, %<D,

Thread@8solvedRxns<DD,8xsCISclG, 1204.983835436462`<DL;
Extract@Thread@x000 Ø %%D, Thread@8Complement@neutralRxns, solvedRxns D<DD;
Extract@Thread@x000 Ø %%%D, Thread@8Complement@Array@# &, 22D, neutralRxns D<DD;
subspaceSoln = Join@%, %%, %%%D;8"neutral solution convergence sSD",

sSD@gd00CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"xsCISclG", xsCISclG ê. subspaceSoln<

c000@1D + Hn0x ê. d Ø dmin@tRefDL.x000 ê. subspaceSoln;
Extract@Thread@8cE0, %<D,881<, 82<, 84<, 87<, 810<, 814<, 816<, 818<, 819<, 820<, 822<, 823<, 824<<D êê ScientificForm
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8neutral solution convergence sSD, 2.30182 µ 10-8<8model's deviation from reference specific Gibbs energy, -5.82077 µ 10-11<8xsCISclG, 1706.6<
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88CISa , 4.27298 µ 10-1<, 8VCu
x , 4.70055 µ 10- 5<,8InCu

x , 7.63558 µ 10-16<, 8CuIn
x , 4.16766 µ 10-11<,8VIn

x , 9.57397 µ 10-19<, 8VSe
x , 3.63289 µ 10-8<, 8Cui

x , 1.45951 µ 10-14 <,8Cui ∆VCu , 1.89245 µ 10-8<, 8CuIn ∆ InCu , 7.21355 µ 10- 5<,8VCu ∆ InCu , 2.43311 µ 10-4<, 8H2VCu ∆ InCu La , 1.29101 µ 10-2<,8CuCu2Se, -1.95732 µ 10-4<, 8Cu2_dSe, 2.6307 µ 10-2<<
The foregoing results will now be extended to solve the remaining (ionization)

reactions.  The neutral reaction solution shows that the dominant ionizable defect

species in equilibrium are VCu
£  and HVCu ∆ InCu L‰ . For this problem the Fermi level

is expected  to be near the VBM since the secondary Cu2 –d Se phase (electronic

reservoir)  is known to be a strongly degenerate p–type semiconductor  [160, 176].

These observations  are used only to decide that the energetics  of the complete

solution will likely be most influenced by the VCu
µ ionization reaction, which will be

solved first along with the e£ –h‰  equilibrium. The electron and hole concentrations in

equilibrium  with  the  defect-free  lattice  are  related  by  the  expression

np = Nc  Nv ExpA -EgÅÅÅÅÅÅÅÅÅÅÅkT E . Solving this for p in terms of n provides a dependent value

for p which will be used as an initial estimate for the equilibrium calculation for this

problem.H* intrinsic ideal a-
CuInSe2 charge carrier specific molar and volume concentrations *L: è!!!!!!!!!!!!!!!!!!!!!
npa@tRefD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
nAvo

, "#########################npacc@tRefD > êê ScientificForm81.12356 µ 10- 5, 1.1439 µ 1017 <
solvedRxns = neutralRxns81, 4, 5, 6, 8, 9, 10, 12, 17, 20<

306



Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@882, 3, 7<<DD êê TableForm

2 h‰ -VCu
x + VCu

£

3 h‰ + e£

7 -HVCu ∆ InCu L + HVCu ∆ InCu L‰ + e£H* initializes principal ionization rxns *L nelectron = 9.73*^-6;
nsplit = 5.0*^-1;: npa@tRefD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
nelectron nAvo2 - nelectron, H1 - nsplitL nelectron, nsplit nelectron>

subspaceSoln =
Insert@ReplacePart@ReplacePart@ReplacePart@basisOrderx000@Take@neutralSoln, 22DD,

%P1T, 82, 2<D, %P2T, 87, 2<D, %P3T, 83, 2<D, neutralSolnP23T, -1D
Clear@nsplit, nelectronD83.24413 µ 10-6, 4.865 µ 10-6, 4.865 µ 10-6<8x001 Ø 0.0131535, x002 Ø 3.24413 µ 10-6, x003 Ø 4.865 µ 10-6,

x004 Ø 3.63289 µ 10-8, x005 Ø -0.000195732, x006 Ø 0.000243311,
x007 Ø 4.865 µ 10-6, x008 Ø 4.16758 µ 10-11, x009 Ø 0.0000721355,
x0010 Ø 1.88412 µ 10-8, x0011 Ø 0, x0012 Ø -4.16612 µ 10-11, x0013 Ø 0,
x0014 Ø 0, x0015 Ø 0, x0016 Ø 0, x0017 Ø 9.57397 µ 10-19, x0018 Ø 0,
x0019 Ø 0, x0020 Ø 7.63558 µ 10-16 , x0021 Ø 0, x0022 Ø 0, xsCISclG Ø 1706.6<

Complement@ionizationRxns, solvedRxnsD82, 3, 7, 11, 13, 14, 15, 16, 18, 19, 21, 22<
solvedRxns = Union@solvedRxns, 82, 3, 7<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D,
##, MaxIterations Ø 25D & üü Insert@

Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,
Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;

On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8tRef solution convergence sSD, 2.13556 µ 106<8model's deviation from reference specific Gibbs energy, -1.16415 µ 10-10<

Complement@ionizationRxns, solvedRxnsD811, 13, 14, 15, 16, 18, 19, 21, 22<
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8821, 22<<DD êê TableForm

21 -InCu
x + InCu

‰‰ + 2 e£

22 -InCu
x + InCu

‰ + e£

solvedRxns = Union@solvedRxns, 821, 22<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D, ##D & üü Insert@
Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,

Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"ideal CISa cluster excess Gibbs energy", xsCISclG ê. subspaceSoln<8tRef solution convergence sSD, 1.58539 µ 106<8model's deviation from reference specific Gibbs energy, 1.16415 µ 10-10<8ideal CISa cluster excess Gibbs energy, 3865.46<

Complement@ionizationRxns, solvedRxnsD811, 13, 14, 15, 16, 18, 19<
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8811, 13<<DD êê TableForm

11 -Cui
x + Cui

‰ + e£

13 -VSe
x +VSe

‰‰ + 2 e£

solvedRxns = Union@solvedRxns, 813<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D, ##D & üü Insert@
Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,

Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"ideal CISa cluster excess Gibbs energy", xsCISclG ê. subspaceSoln<8tRef solution convergence sSD, 1.21328 µ 106<8model's deviation from reference specific Gibbs energy, 0.0000836407<8ideal CISa cluster excess Gibbs energy, 3865.46<

Complement@ionizationRxns, solvedRxnsD811, 14, 15, 16, 18, 19<
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8811, 21, 22<<DD êê TableForm

11 -Cui
x + Cui

‰ + e£

21 -InCu
x + InCu

‰‰ + 2 e£

22 -InCu
x + InCu

‰ + e£

solvedRxns = Union@solvedRxns, 811<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D, ##D & üü Insert@
Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,

Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"ideal CISa cluster excess Gibbs energy", xsCISclG ê. subspaceSoln<8tRef solution convergence sSD, 903864.<8model's deviation from reference specific Gibbs energy, 4.65661 µ 10-10<8ideal CISa cluster excess Gibbs energy, 3865.46<

Complement@ionizationRxns, solvedRxnsD814, 15, 16, 18, 19<
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8814, 15, 16, 18, 19<<DD êê TableForm

14 -VIn
x + VIn

‰‰‰ + 3 e£

15 -VIn
x + VIn

‰‰ + 2 e£

16 -VIn
x + VIn

‰ + e£

18 2 h‰ - CuIn
x + CuIn

££

19 h‰ - CuIn
x + CuIn

£

solvedRxns = Union@solvedRxns, 818, 19<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D, ##D & üü Insert@
Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,

Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"ideal CISa cluster excess Gibbs energy", xsCISclG ê. subspaceSoln<8tRef solution convergence sSD, 231628.<8model's deviation from reference specific Gibbs energy, 1.01188 µ 10-6<8ideal CISa cluster excess Gibbs energy, 3865.46<

Complement@ionizationRxns, solvedRxnsD814, 15, 16<
Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8814, 15, 16<<DD êê TableForm

14 -VIn
x + VIn

‰‰‰ + 3 e£

15 -VIn
x + VIn

‰‰ + 2 e£

16 -VIn
x + VIn

‰ + e£

solvedRxns = Union@solvedRxns, 816<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D, ##D & üü Insert@
Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,

Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"ideal CISa cluster excess Gibbs energy", xsCISclG ê. subspaceSoln<8tRef solution convergence sSD, 142870.<8model's deviation from reference specific Gibbs energy, 5.82077 µ 10-11<8ideal CISa cluster excess Gibbs energy, 3865.46<

Complement@ionizationRxns, solvedRxnsD814, 15<
solvedRxns = Union@solvedRxns, 815<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D, ##D & üü Insert@
Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,

Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;
On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"tRef solution convergence sSD", sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD<8"model's deviation from reference specific Gibbs energy",

Plus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefD<8"ideal CISa cluster excess Gibbs energy", xsCISclG ê. subspaceSoln<8tRef solution convergence sSD, 127540.<8model's deviation from reference specific Gibbs energy, -1.16415 µ 10-10<8ideal CISa cluster excess Gibbs energy, 3865.46<

Complement@ionizationRxns, solvedRxnsD814<
solvedRxns = Union@solvedRxns, 814<D ;
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Off@FindRoot::"frmp"D
Off@FindRoot::"cvnwt"D
subspaceSoln = Join@Extract@basisOrderx000@Take@subspaceSoln, 22DD,

Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,HFindRoot@Extract@HAppend@gd0CIS@1, tRef, xsCISclGD,HPlus üü Hc0x@1, tRefD * m00@c0x@1, tRefD, tRefDLL -
g_HSER@cThermo_CuInSe2_a, tRefDD ê.

Insert@Extract@basisOrderx000@Take@subspaceSoln, 22DD,
Thread@8Complement@Array@# &, 22D, solvedRxns D<DD,

Dg0acl@tRefD Ø xsCISclG, -1DL,
Insert@Thread@8solvedRxns<D, 8Length@x000D + 1<, -1DD ã

Array@0 &, Length@solvedRxnsD + 1D,
##, MaxIterations Ø 50D & üü Insert@

Extract@Thread@8x000, basisOrderx000@Take@subspaceSoln, 22DDPAll, 2T<D,
Thread@8solvedRxns<DD,8xsCISclG, Last@subspaceSolnDP2T<, -1DLD;

On@FindRoot::"frmp"D
On@FindRoot::"cvnwt"D8"ideal CISa cluster excess Gibbs energy at the reference temperature",HxsCISclG ê. subspaceSolnL "Joules"<8"model's total deviation at the reference temperature

from literature specific Gibbs energy value",HPlus üü HHc0x@1, tRefD * m00@c0x@1, tRefD, tRefDL ê. Dg0acl@tRefD Ø xsCISclG ê.
subspaceSolnL - g_HSER@cThermo_CuInSe2_a, tRefDL "Joules"<8"total RMS affinity deviation for the 23 simultaneous reaction equilibria solutions",

sSD@gd0CIS@1, tRef, xsCISclGD ê. subspaceSolnD "Joules"<8ideal CISa cluster excess Gibbs energy at the reference temperature,
3865.46 Joules<8model's total deviation at the reference temperature

from literature specific Gibbs energy value, 0. Joules<8total RMS affinity deviation for the 23 simultaneous
reaction equilibria solutions, 9.36574 µ 10-7 Joules<

solvedRxns === Array@# &, 22D
True

Note that the maximum deviation from complete equilibrium as exemplified

in the total RMS deviation of this solution's reaction affinity values from zero is about
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10-6 Joules,  thirteen orders of magnitude less than its initial value. The following

table compiles the predicted specific molar concentrations of each model species at

the reference temperature:

Thread@8cE0, c0x@1, tRefD ê. subspaceSoln<D êê TableForm
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CISa 0.339664

VCu
x 7.30432 µ 10-6

VCu
£ 0.0176221

InCu
x 1.69228 µ 10-15

InCu
‰ 1.62585 µ 10-13

InCu
‰‰ 4.02263 µ 10-13

CuIn
x 4.41121 µ 10-12

CuIn
£ 5.9826 µ 10-10

CuIn
££ 2.2824 µ 10-10

VIn
x 3.25117 µ 10-20

VIn
‰ 7.56345 µ 10-23

VIn
‰‰ 8.6096 µ 10-28

VIn
‰‰‰ 2.20373 µ 10-33

VSe
x 1.17317 µ 10-7

VSe
‰‰ 6.322 µ 10-8

Cui
x 2.2033 µ 10-14

Cui
‰ 3.68208 µ 10-12

Cui ∆VCu 9.16586 µ 10-9

CuIn ∆ InCu 0.000034938

VCu ∆ InCu 0.000105416HVCu ∆ InCu L‰ 0.0176168H2VCu ∆ InCu La 0.00179455

CuCu2Se -0.0000921211

Cu2_dSe 0.0390336

e£ 2.00375 µ 10-6

h‰ 7.26855 µ 10-6

DN 1.01952

The calculated equilibrium selenium content of the Cu2-d Se phase exceeds the

minimum required  for  its stability  (since  CuCu2Se  is  negative),  so this result  is
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consistent with the two-phase boundary condition, and is adopted as the complete

solution at the reference temperature.

x00@1, tRefD = subspaceSoln8x001 Ø 0.0195167, x002 Ø 0.0176221, x003 Ø -0.0176149,
x004 Ø 1.80537 µ 10-7 , x005 Ø -0.0000921211, x006 Ø 0.0177222,
x007 Ø 0.0176168, x008 Ø 8.30345 µ 10-10 , x009 Ø 0.000034938,
x0010 Ø 7.51257 µ 10-9, x0011 Ø 3.68208 µ 10-12, x0012 Ø -8.26641 µ 10-10,
x0013 Ø 6.322 µ 10-8, x0014 Ø -5. µ 10-27 , x0015 Ø -4.13904 µ 10-27 ,
x0016 Ø 7.56295 µ 10-23, x0017 Ø 3.25874 µ 10-20 ,
x0018 Ø 2.2824 µ 10-10 , x0019 Ø 5.9826 µ 10-10, x0020 Ø 5.6654 µ 10-13,
x0021 Ø 4.02263 µ 10-13, x0022 Ø 1.62585 µ 10-13 , xsCISclG Ø 3865.46<

The solution can now be incrementally extended to lower temperatures  by

analytic  continuation,  using  the  same computational  algorithm  with  the  initial

solution estimate taken to be the solution at the nearest temperature.  For example,

this solution at tRef is used as the initial estimate of the solution for a temperature of

tRef–10, and that solution used as the initial estimate for tRef–20. The solution can be

extended in this manner so long as the numerical algorithm continues to converge

the Gibbs-Duhem equations satisfactorily.

The radius of convergence is limited by two considerations,  one numerical

and the other physical.  The numerical limit occurs when the concentrations  of the

species in any single independent reaction drop to levels so small that the Newton-

Raphson algorithm's incremental reaction extent step size exceeds that required to set

the reactants' concentrations with sufficient precision to satisfy the the Gibbs-Duhem

equation for that reaction.  This difficulty  can be ameliorated  to some extent  by

increasing  the  WorkingPrecision  option  of  Mathematica's  FindRoot  function.
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Eventually the increased time required to converge the solution with ever-increasing

requirements  for numerical precision becomes unacceptable,  and it is necessary to

remove those species from the basis set that have essentially vanished.

The physical limit on the radius of convergence occurs when the concentration

of the CuCu2Se  species drops to zero, or as will be seen later, when it increases

sufficiently  (in  the  case  where  Z>1)  to  bring  the  secondary  Cu2-d Se  phase's

composition to its maximum stable value. The mathematical formalism employed to

solve  this  model  does not  incorporate  these  physical  constraints,  so it  will  be

necessary  to explicitly  remove the CuCu2Se  species  from the basis set when the

solution reaches these points.  The analysis  at the end of the preceding boundary

condition section estimated the lower temperature limit based on the assumption

that  the  ternary  phase  was  stoichiometric  CuInSe2 .  Clearly,  since  the  overall

composition of the two-phase mixture is stoichiometric  and the secondary Cu2-d Se

phase's composition is not, the ternary phase must also deviate from stoichiometric

CuInSe2 , which may effect the temperature at which this limit occurs. The solution

shows that the numerical convergence deteriorates even before that temperature is

reached:8"tRef-170", HtRef - 170L "K"<8"tK000", tK000 "K"<8"a- b-d CIS eutectoid", tMaxab "K",
ConvertTemperature@tMaxab, Kelvin, CelsiusD "°C"<8cE0P23T "molar concentration at tRef-170 of",
c0x@1, tRef - 170DP23T ê. x00@1, tRef - 170D<8tRef-170, 878.15 K<8tK000, 847.432 K<
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8a- b-d CIS eutectoid, 873.15 K, 600. °C<8molar concentration at tRef-170 of CuCu2Se, -0.0000223203<8"total solution affinity deviation",
sSD@gd0CIS@1, tRef - 170, xsCISclGD ê. x00@1, tRef - 170DD "Joules"<8"solution affinity deviation for reaction 14",Hgd0CIS@1, tRef - 170, xsCISclGD ê. x00@1, tRef - 170DLP14T "Joules"<

Extract@Array@8#, rxn@#, n0xD< &, 22D, Thread@8814<<DD êê TableForm8total solution affinity deviation, 0.58124 Joules<8solution affinity deviation for reaction 14, -0.58124 Joules<
14 -VIn

x + VIn
‰‰‰ + 3 e£

The concentrations of all of the VIn  species have dropped to less than one

atom per mole of CIS near the previously estimated temperature limit, and below this

temperature their entropies diverge to the point that they overflow the numerical

algorithms.  This  is  already evident  in the poor convergence  of the solution  for

reaction 14.  This  necessitates  reformulation  of the underlying  stoichiometry  and

reaction  matrices  to  eliminate  these  species.  Furthermore,  the  eutectoid

decomposition temperature for d-CIS is at about 873K, so the VIn  species  will be

dropped  from the  basis  below  the  temperature  of  tRef-170 = 878K.  This  is  a

numerical convergence limit, and not the physical limit, since the equilibrium value

for CuCu2Se  is still negative at this temperature.  Thus CuCu2Se  must remain in the

basis set.H* the CISa+Cu2Se basis vector without VIn  species *L cE0xVin = Drop@cE0, 810, 13<D8CISa , VCu
x , VCu

£ , InCu
x , InCu

‰ , InCu
‰‰ , CuIn

x , CuIn
£ , CuIn

££ ,
VSe

x , VSe
‰‰ , Cui

x, Cui
‰ , Cui ∆VCu , CuIn ∆ InCu , VCu ∆ InCu ,HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , CuCu2Se , Cu2_dSe, e£ , h‰ , DN<

D0xVin = Transpose@Drop@Transpose@D0D, 810, 13<DD;
formula@i_, D0xVinD := 8cE0xVin, a .D0xVin<PAll, iT
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n0xVin = Transpose@NullSpace@D0xVinDD;
rxn@i_, n0xVinD := n0xVinPAll, iT.cE0xVin

LogicalExpand@Array@rxn@#, n0xVinD &, 13D === Array@rxn@#, n0D &, 13DD Ï
LogicalExpand@

Array@rxn@# - 4, n0xVinD &, 85<, 818<D === Array@rxn@#, n0D &, 85<, 818<DD
True

The preceding function shows that all of the reactions in n0xVin identically

match those in n0 after those involving VIn  species are deleted from the latter. Also,

the linear  combinations  of reactions  in n0  used  to define  the matrix  n0x  only

combined the deleted reactions  with themselves.  This substantially  simplifies the

extension  of  the  previous  solution  to  lower  temperatures,  which  requires  the

definition of n0xxVin and other analogous reformulated functions with respect to the

reduced basis cE0xVin:

n0xxVin = Drop@Transpose@Drop@Transpose@n0xD, 814, 17<DD, 810, 13<D;
rxn@i_, n0xxVinD := n0xxVinPAll, iT.cE0xVin

clusterXZ0xVin = Module@8im23<, With@8im23 = IdentityMatrix@23D <,
Array@Flatten@8#, cE0xVinP#T, cXZ@im23P#T, D0xVinD<D &, 18DDD;

c0LimitsxVin = Module@8x00min, x00max, z00min, z00max<, With@8x00min = Min@%PAll, 3TD, x00max = Max@%PAll, 3TD, z00min = Min@%PAll, 4TD,
z00max = Max@%PAll, 4TD<, 8x00min, x00max, z00min, z00max<DD: 7

ÅÅÅÅÅÅÅÅÅ
11

,
7
ÅÅÅÅÅ
5

,
11
ÅÅÅÅÅÅÅÅÅ
12

,
12
ÅÅÅÅÅÅÅÅÅ
11

>
c00xVinbasis = 81, 10, 7, 18<;
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clusterXZ0xVinP#T & êü c00xVinbasis êê
TableFormH*index cluster X Z *L

1 CISa 1 1

10 VSe
x 1 11ÅÅÅÅÅÅÅ12

7 CuIn
x 7ÅÅÅÅÅ5

12ÅÅÅÅÅÅÅ11

18 H2VCu ∆ InCu La
7ÅÅÅÅÅÅÅ11 1

D000xVin = Transpose@Transpose@Take@D0xVin, 4DDP#T & êü c00xVinbasisD;
cE0xVinP#T & êü c00xVinbasis
D000xVin êê MatrixForm8CISa , VSe

x , CuIn
x , H2VCu ∆ InCu La <i

k
jjjjjjjjjjjjjj

2 6 7 7
2 6 5 11
4 11 12 20
0 0 0 0

y
{
zzzzzzzzzzzzzz

formula@i_, D000xVinD := 8cE0xVinP#T & êü c00xVinbasis, Take@a, 4D.D000xVin<PAll, iT
Array@formula@#, D000xVinD &, Length@c00xVinbasisDD êê TableForm

CISa 2 Cu + 2 In + 4 Se
VSe

x 6 Cu + 6 In + 11 Se

CuIn
x 7 Cu + 5 In + 12 SeH2VCu ∆ InCu La 7 Cu + 11 In + 20 Se

n000xVin = Transpose@NullSpace@D000xVinDD;
rxn@i_, n000xVinD := n000xVinPAll, iT.HcE0xVinP#T & êü c00xVinbasisL
Array@rxn@#, n000xVinD &, Dimensions@n000xVinDP2TD êê TableForm

-33 CISa + 4 CuIn
x + 4VSe

x + 2 H2VCu ∆ InCu La
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H* using c00xVinbasisØ8c1,c10,c7,c18<,
are the X' s for the vectors 8c1,0,0,0< and 80,c10,0,0< always equal? *L

cXZ@8c1, 0, 0, 0<, D000xVinDP1T === cXZ@80, c10, 0, 0<, D000xVinDP1T
TrueH* how does Z vary for their linear combination? *L

cXZ@81 - c10, c10, 0, 0<, D000xVinD êê Simplify:1,
4 + 7 c10
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 + 8 c10

>H* what is the extremal value of Z? *L %P2T ê. c10 Ø 1

11
ÅÅÅÅÅÅÅÅÅ
12H* does any linear combination of the normalized vectors 80,0,c7,0< and80,0,0,c18< always furnish the same X value as 8c1,0,0,0<? *LSolve@

cXZ@8c1, 0, 0, 0<, D000xVinDP1T == cXZ@8c1 - c7 - c18, 0, c7, c18<, D000xVinDP1T, 8c18::c18 Ø
c7
ÅÅÅÅÅÅÅÅ
2

>>H* how does Z vary for that linear combination? *L
cXZ@81 - c7 - c18, 0, c7, c18<, D000xVinD ê. % êê Simplify::1,

4 + 16 c7
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 + 15 c7

>>H* what is the extremal value of Z for that linear combination? *L %P1, 2T ê. c7 Ø 2 ê 3
Clear@X0, Z0, c1, c10, c7, c18D

22
ÅÅÅÅÅÅÅÅÅ
21

These results provide all the additional information required to correctly limit

the range of X and Z, and to initialize c0 . The latter is set to a linear combination of

the four vectors {c1, 0, 0, 0},  {0, 0, 0, c18}, {0, c10, 0, 0}, and {0, 0, c7, c7/2} determined

by the values of X and Z. The limits list is redefined so that both the minimum and
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maximum permissible Z values are unity at the minimum X value where the system

can only consist of c18, which is H2VCu ∆ InCu La  in this basis.

c0xVinLimits = ModuleB8x00min, x00max, z00min, z00max<,
WithB:x00min = 7 ê 11, x00max = 1, z00min =

11
ÅÅÅÅÅÅÅÅÅ
12

+
11 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

48
,

z00max =
12
ÅÅÅÅÅÅÅÅÅ
11

-
11 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

44
>, 8x00min, x00max, z00min, z00max<FF: 7

ÅÅÅÅÅÅÅÅÅ
11

, 1,
11
ÅÅÅÅÅÅÅÅÅ
12

+
11 H1 - XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

48
,

12
ÅÅÅÅÅÅÅÅÅ
11

+
1
ÅÅÅÅÅ
4

H-1 + XL>
x000xVin = Array@1 &, 18D -

2 Array@KroneckerDelta@1, # D &, 18D - Array@KroneckerDelta@5, # D &, 18D +
2 Array@KroneckerDelta@4, # D &, 18D + 4 Array@KroneckerDelta@16, # D &, 18D8-1, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1<

c0xVinLimits = ModuleB8x00min, x00max, z00min, z00max<,
WithB:x00min =

14011
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
22000

, x00max = 1, z00min =
11
ÅÅÅÅÅÅÅÅÅ
12

+
11 H1 - X + 5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ10000 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

48
,

z00max =
12
ÅÅÅÅÅÅÅÅÅ
11

-
11 H1 - X + 5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ10000 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

44
>, 8x00min, x00max, z00min, z00max<FF;

c0xVinLimits ê.
X Ø c0xVinLimitsP1T H* no Z deviation possible in model at minimum X *L8c0xVinLimitsP3T, c0xVinLimitsP4T< ê.
X Ø 1 H* maximum Z deviation is possible for X=1 *L: 14011

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
22000

, 1, 1, 1>: 29337
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32000

,
95989
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
88000

>
% êê N H* approximate maximum limits of Z deviation *L80.916781, 1.09078<H* the maximum limits of Z deviation have not been significantly reduced

by the change in basis *L8c0LimitsP4T, c0xVinLimitsP4T< ê. X Ø 1 êê N81.09664, 1.09078<
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H* initial cluster quantities for Z <
1 and that vector' s molar normalization factor *L

Solve@81, Z< ã cXZ@8c1 - c10, c10, 0, 1 - c1<, D000xVinD, 8c1, c10<D;88c1 - c10, c10, 0, 1 - c1<, mx@8c1 - c10, c10, 0, 1 - c1<, D000xVinDP1T-1< ê. %:::1 +
4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, -

4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0, 0>,

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 24 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z + 2 I1 + 4 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z M >>H* initial cluster quantities for Z > 1;

and that vector' s molar normalization factor *L
Solve@81, Z< ã cXZ@81 - 3 c7 ê 2 - c18, 0, c7, c18 + c7 ê 2<, D000xVinD, 8c7, c18<D881 - 3 c7 ê 2 - c18, 0, c7, c18 + c7 ê 2<,

mx@81 - 3 c7 ê 2 - c18, 0, c7, c18 + c7 ê 2<, D000xVinDP1T-1< ê. %::c7 Ø -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, c18 Ø 0>>:::1 +
6 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, 0, -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, -
2 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>,

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 42 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z + 2 I1 + 6 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z M >>
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c00xVin@Z_D ê; 29337
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32000

§ Z § 1 :=

ModuleB8c00<, WithB:c4Zminus = :1 +
4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, -

4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0, 0>,

mCuInv1 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 24 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z + 2 I1 + 4 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z M >,

c00 = Plus üü MapThread@ReplacePart@Array@0 &, Length@cE0xVinDD, #1, #2D &,8c4Zminus, c00xVinbasis<D;
c00 = ReplacePart@c00, dmin@tRefD x000xVinP4T 2*^-26, 19D;
c00 = mCuInv1 Hc00 + Hn0xVin ê. d Ø dmin@tRefDL.x000xVin 1*^-26L;
ReplacePart@c00, 1, 23DFF

c00xVin@Z_D ê; 1 < Z §
95989
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
88000

:= ModuleB8c00<,
WithB:c4Zplus = :1 +

6 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, 0, -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, -
2 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>,

mCuInv2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 42 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z + 2 I1 + 6 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z M >,

c00 = Plus üü MapThread@ReplacePart@Array@0 &, Length@cE0xVinDD, #1, #2D &,8c4Zplus, c00xVinbasis<D;
c00 = ReplacePart@c00, dmin@tRefD x000xVinP4T 2*^-26, 19D;
c00 = mCuInv2 Hc00 + Hn0xVin ê. d Ø dmin@tRefDL.x000xVin 1*^-26L;
ReplacePart@c00, 1, 23DFF

m00xVin@c_, tK_D ê; Length@cD === Length@cE0xVinD := WithB8n = H# ê Plus üü #L &@
Join@Take@Drop@Drop@mcl, 825<D, 810, 13<D Take@c, 20D, 18D, 8cP20T<DD,

dm = dmin@tKD, d0 = dmin@tKD - cP19T ê cP20T, nCISa = nAvo c ê First@cD<,
ReplacePart@ReplacePart@Drop@Drop@m00ab@tKD, 825<D, 810, 13<D,HH3 - d0L G_CuSeX@tK, H3 - d0L-1D - H3 - dmL G_CuSeX@tK, H3 - dmL-1DL Hdm - d0L-1, 19D, H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 20D +

rG tK JoinBLog@Drop@n, -1DD, :0, Log@Last@nDD, LogB nCISaP21T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F,

LogB nCISaP22T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF
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x00xVin = Drop@x000, 814, 17<D;
c0xxVin@Z_, tK_D := c00xVin@ZD + Hn0xxVin ê. d Ø dmin@tKDL.x00xVin
gd00xVin@Z_, tK_, Dg0CISacl_D :=HHm00xVin@c0xxVin@#, #2D, #2D ê. Dg0acl@#2D Ø \#3L.Hn0xVin ê. d Ø dmin@#2DLL &@

Z, tK, Dg0CISaclDH* the solution with VIn defects omitted is
virtually identical to that found previously at tRef-170 *L

"total RMS fractional difference between model species
concentrations with old and new bases" 

WithB8oldAnswer = Drop@c0x@1, tRef - 170D ê. x00@1, tRef - 170D, 810, 13<D<,
sSDB Hc0xxVin@1, tRef - 170D ê. bridge170xVinL - oldAnswer

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
oldAnswer

FF
5.68228 µ 10-11 total RMS fractional difference between

model species concentrations with old and new bases

The solution at the basis set cross-over temperature is virtually identical.  In

order to extend the solution to lower temperatures the critical temperature at which

the selenium content of Cu2-d Se drops to its minimum stable value needs to be

determined  using  this  modified  basis  set cE0xVin.  It  is  apparently  below  the

eutectoid temperature at which indium-rich d-CIS decomposes to form a mixture of a

and b-CIS, taken here to be 600°C.8"a- b-d CIS eutectoid", tMaxab "K",
ConvertTemperature@tMaxab, Kelvin, CelsiusD "°C"<

tMaxab === tRef - 1758a- b-d CIS eutectoid, 873.15 K, 600. °C<
True
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ListPlotBThreadB:tRef - Range@0, 370, 10D,ikjjjjikjjj3 - ikjjjdmin@tRef - #D -
c0xxVin@1, tRef - #DP19T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c0xxVin@1, tRef - #DP20T y{zzz ê. x00@1, tRef - #Dy{zzz-1

-

xMin_Cu2Se@tRef - #Dy{zzzz & êü Range@0, 370, 10D>F,
AxesOrigin Ø 8tRef - 370, 0<, PlotJoined Ø True,
AxesLabel Ø 8"T@KD", "Dx"<,
PlotLabel Ø

" Cu2-dSe Selenium Content in Equilibrium at X=Z=1 with a-CIS\n Binary

phase composition deviation from minimum selenium mole fraction\n"F;

700 750 800 850 900 950 1000 1050
T@KD

0.00005

0.0001

0.00015

0.0002

0.00025

Dx

Figure A.3 Deviation of the Cu2-d Se phase's selenium content in equilibrium with 
a–CIS at X = Z = 1 from its minimum stable selenium mole fraction

tK00 = tRef - 370 - 1.4746

676.675
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H* this cell no longer executes because x00@1,tK00D
was recalculated with the cE0LT basis, without CuCu2Se *L

Thread@8cE0xVin, c0xxVin@1, tK00D ê. x00@1, tK00D<D
Positive@c0x@1, tK00DP23T ê. x00@1, tK00DD88CISa , 0.4859<, 8VCu

x , 4.29848 µ 10-8<, 8VCu
£ , 0.0016383<, 8InCu

x , 2.88698 µ 10-23 <,8InCu
‰ , 1.78049 µ 10-20<, 8InCu

‰‰ , 1.63641 µ 10-19<, 8CuIn
x , 3.58544 µ 10-16<,8CuIn

£ , 1.58191 µ 10-13<, 8CuIn
££ , 3.36906 µ 10-14<, 8VSe

x , 2.54823 µ 10-10<,8VSe
‰‰ , 1.1571 µ 10-10<, 8Cui

x , 2.57465 µ 10-20<, 8Cui
‰ , 3.74289 µ 10-17 <,8Cui ∆VCu , 2.8945 µ 10-12<, 8CuIn ∆ InCu , 2.18344 µ 10-6<,8VCu ∆ InCu , 1.12679 µ 10-6<, 8HVCu ∆ InCu L‰ , 0.00163806<,8H2VCu ∆ InCu La , 0.0000295799<, 8CuCu2Se, 4.06882 µ 10-9<,8Cu2_dSe, 0.00333754<, 8e£ , 4.47687 µ 10-8<, 8h‰ , 2.82429 µ 10-7 <, 8DN, 1.00167<<

True8tK00, tK00 - tK000, "critical temperature @°CD=",
ConvertTemperature@tK00, Kelvin, CelsiusD<8676.675, -170.757, critical temperature @°CD=, 403.525<

This two-phase equilibrium calculation,  which permits deviation of the CIS

composition from that of stoichiometric CuInSe2 , shows that the selenium content of

the Cu2-d Se phase at lower temperatures drops below the minimum required for its

stability at about 400°C, if the extent of selenium and copper segregation to that

phase are taken to be independent.  Note that this is about 170°C below than the

critical  temperature  calculated  previously  as  the  limiting  temperature  for  a

hypothetical equilibrium between Cu2-d Se and stoichiometric CuInSe2 .

This constraint must be satisfied for any solution to be valid, since it is known

that along the pseudobinary section (where Z = 1) CIS is found in equilibrium with

Cu2-d Se  and not  with  the  nearly  pure  Cu  phase  with  which  Cu2-d Se  is  in

equilibrium when its selenium content is less than the minimum value at the two-
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phase boundary between the latter two.  A three-phase equilibrium between them is

a thermodynamic  critical  point,  and cannot exist  at more than one point in the

ternary phase field without violating the Gibbs phase rule. That point  is not on the

pseudobinary section.

Thus the foregoing solutions are valid only to this temperature,  below which

the solution algorithm must be modified to limit the segregation of excess copper.

This is easily done by simply removing the species CuCu2Se , which was included in

the  basis  specifically  to enable  this  segregation  of excess  copper  to the  non-

stoichiometric secondary Cu2-d Se phase.H* the CISa+Cu2Se basis vector without VIn or CuCu2Se *L
cE0LT = Drop@cE0xVin, 819<D8CISa , VCu

x , VCu
£ , InCu

x , InCu
‰ , InCu

‰‰ , CuIn
x , CuIn

£ , CuIn
££ ,

VSe
x , VSe

‰‰ , Cui
x, Cui

‰ , Cui ∆VCu , CuIn ∆ InCu , VCu ∆ InCu ,HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , Cu2_dSe, e£ , h‰ , DN<
D0LT = Transpose@Drop@Transpose@D0xVinD, 819<DD;
formula@i_, D0LTD := 8cE0LT, a .D0LT<PAll, iT
n0LT = Transpose@NullSpace@D0LTDD;
rxn@i_, n0LTD := n0LTPAll, iT.cE0LT

n0xLT = Drop@Transpose@Drop@Transpose@n0xxVinD, 85<DD, 819<D;
rxn@i_, n0xLTD := n0xLTPAll, iT.cE0LT
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m00LT@c_, tK_D ê; Length@cD === Length@cE0LTD := WithB8n = H# ê Plus üü #L &@Join@Take@Drop@Drop@mcl, 825<D, 810, 13<D Take@c, 20D, 18D,8cP19T<DD, dm = dmin@tKD, nCISa = nAvo c ê First@cD<,
ReplacePart@Drop@Drop@Drop@m00ab@tKD, 825<D, 810, 13<D, 820<D,H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 19D + rG tK JoinBLog@Drop@n, -1DD,:Log@Last@nDD, LogB nCISaP20T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F, LogB nCISaP21T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

x000LT = Drop@x00xVin, 85<D;
c00LT@Z_D := Drop@c00xVin@ZD, 819<D
c0xLT@Z_, tK_D := c00LT@ZD + Hn0xLT ê. d Ø dmin@tKDL.x000LT
gd00LT@Z_, tK_, Dg0CISacl_D :=HHm00LT@c0xLT@#, #2D, #2D ê. Dg0acl@#2D Ø \#3L.Hn0LT ê. d Ø dmin@#2DLL &@

Z, tK, Dg0CISaclDH* the solution with the cE0LT basis is virtually
identical to that found previously with cE0xVin at tK00*L

Thread@8cE0LT, c0xLT@1, tK00D ê. bridgetK00<D
"total RMS absolute difference between

model species concentrations with old and new bases" 
With@8oldAnswer = Drop@Hc0xxVin@1, tK00D ê. x00@1, tK00DL, 819<D<,

sSD@Hc0xLT@1, tK00D ê. bridgetK00L - oldAnswerDD88CISa , 0.4859<, 8VCu
x , 4.28681 µ 10-8<, 8VCu

£ , 0.0016383<, 8InCu
x , 2.9027 µ 10-23<,8InCu

‰ , 1.78533 µ 10-20<, 8InCu
‰‰ , 1.63642 µ 10-19<, 8CuIn

x , 3.56602 µ 10-16<,8CuIn
£ , 1.57762 µ 10-13<, 8CuIn

££ , 3.36906 µ 10-14<, 8VSe
x , 2.56211 µ 10-10<,8VSe

‰‰ , 1.15711 µ 10-10 <, 8Cui
x, 2.58166 µ 10-20<, 8Cui

‰ , 3.74289 µ 10-17 <,8Cui ∆VCu , 2.8945 µ 10-12<, 8CuIn ∆ InCu , 2.18344 µ 10-6<,8VCu ∆ InCu , 1.12985 µ 10-6<, 8HVCu ∆ InCu L‰ , 0.00163806<,8H2VCu ∆ InCu La , 0.0000295798<, 8Cu2_dSe, 0.00333754<,8e£ , 4.48904 µ 10-8<, 8h‰ , 2.81664 µ 10-7 <, 8DN, 1.00167<<
1.42243 µ 10-8 total RMS absolute difference between

model species concentrations with old and new bases

The solution concentrations with the low-temperature basis set cE0LT differs

by at most a few ppb at the critical temperature, but the convergence has improved by
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about four orders of magnitude. Thus the solution can be extended further over the

remaining temperature range to STP:

tSTP + 750 === tRef

True

Thread@8cE0LT, c0xLT@1, tRef - 750D ê. x00@1, tRef - 750D<D88CISa , 0.5<, 8VCu
x , 9.77066 µ 10-20 <, 8VCu

£ , 2.7131 µ 10-8<, 8InCu
x , 1.36318 µ 10-41<,8InCu

‰ , 7.17465 µ 10-42<, 8InCu
‰‰ , 7.17465 µ 10-43<, 8CuIn

x , 2.86986 µ 10-42<,8CuIn
£ , 1.8617 µ 10-33<, 8CuIn

££ , 5.73037 µ 10-31<, 8VSe
x , 1.3363 µ 10-13<,8VSe

‰‰ , 2.41493 µ 10-22 <, 8Cui
x, 5.33794 µ 10-40<, 8Cui

‰ , 1.55161 µ 10-37 <,8Cui ∆VCu , 1.35084 µ 10-26<, 8CuIn ∆ InCu , 1.71625 µ 10-12<,8VCu ∆ InCu , 9.5822 µ 10-11<, 8HVCu ∆ InCu L‰, 2.76996 µ 10-8<,8H2VCu ∆ InCu La , 5.1677 µ 10-12<, 8Cu2_dSe, 5.56013 µ 10-8<, 8e£ , 5.68646 µ 10-10<,8h‰ , 1.91401 µ 10-16<, 8DN, 1.00000002780059475484076817625 <<
This solution shows that the InCu , CuIn , and Cui  species substantively vanish

to levels of less than one defect per mole at STP in the equilibrium stoichiometric

CuInSe2  two-phase mixture. The dominant defects in this copper-saturated  a–CIS

phase  at  STP are  the  ionized  cation  NDC  dissociation  components,  VCu
£  andHVCu ∆ InCu L‰ .

These results are next compiled and interpolated to define continuous solution

functions, and various information functions defined.

solnRange = Join@Range@tRef, tRef - 170, -10D,8tMaxab<, Range@tRef - 180, tRef - 745, -5D, 8tSTP<D;
solnRangead = Take@solnRange, 19D;
solnRangeab = Reverse@Drop@solnRange, 18DD;
Dg0acl = Module@8Dg<, Dg = HLast@x00@1, #DDP2TL & êü solnRange;

Interpolation@Thread@8solnRange, Dg<D, InterpolationOrder Ø 4DD;
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c00ad@1D =
Module@8c, cTmin, cVin<, cVin = Interpolation@Thread@8Drop@solnRangead, -1D,HHc0x@1, #D ê. x00@1, #DL & êü Drop@solnRangead, -1DLPAll, #T<D,

InterpolationOrder Ø 4D & êü Range@10, 13D;
Off@InterpolatingFunction::"dmval"D; cTmin =

Drop@Flatten@Insert@c0xxVin@1, tMaxabD ê. x00@1, tMaxabD,
Array@cVinP#T@tMaxabD &, 4D, 10DD, 823<D;

On@InterpolatingFunction::"dmval"D; c = Append@
Drop@Hc0x@1, #D ê. x00@1, #DL, 823<D & êü Drop@solnRangead, -1D, cTminD;

Interpolation@Thread@8solnRangead, cPAll, #T<D, InterpolationOrder Ø 4D & êü
Range@Length@cE0D - 1DD;

<< NumericalMath`SplineFit`

c00Fit@1D = Module@8c<, c = Join@Hc0xLT@1, #D ê. x00@1, #DL & êü Take@solnRangeab, 76D,
Drop@Hc0xxVin@1, #D ê. x00@1, #DL, 819<D & êü

Take@solnRangeab, 877, Length@solnRangeabD<DD;
SplineFit@Thread@8solnRangeab, cPAll, #T<D, CubicD & êü Range@Length@cE0LTDDD;

cEad = Drop@cE0, 823<D;
D0ad = Transpose@Drop@Transpose@D0D, 823<DD;
c00@1, tK_?NumericQD ê; tMaxab < tK § tRef :=

Through@Hc00ad@1DP#T & êü Range@Length@cEadDDL@tKDD
c00@1, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@1DP#T & êü Range@Length@cE0LTDDL@TDDPAll, 2TF
segCu2SeZ1@tK_?NumericQD ê; tMaxab < tK § tRef := c00@1, tKDP23T
segCu2SeZ1@tK_?NumericQD ê; tSTP § tK § tMaxab := c00@1, tKDP19T
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d0Fit = SplineFitBJoinBikjjj:tRef - #, ikjjjdmin@tRef - #D -
c0xxVin@1, tRef - #DP19T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c0xxVin@1, tRef - #DP20T ê. x00@1, tRef - #Dy{zzz> & êü

Range@0, 370, 10Dy{zzz, 88tRef - 380, dmin@tRef - 380D<<F, CubicF;
d0@tK_?NumericQD ê; tRef - 380 § tK § tRef := WithB:T =

tRef - tK
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

10
>, d0Fit@TDP2TF

d0@tK_?NumericQD ê; tSTP § tK < tRef - 380 :=

WithB8x_Se = xMin_Cu2Se@tKD<, -1 + 3 x_Se
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x_Se
F

mx@c00@1, tRefD, D0adD ê. d Ø d0@tRefD
mx@c00@1, tSTPD, D0LTD ê. d Ø d0@tSTPD81., 1., 2., 3.46945 µ 10-18<81., 1., 2., 0.<
xaZ1@tK_?NumericQD ê; tMaxab < tK § tRef :=

cXZ@partCIS@c00@1, tKDD, partCIS@D0adDDP1T
xaZ1@tK_?NumericQD ê; tSTP § tK § tMaxab :=

cXZ@partCIS@c00@1, tKDD, partCIS@D0LTDDP1T
Off@General::"spell1"D
zaZ1@tK_?NumericQD ê; tMaxab < tK § tRef :=

cXZ@partCIS@c00@1, tKDD, partCIS@D0adDDP2T
zaZ1@tK_?NumericQD ê; tSTP § tK § tMaxab :=

cXZ@partCIS@c00@1, tKDD, partCIS@D0LTDDP2T
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Plot@Evaluate@HzaZ1@TD - 1L 1*^6D, 8T, tSTP, tMaxab<,
AxesOrigin Ø 8tSTP, 0<, AxesLabel Ø 8"T@KD", "DZ@ppmD"<,
PlotLabel Ø " a-CIS Phase Valency Deviation at Equilibrium

\n with Cu2-dSe in the Stoichiometric CuInSe2 Mixture\n"D
300 400 500 600 700 800

T@KD

-0.5

-0.4

-0.3

-0.2

-0.1

DZ@ppmD

Figure A.4 Temperature dependence of the valency deviation of a–CIS in 
equilibrium with Cu2-d Se in the stoichiometric CuInSe2  mixture

Since the excess Gibbs energy of the ideal CISa  cluster is now determined, it

may be removed from the function definitions as an independent variable,  which

considerably  speeds the computation  of the solution at other  temperatures  and

valence stoichiometries.8Last@x00@1, tMaxabDD, Dg0acl@tMaxabD<8xsCISclG Ø 1450.53, 1450.53<
gd0xVin@Z_, tK_D := Hm00xVin@c0xxVin@#, #2D, #2D.Hn0xVin ê. d Ø dmin@#2DLL &@Z, tKD
gd0LT@Z_, tK_D := Hm00LT@c0xLT@#, #2D, #2D.Hn0LT ê. d Ø dmin@#2DLL &@Z, tKD
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The equilibrium solution for X = Z = 1 shows that the segregation of Cu2-d Se

results in positive molecularity and valency deviations in the a-CIS phase:

" CIS valency deviation at the aê bêd-CIS eutectoid with X=Z=1" HcXZ@partCIS@c00@1, tMaxabDD, partCIS@D0LTDDP2T - 1L
-5.62808 µ 10-6 CIS valency deviation at the aêbêd-CIS eutectoid with X=Z=1

FindRoot@c00@1, TDP20T ã c00@1, TDP21T ,8T, tSTP + 400, tSTP + 410<, AccuracyGoal Ø 20D;8"X=Z=1 isoelectronic temperature", T "@KD",
"@°CD" ConvertTemperature@T, Kelvin, CelsiusD< ê. %8X=Z=1 isoelectronic temperature, 608.563 @KD, 335.413 @°CD<

Thread@88cE0LTP20T, cE0LTP21T<, 8c00@1, tSTPDP20T, c00@1, tSTPDP21T<<D88e£ , 5.68646 µ 10-10<, 8h‰ , 1.91401 µ 10-16 <<
The equilibrium  solution  for X = Z = 1  and temperatures  below the d-CIS

eutectoid decomposition shows a maximum valency deviation in the a-CIS phase of

less  than  6  ppm.  Deviations  of  this  magnitude  in  the  principal  constituent

compositions  are  considerably  less  than  the  resolution  of  current  analytical

measurement  techniques.  It  is  therefore  of  interest  to  assess  the  influence  of

introducing an excess of selenium of this same magnitude on the defect structure of

the a-CIS  phase,  since transport  studies  have shown [3] that CIS material  with

positive  valency  deviation  is  p-type  at  STP,  whereas  the preceding  calculation

predicts that the a-CIS phase component in the precisely stoichiometric equilibrium

two-phase mixture is weakly n-type. Experimental  confirmation of this prediction

might be extremely difficult since the secondary Cu2-d Se phase is always strongly p-

type [160, 176].
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A comparison  of  the  model  species'  concentrations  at  STP,  the  highest

temperature  at which the Cu2-d Se phase's  selenium content is minimal,  and the

a/b/d eutectoid shows the trends in their temperature variation:

" STP tK00 tMaxab"8cE0LTP#T, c00@1, tSTPDP#T, c00@1, tK00DP#T, c00@1, tMaxabDP#T< & êü
Range@Length@cE0LTDD

gd0LT@1, tSTPD ê. x00@1, tSTPD;
"Joules RMS affinity solution error at STP" sSD@%D

STP tK00 tMaxab88CISa , 0.5, 0.4859, 0.421051<,8VCu
x , 9.77066 µ 10-20, 4.2602 µ 10-8, 1.30988 µ 10-6<,8VCu
£ , 2.7131 µ 10-8, 0.00163829, 0.00897599<,8InCu
x , 1.36318 µ 10-41, 2.93546 µ 10-23 , 2.88754 µ 10-18<,8InCu
‰ , 7.17465 µ 10-42, 1.7955 µ 10-20, 5.27433 µ 10-16 <,8InCu
‰‰ , 7.17465 µ 10-43, 1.6364 µ 10-19, 2.03187 µ 10-15 <,8CuIn

x , 2.86986 µ 10-42, 3.52425 µ 10-16, 2.08787 µ 10-13<,8CuIn
£ , 1.8617 µ 10-33, 1.56818 µ 10-13 , 4.51698 µ 10-11<,8CuIn
££ , 5.73037 µ 10-31, 3.36905 µ 10-14, 1.44442 µ 10-11<,8VSe

x , 1.3363 µ 10-13, 2.59434 µ 10-10 , 1.73034 µ 10-8<,8VSe
‰‰ , 2.41493 µ 10-22 , 1.15711 µ 10-10, 8.1457 µ 10-9<,8Cui

x , 5.33794 µ 10-40, 2.59661 µ 10-20, 2.2171 µ 10-16<,8Cui
‰ , 1.55161 µ 10-37 , 3.74289 µ 10-17 , 7.87086 µ 10-14<,8Cui ∆VCu , 1.35084 µ 10-26, 2.89449 µ 10-12, 6.34405 µ 10-10<,8CuIn ∆ InCu , 1.71625 µ 10-12, 2.18344 µ 10-6, 0.0000166687<,8VCu ∆ InCu , 9.5822 µ 10-11, 1.13701 µ 10-6, 0.0000252791<,8HVCu ∆ InCu L‰ , 2.76996 µ 10-8, 0.00163806, 0.00897427<,8H2VCu ∆ InCu La , 5.1677 µ 10-12, 0.0000295796, 0.000448909<,8Cu2_dSe, 5.56013 µ 10-8, 0.00333755, 0.0188969<,8e£ , 5.68646 µ 10-10, 4.51775 µ 10-8, 5.44693 µ 10-7 <,8h‰ , 1.91401 µ 10-16, 2.79881 µ 10-7 , 2.2488 µ 10-6<,8DN, 1.00000002780059475484076817625 , 1.00167, 1.00945<<

244981. Joules RMS affinity solution error at STP
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It is apparent from the solution that defect complexes  form in lieu  of their

component isolated defects in every case included in this model. The convergence of

the solution at low temperatures  can thus be considerably  improved without the

introduction of significant error by eliminating those species from the basis set. They

can be reintroduced at any time if the solution in their absence shows a significant

increase in the concentration of the dominant related defect associate(s). Inspection of

the solution shown above at the maximum temperature of the remaining calculations

reveals that the InCu , and Cui  isolated point defect species can be removed, as the

VIn  defects were previously.  The isolated CuIn  and VSe  defects must be retained

because of their role in initializing the concentration vector when Z ≠ 1, and because

the latter does not form any defect associate included in this model.H* the reduced CISa+Cu2Se basis vector for high temp *L
cE00xsd = Drop@Drop@Drop@cE0, 816, 17<D, 810, 13<D, 84, 6<D8CISa , VCu

x , VCu
£ , CuIn

x , CuIn
£ , CuIn

££ , VSe
x , VSe

‰‰ , Cui ∆VCu , CuIn ∆ InCu ,
VCu ∆ InCu , HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , CuCu2Se , Cu2_dSe, e£ , h‰ , DN<H* the reduced CISa+Cu2Se basis vector for low temp *LcE008CISa , VCu

x , VCu
£ , CuIn

x , CuIn
£ , CuIn

££ , VSe
x , VSe

‰‰ , Cui ∆VCu , CuIn ∆ InCu ,
VCu ∆ InCu , HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , Cu2_dSe, e£ , h‰ , DN<8CISa , VCu

x , VCu
£ , CuIn

x , CuIn
£ , CuIn

££ , VSe
x , VSe

‰‰ , Cui ∆VCu , CuIn ∆ InCu ,
VCu ∆ InCu , HVCu ∆ InCu L‰ , H2VCu ∆ InCu La , Cu2_dSe, e£ , h‰ , DN<

D00xsd = Transpose@Drop@Drop@Drop@Transpose@D0D, 816, 17<D, 810, 13<D, 84, 6<DD;
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H* the stoichiometry matrix for the low temperature basis
without CuCu2Se has been previously defined *LD00 êê MatrixFormi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

2 5 5 7 7 7 6 6 6 6 8 8 7 2 - d 0 0 0
2 6 6 5 5 5 6 6 6 6 11 11 11 0 0 0 0

4 12 12 12 12 12 11 11 12 12 20 20 20 1 0 0 0
0 0 -1 0 -1 -2 0 2 0 0 0 1 0 0 -1 1 0
2 6 6 6 6 6 6 6 6 6 10 10 10 0 0 0 1
2 6 6 6 6 6 6 6 6 6 10 10 10 0 0 0 1

4 12 12 12 12 12 12 12 12 12 20 20 20 0 0 0 2
8 24 24 24 24 24 24 24 24 24 40 40 40 0 0 0 4

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
formula@i_, D00xsdD := 8cE00xsd, a .D00xsd<PAll, iT
formula@i_, D00D := 8cE00, a .D00<PAll, iT
n00xsd = Transpose@NullSpace@D00xsdDD;
n00 = Transpose@NullSpace@D00DD;
rxn@i_, n00xsdD := n00xsdPAll, iT.cE00xsd
rxn@i_, n00D := n00PAll, iT.cE00

n00xxsd = n00xsd;
n00xxsd = Transpose@ReplacePart@Transpose@n00xxsdD,

n00xsdPAll, 1T + 2 n00xsdPAll, 4T + n00xsdPAll, 6T, 1DD êê Simplify;
n00xxsd = Transpose@ReplacePart@Transpose@n00xxsdD,

n00xsdPAll, 3T + n00xsdPAll, 2T, 3DD;
n00xxsd = Transpose@ReplacePart@Transpose@n00xxsdD,

-n00xsdPAll, 6T + n00xsdPAll, 8T, 6DD;
n00xxsd = Transpose@ReplacePart@Transpose@n00xxsdD,

n00xsdPAll, 7T + n00xsdPAll, 3T - n00xsdPAll, 8T, 7DD;
n00xxsd = Transpose@ReplacePart@Transpose@n00xxsdD,

n00xsdPAll, 11T + 2 n00xsdPAll, 3T, 11DD; n00xxsd =
Transpose@ReplacePart@Transpose@n00xxsdD, n00xsdPAll, 12T + 2 n00xsdPAll, 2T, 12DD;

n00xxsd = Transpose@
ReplacePart@Transpose@n00xxsdD, n00xsdPAll, 13T + n00xsdPAll, 2T, 13DD;

rxn@i_, n00xxsdD := n00xxsdPAll, iT.cE00xsd
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n00x = Drop@Transpose@Drop@Transpose@n00xxsdD, 85<DD, 814<D;
rxn@i_, n00xD := n00xPAll, iT.cE00

c00xsdbasis = 81, 7, 4, 13<;
cE00xsdP#T & êü c00xsdbasis8CISa , VSe

x , CuIn
x , H2VCu ∆ InCu La <

x000xsd = Array@1 &, 13D -
2 Array@KroneckerDelta@1, # D &, 13D - Array@KroneckerDelta@5, # D &, 13D +
Array@KroneckerDelta@4, # D &, 13D + Array@KroneckerDelta@2, # D &, 13D8-1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1<

c00xsd@Z_D ê; 29337
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
32000

§ Z § 1 :=

ModuleB8c00<, WithB:c4Zminus = :1 +
4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, -

4 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-7 + 8 Z
, 0, 0>,

mCuInv1 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 24 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z + 2 I1 + 4 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-7+8 Z M >,

c00 = Plus üü MapThread@ReplacePart@Array@0 &, Length@cE00xsdDD, #1, #2D &,8c4Zminus, c00xsdbasis<D;
c00 = ReplacePart@c00, dmin@tRefD x000xsdP4T 2*^-26, 14D;
c00 = mCuInv1 Hc00 + Hn00xsd ê. d Ø dmin@tRefDL.x000xsd 1*^-26L;
ReplacePart@c00, 1, -1DFF

c00xsd@Z_D ê; 1 < Z §
95989
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
88000

:= ModuleB8c00<,
WithB:c4Zplus = :1 +

6 H-1 + ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, 0, -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, -
2 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>,

mCuInv2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 42 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z + 2 I1 + 6 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z M >,

c00 = Plus üü MapThread@ReplacePart@Array@0 &, Length@cE00xsdDD, #1, #2D &,8c4Zplus, c00xsdbasis<D;
c00 = ReplacePart@c00, dmin@tRefD x000xsdP4T 2*^-26, 14D;
c00 = mCuInv2 Hc00 + Hn00xsd ê. d Ø dmin@tRefDL.x000xsd 1*^-26L;
ReplacePart@c00, 1, -1DFF
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c00mind@Z_D := Drop@c00xsd@ZD, 814<D
m00xsd@c_, tK_D ê; Length@cD === Length@cE00xsdD :=

WithB8n = H# ê Plus üü #L &@Join@Drop@Drop@Drop@Drop@Drop@mcl, 825<D, 816, 17<D,810, 13<D, 84, 6<D Take@c, 15D, -2D, 8cP15T<DD, dm = dmin@tKD,
d0 = dmin@tKD - cP14T ê cP15T, nCISa = nAvo c ê First@cD<, ReplacePart@

ReplacePart@Drop@Drop@Drop@Drop@m00ab@tKD, 825<D, 816, 17<D, 810, 13<D, 84, 6<D,HH3 - d0L G_CuSeX@tK, H3 - d0L-1D - H3 - dmL G_CuSeX@tK, H3 - dmL-1DL Hdm - d0L-1, 14D, H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 15D +

rG tK JoinBLog@Drop@n, -1DD, :0, Log@Last@nDD, LogB nCISaP16T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F,

LogB nCISaP17T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

m00mind@c_, tK_D ê; Length@cD === Length@cE00D :=

WithB8n = H# ê Plus üü #L &@Join@Drop@Drop@Drop@Drop@Drop@mcl, 825<D, 816, 17<D,810, 13<D, 84, 6<D Take@c, 15D, -2D, 8cP14T<DD,
dm = dmin@tKD, nCISa = nAvo c ê First@cD<, ReplacePart@

Drop@Drop@Drop@Drop@Drop@m00ab@tKD, 825<D, 816, 17<D, 810, 13<D, 84, 6<D, 815<D,H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 14D + rG tK JoinBLog@Drop@n, -1DD,:Log@Last@nDD, LogB nCISaP15T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F, LogB nCISaP16T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

x00xsd = Drop@Drop@Take@x000, 19D, 814, 17<D, 811, 12<D;
c00xxsd@Z_, tK_D := c00xsd@ZD + Hn00xxsd ê. d Ø dmin@tKDL.x00xsd

x00mind = Drop@x00xsd, 85<D;
c00xmind@Z_, tK_D := c00mind@ZD + Hn00x ê. d Ø dmin@tKDL.x00mind

gd0xsd@Z_, tK_D := Hm00xsd@c00xxsd@#, #2D, #2D.Hn00xsd ê. d Ø dmin@#2DLL &@Z, tKD
gd0mind@Z_, tK_D := Hm00mind@c00xmind@#, #2D, #2D.Hn00 ê. d Ø dmin@#2DLL &@Z, tKD

The convergence of the solution at STP with respect to the basis cE00 is two

orders of magnitude better than that of the initial solution:
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gd0mind@1, tSTPD ê. x0@1, tSTPD8"solution convergence sSD", sSD@%D<
Thread@8cE00, c00xmind@1, tSTPD ê. x0@1, tSTPD<D8-204.143, -0.172278, 0.172292, 0.342524, 203.454,

203.454, 203.626, 0., 0., -0.344584, -203.454, -203.626<8solution convergence sSD, 1222.79<88CISa , 0.5<, 8VCu
x , 3.1036 µ 10-21<, 8VCu

£ , 2.7131 µ 10-8<,8CuIn
x , 5.73972 µ 10-42<, 8CuIn

£ , 1.8617 µ 10-33<, 8CuIn
££ , 5.73037 µ 10-31<,8VSe

x , 1.3363 µ 10-13<, 8VSe
‰‰ , 2.41493 µ 10-22 <, 8Cui ∆VCu , 1.35084 µ 10-26<,8CuIn ∆ InCu , 1.71625 µ 10-12<, 8VCu ∆ InCu , 9.5822 µ 10-11<,8HVCu ∆ InCu L‰ , 2.76996 µ 10-8<, 8H2VCu ∆ InCu La , 5.1677 µ 10-12<,8Cu2_dSe, 5.56013 µ 10-8<, 8e£ , 5.68646 µ 10-10<, 8h‰ , 1.91401 µ 10-16<, 8DN, 1.<<

Now that the minor isolated point defects have been removed from the basis

set and the solution for Z = 1 recomputed, the Z > 1 case is considered. As previously

derived, the relationship between the valency deviation and excess selenium in the

mixture  is  given by the relation  Ds = HZ-1L H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X .  All  of  these  calculations  were

performed  for a value of X= 1 in the mixture,  so this relation  reduces  here to

Ds = 2 DZ.  The solution for Z = 1 at the maximum temperature is used to initialize

this calculation:

Z1plus4to5ppm = 1 + 4.5*^-6;

gd0xsd@Z1plus4to5ppm, tMaxabD ê. x0@1, tMaxabD8-127633., 0.814731, 0.814732, 7.49127, 2.50773, 127695., 127625.,
127625., 2.50773, 2.50773, -2.32831 µ 10-8, -127621., -127621.<

gd0xsd@Z1plus4to5ppm, tMaxabD ê. x0@Z1plus4to5ppm, tMaxabD83.11621 µ 10-6, 1.01718 µ 10-8, -1.40135 µ 10-8, -1.76951 µ 10-8, -2.32831 µ 10-9,
-3.08198 µ 10-6, -3.08082 µ 10-6, -3.09013 µ 10-6, 1.74623 µ 10-10,
4.65661 µ 10-10, 1.67638 µ 10-8, 3.08198 µ 10-6, 3.09056 µ 10-6<
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gd0xsd@Z1plus4to5ppm, tRef - 635D ê. x0@Z1plus4to5ppm, tRef - 635D8"solution convergence sSD", sSD@%D<
Thread@8cE00xsd, c00xxsd@Z1plus4to5ppm, tRef - 635D ê. x0@Z1plus4to5ppm, tRef - 635D<D80.000863334, 4.36557 µ 10-11 , -0.000167168, -0.0000924887, 0., -0.000678357,

-0.000678355, 0.0027659, 0., 0., 0.0000924878, 0.000678357, 0.000678356<8solution convergence sSD, 0.0066948<88CISa , 0.499938<, 8VCu
x , 7.14921 µ 10-8<, 8VCu

£ , 0.0000173344<,8CuIn
x , 2.58879 µ 10-15<, 8CuIn

£ , 4.22824 µ 10-16<, 8CuIn
££ , 1.39716 µ 10-21 <,8VSe

x , 1.21061 µ 10-25 <, 8VSe
‰‰ , 2.05823 µ 10-17 <, 8Cui ∆VCu , 1.91485 µ 10-19 <,8CuIn ∆ InCu , 1.96199 µ 10-9<, 8VCu ∆ InCu , 1.06832 µ 10-15 <,8HVCu ∆ InCu L‰ , 1.7202 µ 10-6<, 8H2VCu ∆ InCu La , 7.95252 µ 10-9<,8CuCu2Se, -2.2543 µ 10-6<, 8Cu2_dSe, 0.0000124563<,8e£ , 1.79417 µ 10-15<, 8h‰ , 0.0000156142<, 8DN, 1.00001<<8tRef - 635, tCrit_a2b2<8413.15, 395.<

It is  not coincidental  that this  convergence  limit  is  very nearly  the same

temperature as the the secondary Cu2-d Se phase a/b peritectoid, since the preceding

boundary condition analysis showed that the deviation of the minimum selenium

content  from that of stoichiometric  Cu2 Se increases  rapidly  in that temperature

range.  Consequently,  the neutral  VSe
ä  and HVCu ∆ InCu L  species have dropped to

levels where  they must be removed from the basis so that these calculations for

Z > 1 may be extended to lower temperatures.H* the reduced CISa+Cu2Se basis vector for Z>1 *L
cE00xsdLT = Drop@Drop@Drop@Drop@cE0, 820<D, 816, 17<D, 810, 14<D, 84, 6<D;8#, cE00xsdLTP#T< & êü Array@# &, Length@cE00xsdLTDD881, CISa <, 82, VCu

x <, 83, VCu
£ <, 84, CuIn

x <, 85, CuIn
£ <, 86, CuIn

££ <,87, VSe
‰‰ <, 88, Cui ∆VCu <, 89, CuIn ∆ InCu <, 810, HVCu ∆ InCu L‰<,811, H2VCu ∆ InCu La <, 812, CuCu2Se<, 813, Cu2_dSe<, 814, e£ <, 815, h‰<, 816, DN<<
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D00xsdLT = Transpose@
Drop@Drop@Drop@Drop@Transpose@D0D, 820<D, 816, 17<D, 810, 14<D, 84, 6<DD;

formula@i_, D00xsdLTD := 8cE00xsdLT, a .D00xsdLT<PAll, iT
n00xsdLT = Transpose@NullSpace@D00xsdLTDD;
rxn@i_, n00xsdLTD := n00xsdLTPAll, iT.cE00xsdLT

n00xxsdLT = n00xsdLT;
n00xxsdLT = Transpose@ReplacePart@Transpose@n00xxsdLTD,

n00xsdLTPAll, 1T + 2 n00xsdLTPAll, 4T + n00xsdLTPAll, 6T, 1DD êê Simplify;
n00xxsdLT = Transpose@ReplacePart@Transpose@n00xxsdLTD,

n00xsdLTPAll, 3T + n00xsdLTPAll, 2T, 3DD;
n00xxsdLT = Transpose@ReplacePart@Transpose@n00xxsdLTD,

n00xsdLTPAll, 7T - n00xsdLTPAll, 6T, 7DD; n00xxsdLT = Transpose@
ReplacePart@Transpose@n00xxsdLTD, n00xsdLTPAll, 10T + 2 n00xsdLTPAll, 2T, 10DD;

n00xxsdLT = Transpose@ReplacePart@Transpose@n00xxsdLTD,
n00xsdLTPAll, 11T + n00xsdLTPAll, 2T, 11DD;

rxn@i_, n00xxsdLTD := n00xxsdLTPAll, iT.cE00xsdLT

x000xsdLT = Array@1 &, 11D - 3 Array@KroneckerDelta@1, # D &, 11D -
Array@KroneckerDelta@5, # D &, 11D + 6 Array@KroneckerDelta@3, # D &, 11D8-2, 1, 7, 1, 0, 1, 1, 1, 1, 1, 1<

c00Zbasis = 81, 4, 10, 11<;
cE00xsdLTP#T & êü c00Zbasis
cE00xsdP#T & êü c00xsdbasis8CISa , CuIn

x , HVCu ∆ InCu L‰, H2VCu ∆ InCu La <8CISa , VSe
x , CuIn

x , H2VCu ∆ InCu La <
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c00xsdLT@Z_D ê; 1 < Z §
95989
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
88000

:=

ModuleB8c00<, WithB:c4xsdLT = :1 +
6 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, 0, -
2 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>,

mCuInv2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 42 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z + 2 I1 + 6 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z M >, c00 =

Plus üü MapThread@ReplacePart@Array@0 &, Length@cE00xsdLTDD, #1, #2D &,8c4xsdLT, c00Zbasis<D;
c00 = ReplacePart@c00, dmin@tRefD x000xsdLTP1T 2*^-26, 12D;
c00 = mCuInv2 Hc00 + Hn00xsdLT ê. d Ø dmin@tRefDL.x000xsdLT 1*^-26L;
ReplacePart@c00, 1, -1DFF

m00xsdLT@c_, tK_D ê; Length@cD === Length@cE00xsdLTD :=

WithB8n = H# ê Plus üü #L &@Join@Drop@Drop@Drop@Drop@Drop@Drop@mcl, 825<D, 820<D,816, 17<D, 810, 14<D, 84, 6<D Take@c, 13D, -2D, 8cP13T<DD,
dm = dmin@tKD, d0 = dmin@tKD - cP12T ê cP13T, nCISa = nAvo c ê First@cD<,

ReplacePart@ReplacePart@Drop@
Drop@Drop@Drop@Drop@m00ab@tKD, 825<D, 820<D, 816, 17<D, 810, 14<D, 84, 6<D,HH3 - d0L G_CuSeX@tK, H3 - d0L-1D - H3 - dmL G_CuSeX@tK, H3 - dmL-1DL Hdm - d0L-1, 12D, H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 13D +

rG tK JoinBLog@Drop@n, -1DD, :0, Log@Last@nDD, LogB nCISaP14T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F,

LogB nCISaP15T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

x00xsdLT = Drop@Drop@Take@x000, 19D, 811, 17<D, 88<D;
c00xxsdLT@Z_, tK_D ê; Z > 1 := c00xsdLT@ZD + Hn00xxsdLT ê. d Ø dmin@tKDL.x00xsdLT

gd0xsdLT@Z_, tK_D ê; Z > 1 :=Hm00xsdLT@c00xxsdLT@#, #2D, #2D.Hn00xsdLT ê. d Ø dmin@#2DLL &@Z, tKD
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gd0xsdLT@Z1plus4to5ppm, tSTPD ê. x0@Z1plus4to5ppm, tSTPD8"solution convergence sSD", sSD@%D<
Thread@8cE00xsdLT, c00xxsdLT@Z1plus4to5ppm, tSTPD ê. x0@Z1plus4to5ppm, tSTPD<D85.58794 µ 10-9, 9.09495 µ 10-11, -8.36735 µ 10-11, 0., -2.32831 µ 10-10,

-0.00128309, -6.0536 µ 10-9, 0., 0., 6.0536 µ 10-9, 6.35555 µ 10-9<8solution convergence sSD, 0.00128312<88CISa , 0.499952<, 8VCu
x , 1.48949 µ 10-7 <, 8VCu

£ , 0.0000157865<,8CuIn
x , 1.50277 µ 10-10<, 8CuIn

£ , 6.41554 µ 10-13<, 8CuIn
££ , 2.39401 µ 10-21 <,8VSe

‰‰ , 6.41618 µ 10-30 <, 8Cui ∆VCu , 1.3504 µ 10-26<,8CuIn ∆ InCu , 1.71569 µ 10-12<, 8HVCu ∆ InCu L‰ , 3.85579 µ 10-15<,8H2VCu ∆ InCu La , 4.18693 µ 10-16<, 8CuCu2Se , -1.95669 µ 10-6<,8Cu2_dSe, 8.9997 µ 10-6<, 8e£ , 6.89316 µ 10-21<, 8h‰ , 0.0000157865<, 8DN, 1.<<8Length@solnRangeabD, Length@Join@8tMaxab<, Range@tRef - 180, tRef - 635, -5DDD,
Length@Join@Range@tRef - 640, tRef - 745, -5D, 8tSTP<DD<8116, 93, 23<

c00Fit@Z1plus4to5ppmD = Module@8c, cLT<, cLT =
Insert@Insert@Drop@Hc00xxsdLT@Z1plus4to5ppm, #D ê. x0@Z1plus4to5ppm, #DL,812<D, ‰^-100, 7D, ‰ ^-100, 11D & êü Take@solnRangeab, 23D;

c = Join@cLT, Drop@Hc00xxsd@Z1plus4to5ppm, #D ê. x0@Z1plus4to5ppm, #DL,814<D & êü Take@solnRangeab, -93DD;
SplineFit@Thread@8solnRangeab, cPAll, #T<D, CubicD & êü Range@Length@cE00DDD;

c00@Z1plus4to5ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus4to5ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
" CIS valency deviation at STP with X=1 and DZ=4.5 ppm" HcXZ@partCIS@c00@Z1plus4to5ppm, tSTPDP#T & êü Range@Length@cE00DDD,

partCIS@D00xsdDDP2T - 1L
3.98394 µ 10-6 CIS valency deviation at STP with X=1 and DZ=4.5 ppm

The calculated  secondary  phase  composition  has exceeded  its  maximum

selenium content at STP, which is unphysical. Slightly greater selenium enrichment
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would  next  yield  a  violation  of  this  limit  at  the  peritectoid

Cu:Se/a–Cu2-d Se/b–Cu2-d Se  decomposition  temperature.  To  calculate  the

equilibrium correctly in these regions and extend these results to further selenium

enrichment,  the basis needs to be modified to eliminate  the additional  degree of

freedom  associated  with  the  non-stoichiometric  Cu2-d Se phase,  and  to  fix  its

composition at the maximum.H* the reduced CISa+Cu2Se basis vector for Z>1 *LcE00Zplus =
Drop@Drop@Drop@Drop@Drop@cE0, 823<D, 820<D, 816, 17<D, 810, 14<D, 84, 6<D;8#, cE00ZplusP#T< & êü Array@# &, Length@cE00ZplusDD881, CISa <, 82, VCu

x <, 83, VCu
£ <, 84, CuIn

x <, 85, CuIn
£ <, 86, CuIn

££ <,87, VSe
‰‰ <, 88, Cui ∆VCu <, 89, CuIn ∆ InCu <, 810, HVCu ∆ InCu L‰<,811, H2VCu ∆ InCu La <, 812, Cu2_dSe<, 813, e£ <, 814, h‰<, 815, DN<<

D00Zplus = Transpose@Drop@
Drop@Drop@Drop@Drop@Transpose@D0D, 823<D, 820<D, 816, 17<D, 810, 14<D, 84, 6<DD;

formula@i_, D00ZplusD := 8cE00Zplus, a .D00Zplus<PAll, iT
n00Zplus = Transpose@NullSpace@D00ZplusDD;
rxn@i_, n00ZplusD := n00ZplusPAll, iT.cE00Zplus

n00xZplus = n00Zplus;
n00xZplus = Transpose@ReplacePart@Transpose@n00xZplusD,

n00ZplusPAll, 1T + 2 n00ZplusPAll, 4T + n00ZplusPAll, 5T, 1DD êê Simplify;
n00xZplus = Transpose@ReplacePart@Transpose@n00xZplusD,

n00ZplusPAll, 3T + n00ZplusPAll, 2T, 3DD;
n00xZplus = Transpose@ReplacePart@Transpose@n00xZplusD,

n00ZplusPAll, 6T - n00ZplusPAll, 5T, 6DD; n00xZplus = Transpose@
ReplacePart@Transpose@n00xZplusD, n00ZplusPAll, 9T + 2 n00ZplusPAll, 2T, 9DD;

n00xZplus = Transpose@ReplacePart@Transpose@n00xZplusD,
n00ZplusPAll, 10T + n00ZplusPAll, 2T, 10DD;
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rxn@i_, n00xZplusD := n00xZplusPAll, iT.cE00Zplus

x000Zplus = Array@1 &, 10D -
3 Array@KroneckerDelta@1, # D &, 10D + 6 Array@KroneckerDelta@3, # D &, 10D8-2, 1, 7, 1, 1, 1, 1, 1, 1, 1<

cE00ZplusP#T & êü c00Zbasis8CISa , CuIn
x , HVCu ∆ InCu L‰, H2VCu ∆ InCu La <

c00DZ@Z_D ê; 1 < Z §
95989
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
88000

:=

ModuleB8c00<, WithB:c4Zplus = :1 +
6 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

, 0, -
2 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>,

mCuInv2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- 42 H-1+ ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z + 2 I1 + 6 H-1+ZLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-16+15 Z M >, c00 =

Plus üü MapThread@ReplacePart@Array@0 &, Length@cE00ZplusDD, #1, #2D &,8c4Zplus, c00Zbasis<D;
c00 = mCuInv2 Hc00 + Hn00Zplus ê. d Ø dmax@tMaxabDL.x000Zplus 1*^-26L;
ReplacePart@c00, 1, -1DFF

m00Zplus@c_, tK_D ê; Length@cD === Length@cE00ZplusD :=

WithB8n = H# ê Plus üü #L &@Join@
Drop@Drop@Drop@Drop@Drop@Drop@Drop@mcl, 825<D, 823<D, 820<D, 816, 17<D,810, 14<D, 84, 6<D Take@c, 12D, -1D, 8cP12T<DD,

dm = dmax@tKD, nCISa = nAvo c ê First@cD<, ReplacePart@Drop@
Drop@Drop@Drop@Drop@Drop@m00ab@tKD, 825<D, 823<D, 820<D, 816, 17<D, 810, 14<D,84, 6<D, H3 - dmL G_CuSeX@tK, H3 - dmL-1D, 12D + rG tK JoinBLog@Drop@n, -1DD,:Log@Last@nDD, LogB nCISaP13T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F, LogB nCISaP14T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

x00Zplus = Drop@Drop@Drop@Take@x000, 19D, 811, 17<D, 88<D, 85<D;
c00xDZ@Z_, tK_D ê; Z > 1 := c00DZ@ZD + Hn00xZplus ê. d Ø dmax@tKDL.x00Zplus

gd0DZ@Z_, tK_D ê; Z > 1 :=Hm00Zplus@c00xDZ@#, #2D, #2D.Hn00Zplus ê. d Ø dmax@#2DLL &@Z, tKD
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gd0DZ@Z1plus4to5ppm, tSTPD ê. bridgeZ1plus4to5ppm;8"solution convergence sSD", sSD@%D<
Thread@8Thread@8cE00Zplus, c00xDZ@Z1plus4to5ppm, tSTPD ê. bridgeZ1plus4to5ppm<D,

Drop@Thread@8cE00xsdLT,Hc00xxsdLT@Z1plus4to5ppm, tSTPD ê. x0@Z1plus4to5ppm, tSTPDL<D, 812<D<D8solution convergence sSD, 0.000620975<888CISa , 0.499952<, 8CISa , 0.499952<<,88VCu
x , 1.49666 µ 10-7 <, 8VCu

x , 1.48949 µ 10-7 <<,88VCu
£ , 0.0000158244<, 8VCu

£ , 0.0000157865<<,88CuIn
x , 3.7627 µ 10-11<, 8CuIn

x , 1.50277 µ 10-10 <<,88CuIn
£ , 1.6025 µ 10-13<, 8CuIn

£ , 6.41554 µ 10-13 <<,88CuIn
££ , 5.9655 µ 10-22<, 8CuIn

££ , 2.39401 µ 10-21 <<,88VSe
‰‰ , 1.28225 µ 10-29<, 8VSe

‰‰ , 6.41618 µ 10-30 <<,88Cui ∆VCu , 1.3504 µ 10-26 <, 8Cui ∆VCu , 1.3504 µ 10-26<<,88CuIn ∆ InCu , 1.71569 µ 10-12<, 8CuIn ∆ InCu , 1.71569 µ 10-12<<,88HVCu ∆ InCu L‰ , 1.55108 µ 10-14<, 8HVCu ∆ InCu L‰ , 3.85579 µ 10-15<<,88H2VCu ∆ InCu La , 1.68834 µ 10-15<, 8H2VCu ∆ InCu La , 4.18693 µ 10-16<<,88Cu2_dSe, 8.99992 µ 10-6<, 8Cu2_dSe, 8.9997 µ 10-6<<,88e£ , 6.87664 µ 10-21<, 8e£ , 6.89316 µ 10-21<<,88h‰ , 0.0000158244<, 8h‰ , 0.0000157865<<, 88DN, 1.<, 8DN, 1.<<<
The preceding recalculation of the solution at STP for +9 ppm selenium excess

using the basis which restricts the depletion of copper from the secondary Cu2-d Se

phase so that its composition does not exceed its single-phase concentration  limit

demonstrates  the key consequences  of enforcing this restriction.  These include an

increase in the extent of Cu2-d Se secondary phase segregation, and increases in both

the dominant ionized defects (VCu
£  and HVCu ∆ InCu L‰ ) yielding a net increase in the

hole concentration. These effects are subtle here, but become pronounced when the

solution for Z > 1 is extended an order of magnitude  to 100 ppm = 0.02% excess

selenium (still well within the reported a–CIS single-phase homogeneity domain):
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Z1plus100ppm = 1 + 1*^-4;

gd0DZ@Z1plus100ppm, tSTPD ê. x0@Z1plus100ppm, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus100ppm, tSTPD ê. x0@Z1plus100ppm, tSTPD<D8solution convergence sSD, 0.34954<88CISa , 0.499019<, 8VCu

x , 0.0000391236<, 8VCu
£ , 0.000255606<,8CuIn

x , 0.0000388661<, 8CuIn
£ , 1.02281 µ 10-8<, 8CuIn

££ , 2.35274 µ 10-18<,8VSe
‰‰ , 1.24547 µ 10-32 <, 8Cui ∆VCu , 1.34214 µ 10-26<,8CuIn ∆ InCu , 1.7052 µ 10-12<, 8HVCu ∆ InCu L‰ , 6.28684 µ 10-17 <,8H2VCu ∆ InCu La , 1.112 µ 10-16<, 8Cu2_dSe, 0.000122247<,8e£ , 4.24123 µ 10-22<, 8h‰ , 0.000255616<, 8DN, 1.00006<<

c00Fit@Z1plus100ppmD = Module@8c, cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus100ppm, #D ê. x0@Z1plus100ppm, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü Take@solnRangeab, 47D; c =
Join@cLT, Drop@Hc00xxsd@Z1plus100ppm, #D ê. x0@Z1plus100ppm, #DL, 814<D & êü

Take@solnRangeab, -69DD;
SplineFit@Thread@8solnRangeab, cPAll, #T<D, CubicD & êü Range@Length@cE00DDD;

c00@Z1plus100ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus100ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
The Z > 1 case is extended another order of magnitude  to 1000 ppm = 0.2%

excess selenium:

Z1plus1000ppm = 1 + 1*^-3;
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gd0xsd@Z1plus1000ppm, tRef - 305D ê. x0@Z1plus1000ppm, tRef - 305D;8"solution convergence sSD", sSD@%D<
Thread@8cE00xsd, c00xxsd@Z1plus1000ppm, tRef - 305D ê. x0@Z1plus1000ppm, tRef - 305D<D
"Cu2Se Dx deviation from maximum limit at basis crossover temperature" ikjjjjikjjj3 -

ikjjjdmin@tRef - #D -
c00xxsd@Z1plus1000ppm, tRef - #DP14T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c00xxsd@Z1plus1000ppm, tRef - #DP15T y{zzz ê.

x0@Z1plus1000ppm, tRef - #Dy{zzz-1

- xMax_Cu2Se@tRef - #Dy{zzzz &@305D8solution convergence sSD, 0.0000111436<88CISa , 0.471367<, 8VCu
x , 0.000510903<,8VCu

£ , 0.00413923<, 8CuIn
x , 4.70281 µ 10-8<, 8CuIn

£ , 6.57222 µ 10-9<,8CuIn
££ , 6.9176 µ 10-13<, 8VSe

x , 1.70226 µ 10-16<, 8VSe
‰‰ , 4.43499 µ 10-10<,8Cui ∆VCu , 2.68302 µ 10-11<, 8CuIn ∆ InCu , 5.32833 µ 10-6<,8VCu ∆ InCu , 1.30894 µ 10-9<, 8HVCu ∆ InCu L‰ , 0.00258391<,8H2VCu ∆ InCu La , 0.0000826401<, 8CuCu2Se, -0.00193256<,8Cu2_dSe, 0.00733299<, 8e£ , 5.15914 µ 10-11<, 8h‰ , 0.00155533<, 8DN, 1.00367<<

8.34265 µ 10-6

Cu2Se Dx deviation from maximum limit at basis crossover temperature

gd0DZ@Z1plus1000ppm, tSTPD ê. x0@Z1plus1000ppm, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus1000ppm, tSTPD ê. x0@Z1plus1000ppm, tSTPD<D8solution convergence sSD, 0.10474<88CISa , 0.491441<, 8VCu

x , 0.000856105<, 8VCu
£ , 0.00118656<, 8CuIn

x , 0.000972414<,8CuIn
£ , 5.42885 µ 10-8<, 8CuIn

££ , 2.64921 µ 10-18 <, 8VSe
‰‰ , 2.25432 µ 10-33<,8Cui ∆VCu , 1.27987 µ 10-26<, 8CuIn ∆ InCu , 1.62609 µ 10-12<,8HVCu ∆ InCu L‰ , 2.39328 µ 10-16 <, 8H2VCu ∆ InCu La , 2.06092 µ 10-15<,8Cu2_dSe, 0.000055064<, 8e£ , 8.8609 µ 10-23<, 8h‰ , 0.00118662<, 8DN, 1.00003<<

c00Fit@Z1plus1000ppmD = Module@8c, cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus1000ppm, #D ê. x0@Z1plus1000ppm, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü Take@solnRangeab, 89D;
c = Join@cLT, Drop@Hc00xxsd@Z1plus1000ppm, #D ê. x0@Z1plus1000ppm, #DL,814<D & êü Take@solnRangeab, -27DD;
SplineFit@Thread@8solnRangeab, cPAll, #T<D, CubicD & êü Range@Length@cE00DDD;
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c00@Z1plus1000ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus1000ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
An intermediate Z > 1 case is computed for 400 ppm = 0.08% excess selenium:

Z1plus400ppm = 1 + 4*^-4;

gd0xsd@Z1plus400ppm, tRef - 415D ê. x0@Z1plus400ppm, tRef - 415D;8"solution convergence sSD", sSD@%D<
Thread@8cE00xsd, c00xxsd@Z1plus400ppm, tRef - 415D ê. x0@Z1plus400ppm, tRef - 400D<D
"Cu2Se Dx deviation from maximum limit at basis crossover temperature" ikjjjjikjjj3 -

ikjjjdmin@tRef - #D -
c00xxsd@Z1plus400ppm, tRef - #DP14T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c00xxsd@Z1plus400ppm, tRef - #DP15T y{zzz ê.

x0@Z1plus400ppm, tRef - #Dy{zzz-1

- xMax_Cu2Se@tRef - #Dy{zzzz &@415D8solution convergence sSD, 0.0000811177<88CISa , 0.49051<, 8VCu
x , 0.000138242<, 8VCu

£ , 0.00161002<,8CuIn
x , 4.15358 µ 10-9<, 8CuIn

£ , 4.59839 µ 10-10 <, 8CuIn
££ , 1.97433 µ 10-14<,8VSe

x , 2.39852 µ 10-18 <, 8VSe
‰‰ , 2.26981 µ 10-11<, 8Cui ∆VCu , 9.47524 µ 10-13 <,8CuIn ∆ InCu , 1.37826 µ 10-6<, 8VCu ∆ InCu , 8.60145 µ 10-11 <,8HVCu ∆ InCu L‰ , 0.000754739<, 8H2VCu ∆ InCu La , 0.0000162924<,8CuCu2Se, -0.000605599<, 8Cu2_dSe, 0.00234205<,8e£ , 5.94538 µ 10-12<, 8h‰ , 0.000855279<, 8DN, 1.00117<<

-0.000226573
Cu2Se Dx deviation from maximum limit at basis crossover temperature
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gd0DZ@Z1plus400ppm, tSTPD ê. x0@Z1plus400ppm, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus400ppm, tSTPD ê. x0@Z1plus400ppm, tSTPD<D8solution convergence sSD, 0.0675196<88CISa , 0.496503<, 8VCu

x , 0.000239346<, 8VCu
£ , 0.000630613<, 8CuIn

x , 0.000354822<,8CuIn
£ , 3.76565 µ 10-8<, 8CuIn

££ , 3.49319 µ 10-18 <, 8VSe
‰‰ , 3.98919 µ 10-33<,8Cui ∆VCu , 1.32128 µ 10-26<, 8CuIn ∆ InCu , 1.67869 µ 10-12<,8HVCu ∆ InCu L‰ , 1.01757 µ 10-16 <, 8H2VCu ∆ InCu La , 4.51132 µ 10-16<,8Cu2_dSe, 0.0000902804<, 8e£ , 1.70177 µ 10-22<, 8h‰ , 0.00063065<, 8DN, 1.00005<<

c00Fit@Z1plus400ppmD = Module@8c, cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus400ppm, #D ê. x0@Z1plus400ppm, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü Take@solnRangeab, 67D; c =
Join@cLT, Drop@Hc00xxsd@Z1plus400ppm, #D ê. x0@Z1plus400ppm, #DL, 814<D & êü

Take@solnRangeab, -49DD;
SplineFit@Thread@8solnRangeab, cPAll, #T<D, CubicD & êü Range@Length@cE00DDD;

c00@Z1plus400ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus400ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
Another  intermediate  Z > 1  case  is  computed  for  700 ppm = 0.14% excess

selenium:

Z1plus700ppm = 1 + 7*^-4;
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gd0xsd@Z1plus700ppm, tRef - 355D ê. x0@Z1plus700ppm, tRef - 355D;8"solution convergence sSD", sSD@%D<
Thread@8cE00xsd, c00xxsd@Z1plus700ppm, tRef - 355D ê. x0@Z1plus700ppm, tRef - 355D<D
"Cu2Se Dx deviation from maximum limit at basis crossover temperature" ikjjjjikjjj3 -

ikjjjdmin@tRef - #D -
c00xxsd@Z1plus700ppm, tRef - #DP14T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c00xxsd@Z1plus700ppm, tRef - #DP15T y{zzz ê.

x0@Z1plus700ppm, tRef - #Dy{zzz-1

- xMax_Cu2Se@tRef - #Dy{zzzz &@355D8solution convergence sSD, 0.000037939<88CISa , 0.483128<, 8VCu
x , 0.000318207<, 8VCu

£ , 0.00270337<, 8CuIn
x , 2.02199 µ 10-8<,8CuIn

£ , 2.21085 µ 10-9<, 8CuIn
££ , 1.3133 µ 10-13<, 8VSe

x , 1.545 µ 10-17 <,8VSe
‰‰ , 9.864 µ 10-11<, 8Cui ∆VCu , 5.26525 µ 10-12<, 8CuIn ∆ InCu , 2.786 µ 10-6<,8VCu ∆ InCu , 2.94533 µ 10-10<, 8HVCu ∆ InCu L‰ , 0.00138077<,8H2VCu ∆ InCu La , 0.0000371889<, 8CuCu2Se, -0.0011582<,8Cu2_dSe, 0.00423587<, 8e£ , 1.56534 µ 10-11<, 8h‰ , 0.00132261<, 8DN, 1.00212<<

-0.0000270325
Cu2Se Dx deviation from maximum limit at basis crossover temperature

gd0DZ@Z1plus700ppm, tSTPD ê. x0@Z1plus700ppm, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus700ppm, tSTPD ê. x0@Z1plus700ppm, tSTPD<D8solution convergence sSD, 0.0435162<88CISa , 0.493978<, 8VCu

x , 0.000522603<, 8VCu
£ , 0.00092946<, 8CuIn

x , 0.000666359<,8CuIn
£ , 4.77375 µ 10-8<, 8CuIn

££ , 2.98926 µ 10-18 <, 8VSe
‰‰ , 2.81608 µ 10-33<,8Cui ∆VCu , 1.30053 µ 10-26<, 8CuIn ∆ InCu , 1.65233 µ 10-12<,8HVCu ∆ InCu L‰ , 1.7067 µ 10-16<, 8H2VCu ∆ InCu La , 1.13297 µ 10-15<,8Cu2_dSe, 0.0000671862<, 8e£ , 1.1429 µ 10-22 <, 8h‰ , 0.000929507<, 8DN, 1.00003<<

c00Fit@Z1plus700ppmD = Module@8c, cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus700ppm, #D ê. x0@Z1plus700ppm, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü Take@solnRangeab, 79D; c =
Join@cLT, Drop@Hc00xxsd@Z1plus700ppm, #D ê. x0@Z1plus700ppm, #DL, 814<D & êü

Take@solnRangeab, -37DD;
SplineFit@Thread@8solnRangeab, cPAll, #T<D, CubicD & êü Range@Length@cE00DDD;
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c00@Z1plus700ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus700ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
8tMaxab, tRef - 175<8873.15, 873.15<

The  Z > 1 case is extended to 1739 ppm = 0.3478% excess selenium:

Z1plus2Maxd = 1 + 1739*^-6;

This was chosen specifically because with 0.3478% total excess selenium the

secondary Cu2-d Se phase is found to possess its maximum selenium content over the

entire  temperature  range  of  the  a/b–CIS  two-phase  domain.  Thus  the  entire

equilibrium calculation for this and any greater selenium excess must be conducted

using the basis cE00.

gd0DZ@Z1plus2Maxd, tSTPD ê. x0@Z1plus2Maxd, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus2Maxd, tSTPD ê. x0@Z1plus2Maxd, tSTPD<D8solution convergence sSD, 0.0423799<88CISa , 0.485175<, 8VCu

x , 0.00179995<, 8VCu
£ , 0.00170951<, 8CuIn

x , 0.00171863<,8CuIn
£ , 6.5749 µ 10-8<, 8CuIn

££ , 2.1986 µ 10-18<, 8VSe
‰‰ , 1.55968 µ 10-33 <,8Cui ∆VCu , 1.22978 µ 10-26<, 8CuIn ∆ InCu , 1.56244 µ 10-12<,8HVCu ∆ InCu L‰ , 3.8854 µ 10-16<, 8H2VCu ∆ InCu La , 5.01708 µ 10-15<,8Cu2_dSe, 0.0000405995<, 8e£ , 5.99451 µ 10-23<, 8h‰ , 0.00170958<, 8DN, 1.00002<<

c00Fit@Z1plus2MaxdD = Module@8cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus2Maxd, #D ê. x0@Z1plus2Maxd, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü solnRangeab;
SplineFit@Thread@8solnRangeab, cLTPAll, #T<D, CubicD & êü

Range@Length@cE00DDD;
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c00@Z1plus2Maxd, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus2MaxdDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
The  Z > 1 case is extended to 2000 ppm = 0.40% excess selenium:

Z1plus2000ppm = 1 + 20*^-4;

gd0DZ@Z1plus2000ppm, tSTPD ê. x0@Z1plus2000ppm, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus2000ppm, tSTPD ê. x0@Z1plus2000ppm, tSTPD<D8solution convergence sSD, 0.0848727<88CISa , 0.48296<, 8VCu

x , 0.00216052<, 8VCu
£ , 0.00186865<, 8CuIn

x , 0.0019811<,8CuIn
£ , 6.90191 µ 10-8<, 8CuIn

££ , 2.10177 µ 10-18 <, 8VSe
‰‰ , 1.41002 µ 10-33<,8Cui ∆VCu , 1.21239 µ 10-26<, 8CuIn ∆ InCu , 1.54034 µ 10-12<,8HVCu ∆ InCu L‰ , 4.33783 µ 10-16 <, 8H2VCu ∆ InCu La , 6.21021 µ 10-15<,8Cu2_dSe, 0.0000376547<, 8e£ , 5.43404 µ 10-23<, 8h‰ , 0.00186872<, 8DN, 1.00002<<

c00Fit@Z1plus2000ppmD = Module@8cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus2000ppm, #D ê. x0@Z1plus2000ppm, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü solnRangeab;
SplineFit@Thread@8solnRangeab, cLTPAll, #T<D, CubicD & êü

Range@Length@cE00DDD;
c00@Z1plus2000ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus2000ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
The  Z > 1 case is extended to 2200 ppm = 0.44% excess selenium:

Z1plus2200ppm = 1 + 22*^-4;
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gd0DZ@Z1plus2200ppm, tSTPD ê. x0@Z1plus2200ppm, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cE00Zplus, c00xDZ@Z1plus2200ppm, tSTPD ê. x0@Z1plus2200ppm, tSTPD<D8solution convergence sSD, 0.142377<88CISa , 0.481262<, 8VCu

x , 0.00244383<, 8VCu
£ , 0.0019839<, 8CuIn

x , 0.00218204<,8CuIn
£ , 7.13516 µ 10-8<, 8CuIn

££ , 2.03938 µ 10-18 <, 8VSe
‰‰ , 1.31305 µ 10-33<,8Cui ∆VCu , 1.19917 µ 10-26<, 8CuIn ∆ InCu , 1.52356 µ 10-12<,8HVCu ∆ InCu L‰ , 4.65972 µ 10-16 <, 8H2VCu ∆ InCu La , 7.16117 µ 10-15<,8Cu2_dSe, 0.0000357852<, 8e£ , 5.08245 µ 10-23<, 8h‰ , 0.00198397<, 8DN, 1.00002<<

c00Fit@Z1plus2200ppmD = Module@8cLT<,
cLT = Insert@Insert@Hc00xDZ@Z1plus2200ppm, #D ê. x0@Z1plus2200ppm, #DL,

‰^-100, 7D, ‰ ^-100, 11D & êü solnRangeab;
SplineFit@Thread@8solnRangeab, cLTPAll, #T<D, CubicD & êü

Range@Length@cE00DDD;
c00@Z1plus2200ppm, tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@solnRangeabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc00Fit@Z1plus2200ppmDP#T & êü Range@Length@cE00DDL@TDDPAll, 2TF
The initialization  calculations  are complete  and it remains to construct  an

interpolation function that gives the concentrations of all significant species over the

valency and temperature ranges of the a–CIS/b–CIS two phase equilibrium problem.

The solutions for the discrete values of Z already calculated must be interpolated to

provide a continuous solution over that variable's  range, but they are given with

respect to different basis sets:

Zdomain = 81, Z1plus100ppm, Z1plus400ppm, Z1plus700ppm,
Z1plus1000ppm, Z1plus2Maxd, Z1plus2000ppm, Z1plus2200ppm<;

Protect@ZdomainD;
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Length@c00@#, tSTPDD & êü Zdomain822, 17, 17, 17, 17, 17, 17, 17<8Length@cE0LTD, Length@cE00D<822, 17<
cE00 === Drop@Drop@cE0LT, 812, 13<D, 84, 6<D

True

The maximum solution concentrations of the InCu  and Cui  point defects over

the entire temperature range total less than 10-13 molar, less than any other single

defect alone. Since these are the defects removed from the basis cE0LT to create cE00,

the latter is selected to provide the solution concentrations for the Cu2-d Se/a–CIS

two-phase equilibrium problem.

c0Fit = Module@8cLog<, With@8species = Range@Length@cE00DD<, cLog = Log@Prepend@
Apply@c00@#, #2D &, Outer@List, Rest@ZdomainD, solnRangeabD, 82<D,
Drop@Drop@c00@1, #D, 812, 13<D, 84, 6<D & êü solnRangeabDD;

ListInterpolation@cLogPAll, All, #T, 8Zdomain, solnRangeab<,
InterpolationOrder Ø 81, 1<D & êü speciesDD;

c0@Z_?NumericQ, tK_?NumericQD ê;
First@ZdomainD § Z § Last@ZdomainD Ï tSTP § tK § tMaxab :=

Abs@‰^Through@c0Fit@Z, tKDDD ê. Indeterminate Ø 0

segCu2SeX1@Z_?NumericQ, tK_?NumericQD ê;
First@ZdomainD § Z § Last@ZdomainD Ï tSTP § tK § tMaxab := c0@Z, tKDP14T

These  variations  in  the  secondary  Cu2-d Se  phase's  stoichiometry  and

equilibrium  extent  of segregation  for  X = 1 result  in shifts  in the valency  and

molecularity of a–CIS in the mixture. The equilibrium a–CIS composition and defect

concentrations at this two–phase boundary are derived next.
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zCIS@Z_?NumericQ, tK_?NumericQD ê;
First@ZdomainD § Z § Last@ZdomainD Ï tSTP § tK § tMaxab :=

cXZ@partCIS@c0@Z, tKDD, partCIS@D00DDP2T
zaUL@tK_?NumericQD ê; tSTP § tK § tMaxab :=

cXZ@partCIS@c0@Last@ZdomainD, tKDD, partCIS@D00DDP2T
zaLL@tK_?NumericQD ê; tSTP § tK § tMaxab :=

cXZ@partCIS@c0@First@ZdomainD, tKDD, partCIS@D00DDP2T8zaMin = zaLL@tSTPD, zaMax = H1 - 1*^-7L zaUL@tMaxabD<81., 1.00105<
zaMin - 1

-1.66184 µ 10-10

zTotal@Za_?NumericQ, tK_?NumericQD ê;
zaMin § Za § zaMax Ï tSTP § tK § tMaxab :=

ModuleB8Z, zTot<, Off@FindRoot::"frsec"D; Off@FindRoot::"precw"D;
Off@FindRoot::"frnum"D; zTot = Z ê. FindRootBzCIS@Z, tKD ã Za,:Z, 1, 1 +

zaUL@tKD - zaLL@tKD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

100
>, WorkingPrecision Ø 30F;

On@FindRoot::"frsec"D; On@FindRoot::"precw"D; On@FindRoot::"frnum"D; zTotF
HzTotal@zaMin, tSTPD - 1L

0. µ 10-30

zTotal@zaMax, tMaxabD8zaMax, zCIS@%, tMaxabD<
1.0021998964137089690757332203381.00105, 1.00105<

z2F = FunctionInterpolation@zTotal@Za, TD, 8Za, zaMin, zaMax<, 8T, tSTP, tMaxab<D
InterpolatingFunction@881., 1.00105<, 8298.15, 873.15<<, <>D

359



The foregoing inversion of the functional relating the valency of the a–CIS

phase in equilibrium with a specified total excess selenium enables selection of the

correct  solution  (which  has been parameterized  by the total  Z of both phases

combined),  based  on  a  specified  value  of  the  a–CIS  phase's  valency  at  the

Cu2-d Se/a–CIS two-phase boundary.

The concentrations from the two-phase solution must be renormalized  to one

mole of the a–CIS phase alone to complete the boundary solution. The total charge is

zero and in one mole of the a–CIS  phase the formula  Cu 2 XÅÅÅÅÅÅÅÅÅÅ1+X
 In 2ÅÅÅÅÅÅÅÅÅÅ1+X

 Se Z  H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X
  still

applies, albeit with that phases values for X and Z. Since indium is never segregated

to the binary phase and exactly one mole was initially introduced into the system, the

overall normalization  factor is 2ÅÅÅÅÅÅÅÅÅÅÅ1+X  with X given by its equilibrium value in the

a–CIS  phase at the two-phase boundary. Charge neutrality is also reasserted at this

point, by adjusting the relative quantities of the dominant VCu
µ  and VCu

£  defects to

correct for cumulative numerical  errors. This relative correction does not exceed 2

parts in 103 , and is typically less than one part in 106 . The absolute correction does

not exceed 10-6  moles.

:8cE00P7T, cE00P8T<, 88cE00P2T, c0@zaMax, tMaxabDP2T<,8cE00P3T, c0@zaMax, tMaxabDP3T<, mx@c0@zaMax, tMaxabD, D00DP4T "net charge"<,
"worst case relative charge neutrality correction:",
mx@c0@zaMax, tMaxabD, D00DP4T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c0@zaMax, tMaxabDP3T >88VSe
x , VSe

‰‰ <, 88VCu
x , 0.000419129<, 8VCu

£ , 0.0091097<, -0.0000204088 net charge<,
worst case relative charge neutrality correction:, -0.00224033<
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c00a@Za_?NumericQ, tK_?NumericQD ê;
zaMin § Za § zaMax Ï tSTP § tK § tMaxab := ModuleB8ca, Xa, D, c2F, r<,
WithB8c2F = c0@z2F@Za, tKD, tKD, D = partCIS@D00D<, r = mx@c2F, D00DP4T;

ca = partCIS@c2FD; ca = ReplacePart@ReplacePart@ca, caP3T + r, 3D, caP2T - r, 2D;
Xa = cXZ@ca, DDP1T;

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

 Join@ca, 8Last@c2FD<DFF
cE00P14T
cEa = Drop@cE00, 814<D

Cu2_dSe8CISa , VCu
x , VCu

£ , CuIn
x , CuIn

£ , CuIn
££ , VSe

x , VSe
‰‰ , Cui ∆VCu ,

CuIn ∆ InCu , VCu ∆ InCu , HVCu ∆ InCu L‰, H2VCu ∆ InCu La , e£ , h‰ , DN<
Thread@8cEa, c00a@1, tMaxabD<D88CISa , 0.429214<, 8VCu

x , 8.54015 µ 10-6<, 8VCu
£ , 0.00914242<,8CuIn

x , 8.42159 µ 10-13<, 8CuIn
£ , 9.23817 µ 10-11<, 8CuIn

££ , 1.47442 µ 10-11 <,8VSe
x , 4.39404 µ 10-9<, 8VSe

‰‰ , 8.30383 µ 10-9<, 8Cui ∆VCu , 6.46845 µ 10-10<,8CuIn ∆ InCu , 0.0000169955<, 8VCu ∆ InCu , 0.0000128473<,8HVCu ∆ InCu L‰ , 0.00913809<, 8H2VCu ∆ InCu La , 0.000456919<,8e£ , 2.77129 µ 10-7 <, 8h‰ , 4.59301 µ 10-6<, 8DN, 1.02886<<H* the a-CIS single phase solution basis *L
D0a = Transpose@Drop@Transpose@D00D, 814<DD;
D0a êê MatrixFormi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

2 5 5 7 7 7 6 6 6 6 8 8 7 0 0 0
2 6 6 5 5 5 6 6 6 6 11 11 11 0 0 0

4 12 12 12 12 12 11 11 12 12 20 20 20 0 0 0
0 0 -1 0 -1 -2 0 2 0 0 0 1 0 -1 1 0
2 6 6 6 6 6 6 6 6 6 10 10 10 0 0 1
2 6 6 6 6 6 6 6 6 6 10 10 10 0 0 1

4 12 12 12 12 12 12 12 12 12 20 20 20 0 0 2
8 24 24 24 24 24 24 24 24 24 40 40 40 0 0 4

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
formula@i_, D0aD := 8cEa, a .D0a<PAll, iT
n0a = Transpose@NullSpace@D0aDD;
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rxn@i_, n0aD := n0aPAll, iT.cEa

n0ax = n0a;
n0ax = Transpose@

ReplacePart@Transpose@n0axD, H-n0aPAll, 1T + 2 n0aPAll, 4TL ê 2, 1DD êê Simplify;
n0ax = Transpose@ReplacePart@Transpose@n0axD, n0aPAll, 3T + n0aPAll, 2T, 3DD;
n0ax = Transpose@ReplacePart@Transpose@n0axD, -n0aPAll, 4T + n0aPAll, 6T, 4DD;
n0ax = Transpose@

ReplacePart@Transpose@n0axD, n0aPAll, 5T + n0aPAll, 3T - n0aPAll, 6T, 5DD;
n0ax = Transpose@ReplacePart@Transpose@n0axD, n0aPAll, 9T + 2 n0aPAll, 3T, 9DD;
n0ax = Transpose@ReplacePart@Transpose@n0axD, n0aPAll, 10T + 2 n0aPAll, 2T, 10DD;
n0ax = Transpose@ReplacePart@Transpose@n0axD, n0aPAll, 11T + n0aPAll, 2T, 11DD;
rxn@i_, n0axD := n0axPAll, iT.cEa

xMax@Za_?NumericQ, tK_?NumericQD ê;
zaMin § Za § zaMax Ï tSTP § tK § tMaxab := cXZ@c00a@Za, tKD, D0aDP1T

c000abasis = 81, 7, 4, 13<;
cEaP#T & êü c000abasis8CISa , VSe

x , CuIn
x , H2VCu ∆ InCu La <

x000a = Array@1 &, 11D -
3 Array@KroneckerDelta@1, # D &, 11D + Array@KroneckerDelta@2, # D &, 11D8-2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1<H* using c000abasisØ8c1,c7,c4,c13<,

does any linear combination of the normalized vectors 80,0,c4,0< and80,0,0,c13< always furnish the same X value as 8c1,0,0,0<? *LSolve@
cXZ@8c1, 0, 0, 0<, D000xVinDP1T == cXZ@8c1 - c4 - c13, 0, c4, c13<, D000xVinDP1T, 8c13::c13 Ø

c4
ÅÅÅÅÅÅÅÅ
2

>>H* how does Z vary for that linear combination? *L
cXZ@81 - c4 - c13, 0, c4, c13<, D000xVinD ê. % êê Simplify::1,

4 + 16 c4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 + 15 c4

>>
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H* what is the extremal value of Z for that linear combination? *L %P1, 2T ê. c4 Ø 2 ê 3

22
ÅÅÅÅÅÅÅÅÅ
21H* are the Z' s for the vectors 8c1,0,0,0< and 80,0,0,c13< always equal? *L

cXZ@8c1, 0, 0, 0<, D000xVinDP2T === cXZ@80, 0, 0, c13<, D000xVinDP2T
True8formula@1, D000xVinDP1T, formula@4, D000xVinDP1T<

c13 µ formula@4, D000xVinDP2T - 5 c13 µ formula@1, D000xVinDP2T êê Simplify8CISa , H2VCu ∆ InCu La <
c13 H-3 Cu + InLH* Since Z is unaffected by any linear combination of c1 and c13,

and H2 VCu ∆InCu La -5 CISa does not change the selenium content at all,
how does X vary for that linear combination? *L

Solve@X == cXZ@81 - 5 c13, 0, 0, c13<, D000xVinDP1T, 8c13<D::c13 Ø -
2 H-1 + XL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3 + X
>>H* initial cluster quantities for X<1, Z>1;

and that vector' s molar normalization factor *L
Solve@8X, Z< ã cXZ@81 - H3 c4 ê 2L - 5 c13, 0, c4, c13 + c4 ê 2<, D000xVinD, 8c4, c13<D81 - H3 c4 ê 2L - 5 c13, 0, c4, c13 + c4 ê 2< ê. %
mx@81 - H3 c4 ê 2L - 5 c13, 0, c4, c13 + c4 ê 2<, D000xVinDP2T ê. %% êê

SimplifyH* moles of indium *LH* solve for normalization to give Cu 2 XÅÅÅÅÅÅÅ1+X
 In 2ÅÅÅÅÅÅÅ1+X

 Se Z  H3+XLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+X
*L

SolveB 2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + X

ã m %P1T, 8m<F::c13 Ø
2 H-1 + XL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XL H-16 + 15 ZL , c4 Ø -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>>::1 -
10 H-1 + XL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XL H-16 + 15 ZL +
6 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

,

0, -
4 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

,
2 H-1 + XL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XL H-16 + 15 ZL -
2 H-1 + ZL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Z

>>:-
8

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XL H-16 + 15 ZL >::m Ø -
H3 + XL H-16 + 15 ZL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 H1 + XL >>
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c000a@Za_?NumericQ, tK_?NumericQD ê;
zaMin § Za § zaMax Ï tSTP § tK § tMaxab :=

ModuleB8c00<, WithB:c4Zplus = :1 -
10 H-1 + XL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XL H-16 + 15 ZaL +
6 H-1 + ZaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Za

,

0, -
4 H-1 + ZaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Za

,
2 H-1 + XL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XL H-16 + 15 ZaL -
2 H-1 + ZaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Za

>,

mNormFac = -
H3 + XL H-16 + 15 ZaL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 H1 + XL >, c00 = Plus üü MapThread@
ReplacePart@Array@0 &, Length@cEaDD, #1, #2D &, 8c4Zplus, c000abasis<D;

c00 = mNormFac Hc00 + n0a.x000a 1*^-45L; ReplacePart@
c00 ê. X Ø xMax@Za, tKD, 1, -1DFF

x00a = Drop@x00mind, 84<D;
c0a@Za_?NumericQ, tK_?NumericQD ê;

zaMin § Za § zaMax Ï tSTP § tK § tMaxab := c000a@Za, tKD + n0ax.x00a

m0a@c_, tK_D ê; Length@cD === Length@cEaD := WithB8n = H# ê Plus üü #L &@Drop@Drop@Drop@Drop@mcl, -3D, 816, 17<D, 810, 13<D, 84, 6<D
Take@c, 13DD, nCISa = nAvo c ê First@cD<,

Drop@Drop@Drop@Drop@m00ab@tKD, 823, 25<D, 816, 17<D, 810, 13<D, 84, 6<D +

rG tK JoinBLog@nD, :LogB nCISaP14T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cbDOSaCIS@tKD F, LogB nCISaP15T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vbDOSaCIS@tKD F, 0>FF

gd0a@Z_, tK_D := Hm0a@c0a@#, #2D, #2D.n0aL &@Z, tKD
gd0a@1, tMaxabD ê. Thread@x00a Ø Array@0 &, Length@x00aDDD;
sSD@%D "Joules total RMS initial affinity deviation"

1.10525 µ 107 Joules total RMS initial affinity deviation
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gd0a@1, tMaxab - 400D ê. x0a@1, tMaxab - 400D;8"solution convergence sSD", sSD@%D<
"comparison of phase-boundary single-

phase with nearly corresponding two-phase solution:"
Thread@8Drop@cEa, -1D,

Thread@8Drop@c0a@1, tMaxab - 400D ê. x0a@1, tMaxab - 400D, -1D,
partCIS@Hc00xmind@1, tRef - 575D ê H1 - c00xmind@1, tRef - 575DP14TLL ê.

x0@1, tRef - 575DD<D<D8solution convergence sSD, 0.00177069<
comparison of phase-boundary single-

phase with nearly corresponding two-phase solution:88CISa , 80.499725, 0.499725<<, 8VCu
x , 82.28725 µ 10-11, 4.72603 µ 10-13 <<,8VCu

£ , 80.0000365934, 0.0000365318<<, 8CuIn
x , 81.86399 µ 10-22 , 7.97367 µ 10-26<<,8CuIn

£ , 85.07145 µ 10-19 , 1.04817 µ 10-20 <<,8CuIn
££ , 87.84222 µ 10-20 , 7.83115 µ 10-20 <<,8VSe

x , 88.98764 µ 10-14, 2.1016 µ 10-10<<, 8VSe
‰‰ , 81.5276 µ 10-14, 1.53018 µ 10-14<<,8Cui ∆VCu , 84.29359 µ 10-17 , 4.29232 µ 10-17 <<,8CuIn ∆ InCu , 81.98426 µ 10-8, 1.98368 µ 10-8<<,8VCu ∆ InCu , 82.68474 µ 10-9, 1.29603 µ 10-7 <<,8HVCu ∆ InCu L‰ , 80.0000365907, 0.0000365592<<,8H2VCu ∆ InCu La , 81.22827 µ 10-7 , 1.22551 µ 10-7 <<,8e£ , 85.67604 µ 10-10, 2.7424 µ 10-8<<, 8h‰ , 83.22965 µ 10-9, 6.6845 µ 10-11<<<8"temperature @KD", 8tRef - 575, tMaxab - 400<<8"two-phase total X,Z" ,

cXZ@c00xmind@1, tRef - 575D ê. x0@1, tRef - 575D, D00D ê. d Ø dmin@tRef - 575D<8"CIS phase X and Z; old solution" ,
cXZ@partCIS@c00xmind@1, tRef - 575D ê. x0@1, tRef - 575DD, partCIS@D00DD<8"CIS phase X and Z; new solution" ,
cXZ@c0a@1, tMaxab - 400D ê. x0a@1, tMaxab - 400D, D0aD<8"difference new-old X and Z" , %P2T - %%P2T<8temperature @KD, 8473.15, 473.15<<8two-phase total X,Z, 81., 1.<<8CIS phase X and Z; old solution, 80.999853, 1.<<8CIS phase X and Z; new solution, 80.999853, 1.<<8difference new-old X and Z, 82.2338 µ 10-7 , 3.93434 µ 10-8<<
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This  exemplary  single  phase  Z= 1 solution  exhibits  an  increase  in  hole

concentration and shifts in ionization equilibria, which are indicative of a Fermi level

shift  resulting from the increase  in valency required  to suppress  the secondary

Cu2-d Se phase segregation and yield single phase a-CIS. This is also evident in the

four-order-of-magnitude  drop in the  total  concentration  of VSe .  Otherwise,  the

ternary part of the two-phase Z= 1 solution renormalized to one mole of a-CIS is

virtually  identical  to the single-phase  solution at the phase boundary  where its

valency Z= 1 and its molecularity parameter X assumes the maximum possible value

for that Z.

gd0a@1, tSTPD ê. x0a@1, tSTPD;8"solution convergence sSD", sSD@%D<
Thread@8cEa, c0a@1, tSTPD ê. x0a@1, tSTPD<D8solution convergence sSD, 637.156<88CISa , 0.5<, 8VCu

x , 5.88725 µ 10-18 <, 8VCu
£ , 2.76287 µ 10-8<,8CuIn

x , 1.80556 µ 10-35<, 8CuIn
£ , 3.54078 µ 10-30<, 8CuIn

££ , 5.85049 µ 10-31 <,8VSe
x , 3.74234 µ 10-20 <, 8VSe

‰‰ , 2.34695 µ 10-22<, 8Cui ∆VCu , 1.35084 µ 10-26 <,8CuIn ∆ InCu , 1.71625 µ 10-12<, 8VCu ∆ InCu , 5.13063 µ 10-14<,8HVCu ∆ InCu L‰ , 2.76287 µ 10-8<, 8H2VCu ∆ InCu La , 5.24904 µ 10-12<,8e£ , 3.05254 µ 10-13<, 8h‰ , 3.56554 µ 10-13<, 8DN, 1.<<
This  completes  the  ternary  single  phase  equilibrium  solution  at  the

Cu2-d Se/a–CIS  two-phase  boundary for Z = 1. This  solution is next extended to

Z > 1. Here the concentration vector is initialized to the solution from the two-phase

problem.

c0aDZ@Za_?NumericQ, tK_?NumericQD ê;
zaMin § Za § zaMax Ï tSTP § tK § tMaxab := c00a@Za, tKD + n0ax.x00a
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gd0aDZ@Za_, tK_D := Hm0a@c0aDZ@#, #2D, #2D.n0aL &@Za, tKD
tKdomainab = Reverse@HtMaxab - #L & êü Range@0, 575, 5DD;
First@tKdomainabD === tSTP
Length@tKdomainabD

True
116

zRangea = H1 + #L & êü
2 Range@0, 5D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

10000
;

zaMin § First@zRangeaD Ï Last@zRangeaD § zaMax
zRangea êê N

True81., 1.0002, 1.0004, 1.0006, 1.0008, 1.001<
Thread@8cEa, Thread@8c0a@1, tSTPD ê. x0a@1, tSTPD,

c0aDZ@Last@zRangeaD, tSTPD ê. x0a@Last@zRangeaD, tSTPD<D<D88CISa , 80.5, 0.491365<<, 8VCu
x , 85.88725 µ 10-18, 0.000866232<<,8VCu

£ , 82.76287 µ 10-8, 0.00119347<<, 8CuIn
x , 81.80556 µ 10-35, 0.000981228<<,8CuIn

£ , 83.54078 µ 10-30 , 5.44552 µ 10-8<<,8CuIn
££ , 85.85049 µ 10-31 , 2.64157 µ 10-18 <<,8VSe

x , 83.74234 µ 10-20, 6.33766 µ 10-47 <<,8VSe
‰‰ , 82.34695 µ 10-22, 2.99438 µ 10-33 <<,8Cui ∆VCu , 81.35084 µ 10-26, 1.31527 µ 10-26<<,8CuIn ∆ InCu , 81.71625 µ 10-12, 1.63061 µ 10-12<<,8VCu ∆ InCu , 85.13063 µ 10-14, 1.0551 µ 10-29 <<,8HVCu ∆ InCu L‰ , 82.76287 µ 10-8, 2.44487 µ 10-16<<,8H2VCu ∆ InCu La , 85.24904 µ 10-12, 2.09752 µ 10-15<<,8e£ , 83.05254 µ 10-13, 8.80693 µ 10-23<<,8h‰ , 83.56554 µ 10-13, 0.00119352<<, 8DN, 81., 1.00008<<<
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G0a@Za_? HMemberQ@8N@1D, 1<, #D &L, tK_? HMemberQ@tKdomainab, #D &LD :=Hc0a@1, tKD.m0a@c0a@1, tKD, tKDL ê. x0a@1, tKD
G0a@Za_? HMemberQ@Rest@zRangeaD, #D &L, tK_? HMemberQ@tKdomainab, #D &LD :=Hc0aDZ@Za, tKD.m0a@c0aDZ@Za, tKD, tKDL ê. x0a@Za, tKD
G0a@Za_? HMemberQ@N@Rest@zRangeaDD, #D &L, tK_? HMemberQ@tKdomainab, #D &LD :=

With@8Z = First@Select@zRangea, HN@#D === ZaL &DD<,Hc0aDZ@Z, tKD.m0a@c0aDZ@Z, tKD, tKDL ê. x0a@Z, tKDD8G0a@1, tSTP + 100D, G0a@zRangeaP2T, tSTP + 100D, G0a@1.0004, tSTP + 100D<8-306056., -305793., -306119.<
This  completes  the  ternary  single  phase  equilibrium  solution  at  the

Cu2-d Se/a–CIS  two-phase boundary where the a–CIS  phase assumes its maximum

possible molecularity (i.e.: maximum copper concentration). At all temperatures from

STP  to  the  a/b/d-CIS  eutectoid  decomposition  temperature  the  molecularity

deviation of the ternary phase is found to be negative in equilibrium at this two-

phase boundary. Thus the ideal stoichiometric ternary composition CuInSe2  always

dissociates in equilibrium to form the two-phase mixture.

Before  turning  to  consideration  of the  a/b-CIS  phase  equilibrium,  it  is

necessary to determine the variation of Gibbs energy of the  a–CIS phase with its

composition, in particular its Gibbs energy variation with the molecularity X.
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c000a@Xa_?NumericQ, Za_?NumericQ, tK_?NumericQD ê;
c0xVinLimitsP1T § Xa < xMax@Za, tKD Ï

zaMin § Za § zaMax Ï tSTP § tK § tMaxab :=

ModuleB8c00<, WithB:c4Zplus = :1 -
10 H-1 + XaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XaL H-16 + 15 ZaL +
6 H-1 + ZaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Za

,

0, -
4 H-1 + ZaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Za

,
2 H-1 + XaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH3 + XaL H-16 + 15 ZaL -
2 H-1 + ZaL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-16 + 15 Za

>,

mNormFac = -
H3 + XaL H-16 + 15 ZaL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 H1 + XaL >, c00 = Plus üü MapThread@
ReplacePart@Array@0 &, Length@cEaDD, #1, #2D &, 8c4Zplus, c000abasis<D;

c00 = mNormFac Hc00 + n0a.x000a 1*^-45L; ReplacePart@c00, 1, -1DFF
c0a@Xa_?NumericQ, Za_?NumericQ, tK_?NumericQD ê;

c0xVinLimitsP1T § Xa < xMax@Za, tKD Ï zaMin § Za § zaMax Ï
tSTP § tK § tMaxab := c000a@Xa, Za, tKD + n0ax.x00a

gda@Xa_?NumericQ, Za_?NumericQ, tK_?NumericQD ê;
c0xVinLimitsP1T § Xa < xMax@Za, tKD Ï zaMin § Za § zaMax Ï

tSTP § tK § tMaxab := Hm0a@c0a@#, #2, #3D, #3D.n0aL &@Xa, Za, tKD
xMax4Tmaxab = xMax@1, tMaxabD

0.962298"limits of X variation at a-b-d eutectoid temperature:",
c0xVinLimitsP1T, xMax4Tmaxab< êê N

Subtract üü Rest@%D "difference"8limits of X variation at a-b-d eutectoid temperature:, 0.636864, 0.96229<
-0.325426 difference
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gda@xMax4Tmaxab - 320 ê 1000, 1, tMaxabD ê.
xa@xMax4Tmaxab - 320 ê 1000, 1, tMaxabD;8"solution convergence sSD", sSD@%D<

Thread@8cEa, c0a@xMax4Tmaxab - 320 ê 1000, 1, tMaxabD ê.
xa@xMax4Tmaxab - 320 ê 1000, 1, tMaxabD<D8"atom and charge fractions", ax@c0a@xMax4Tmaxab - 320 ê 1000, 1, tMaxabD ê.
xa@xMax4Tmaxab - 320 ê 1000, 1, tMaxabD, D0aD<8solution convergence sSD, 4.77507 µ 10-7 <88CISa , 0.00875771<, 8VCu

x , 1.85156 µ 10-7 <, 8VCu
£ , 0.00038826<,8CuIn

x , 6.4206 µ 10-21<, 8CuIn
£ , 4.25063 µ 10-19<, 8CuIn

££ , 4.1594 µ 10-20<,8VSe
x , 3.12032 µ 10-16 <, 8VSe

‰‰ , 1.56867 µ 10-15<, 8Cui ∆VCu , 4.90932 µ 10-15 <,8CuIn ∆ InCu , 1.2899 µ 10-10<, 8VCu ∆ InCu , 3.34542 µ 10-7 <,8HVCu ∆ InCu L‰ , 0.00038811<, 8H2VCu ∆ InCu La , 0.108518<,8e£ , 3.46689 µ 10-9<, 8h‰ , 1.52853 µ 10-7 <, 8DN, 1.<<8atom and charge fractions, 80.185449, 0.288731, 0.52582, -1.28527 µ 10-20<<
gda@xMax4Tmaxab - 320 ê 1000, 1, tSTPD ê. xa@xMax4Tmaxab - 320 ê 1000, 1, tSTPD8"solution convergence sSD", sSD@%D<
Thread@8cEa, c0a@xMax4Tmaxab - 320 ê 1000, 1, tSTPD ê.

xa@xMax4Tmaxab - 320 ê 1000, 1, tSTPD<D8"atom and charge fractions", ax@c0a@xMax4Tmaxab - 320 ê 1000, 1, tSTPD ê.
xa@xMax4Tmaxab - 320 ê 1000, 1, tSTPD, D0aD<8-0.0000665262, -0.0000206273, -0.0113311, -0.0000462462, -0.0000462467,

-0.0000186414, 0., 0., -0.000039754, 0.0000462466, 0.0000263692<8solution convergence sSD, 0.0116418<88CISa , 0.00989308<, 8VCu
x , 9.56632 µ 10-14<, 8VCu

£ , 9.98791 µ 10-6<,8CuIn
x , 7.58969 µ 10-41<, 8CuIn

£ , 3.19188 µ 10-37 <, 8CuIn
££ , 1.17333 µ 10-39<,8VSe

x , 3.11782 µ 10-34 <, 8VSe
‰‰ , 3.95047 µ 10-33<, 8Cui ∆VCu , 8.5094 µ 10-32<,8CuIn ∆ InCu , 1.08112 µ 10-17 <, 8VCu ∆ InCu , 4.12636 µ 10-13<,8HVCu ∆ InCu L‰ , 9.98791 µ 10-6<, 8H2VCu ∆ InCu La , 0.108896<,8e£ , 1.3437 µ 10-16<, 8h‰ , 3.17107 µ 10-13<, 8DN, 1.<<8atom and charge fractions, 80.185449, 0.288731, 0.52582, 0.<<
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xRangea = HxMax4Tmaxab - #L & êü
5 Range@1, 64D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1000
;

First@xRangeaD === xMax4Tmaxab - .005
Last@xRangeaD === xMax4Tmaxab - .32

True
True

Do@With@8T = tKdomainabPiT<, c0aFit@1, TD = Module@8ca<,
ca = Join@8c0a@1, TD ê. x0a@1, TD<, HHc0a@#, 1, TD ê. xa@#, 1, TDL & êü xRangeaLD;

SplineFit@Thread@8Join@8xMax@1, TD<, xRangeaD, caPAll, #T<D, CubicD & êü
Range@Length@cEaDDDD, 8i, Length@tKdomainabD<D;

cXa@Xa_, 1, tK_? HMemberQ@tKdomainab, #D &LD ê;
First@xRangeaD < Xa § xMax@1, tKD := WithB:X =

xMax@1, tKD - Xa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xMax@1, tKD - First@xRangeaD >,

Through@Hc0aFit@1, tKDP#T & êü Range@Length@cEaDDL@XDDPAll, 2TF
cXa@Xa_, 1, tK_? HMemberQ@tKdomainab, #D &LD ê;

Last@xRangeaD § Xa § First@xRangeaD :=

WithB:X = 1 + HLength@xRangeaD - 1L 
First@xRangeaD - Xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
First@xRangeaD - Last@xRangeaD >,

Through@Hc0aFit@1, tKDP#T & êü Range@Length@cEaDDL@XDDPAll, 2TF
Thread@8cEa, cXa@Last@xRangeaD, 1, tSTPD<D88CISa , 0.00989308<, 8VCu

x , 9.56632 µ 10-14<, 8VCu
£ , 9.98791 µ 10-6<,8CuIn

x , 7.58969 µ 10-41<, 8CuIn
£ , 3.19188 µ 10-37 <, 8CuIn

££ , 1.17333 µ 10-39<,8VSe
x , 3.11782 µ 10-34 <, 8VSe

‰‰ , 3.95047 µ 10-33<, 8Cui ∆VCu , 8.5094 µ 10-32<,8CuIn ∆ InCu , 1.08112 µ 10-17 <, 8VCu ∆ InCu , 4.12636 µ 10-13<,8HVCu ∆ InCu L‰ , 9.98791 µ 10-6<, 8H2VCu ∆ InCu La , 0.108896<,8e£ , 1.3437 µ 10-16<, 8h‰ , 3.17107 µ 10-13<, 8DN, 1.<<
g0a@Xa_?NumericQ, 1, tK_? HMemberQ@tKdomainab, #D &LD ê;

Last@xRangeaD § Xa § xMax@1, tKD := cXa@Xa, 1, tKD. m0a@cXa@Xa, 1, tKD, tKD8g0a@xMax@1, tSTPD, 1, tSTPD, g0a@Last@xRangeaD, 1, tMaxabD<8-288747., -453520.<
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This completes the initial a–CIS ternary single phase equilibrium solution as a

function of temperature and molecularity X. The a/b–CIS phase equilibrium problem

is considered next. The quasichemical reactions between the b–CIS and a–CIS phases

are represented in a manner analogous to that used for the prior solution of the

Cu2-d Se/a–CIS  equilibrium problem. Whereas only copper could be independently

exchanged  between  the two phases  in that problem,  only the H2VCu ∆ InCu L
cation NDC complex can be independently exchanged between the b–CIS and a–CIS

phases in this model.  The variation of the Gibbs energy of the a–CIS phase as a

function of its molecularity Xa  has already been determined based on the solution of

its constituent  defect equilibria, and cation NDC exchange between them does not

change the valency Z of either, so the internal defect structure of the a–CIS phase is

otherwise  irrelevant to the solution of its equilibrium with the b–CIS phase. The

composition and Gibbs energy of the a–CIS phase will be computed here on the basis

of the two species aNDC and aCIS.

The species aCIS is not the CISa  cluster (the ideal chalcopyrite primitive unit

cell) but rather the reference state defined by one mole of the a–CIS phase with its

equilibrium  internal  defect  structure  and specific  Gibbs  energy  given  by the

preceding  single-phase  solution,  and  chemical  formula  given  by

 Cu 2 XaÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa
 In 2ÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa

 Se Z  H3+XaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa
.  Its molecularity  will be fixed to the maximum equilibrium

single-phase value at each temperature.

The species aNDC is not the H2VCu ∆ InCu La  cluster, although it has the same

molecularity. Its purpose is analogous to that of the CuCu2Se  specie in the preceding
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two-phase problem:  in the stoichiometric reaction formalism  it controls the overall

composition  (molecularity  in this  case)  of  the secondary  phase  in a physically

meaningful  way.   As  a  consequence,  the  reference  state  chemical  potential  ofH2VCu ∆ InCu La  does not enter directly into this calculation  of the a–CIS phase's

Gibbs energy. Since NDC exchange between the phases cannot change the valence

stoichiometry, Z is set to unity.

Since the a and b–CIS phases are coherent,  all species are now part of the

lattice  and  the  sublattice  site  numbers  are  no  longer  needed  to  assure  the

interconsistency  between the building unit and quasichemical  species models,  so

long as the cluster multiplicity factors are retained for the mixing entropy calculation.

Because of the relatively simple four-species model employed for b–CIS and

this reduction of the a–CIS phase's complex internal defect structure, there are only

six species  in the basis used to model  the a/b-CIS phase  equilibrium:    CISb ,H2VCu ∆ InCu Lb1_5 , H2VCu ∆ InCu Lb1_3 , H2VCu ∆ InCu Lb2_5 , aNDC, and aCIS.  All these

species are neutral, so the charge element in the basis set a is no longer needed. 

Insofar  as  the  results  of  the  forthcoming  a/b–CIS  phase  equilibrium

calculations predict a phase mixture thereof in lieu of the pure a–CIS phase for some

domains of the thermodynamic  parameters,  the corresponding a–CIS single phase

solutions already developed would represent hypothetical or non-equilibrium states

of the lattice.

cEP#T & êü 81, 23, 24, 25<8CISa , H2VCu ∆ InCu L b15, H2VCu ∆ InCu Lb13, H2VCu ∆ InCu Lb25 <
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H* the reduced CISa+CISb basis vector *LcEab =
Prepend@Append@Append@Drop@Drop@cE, -3D, 22D, aNDCD, aCISD, CISb D

Length@cEabD8CISb , H2VCu ∆ InCu Lb15, H2VCu ∆ InCu L b13, H2VCu ∆ InCu Lb25, aNDC, aCIS<
6

Dab = TransposeBPrependBAppendB
AppendBRotateRight@Drop@Drop@Transpose@Drop@D, -5DD, -3D, 22D, 3D,: 2 Xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

,
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

,
3 + Xa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

> ê. Xa Ø
7

ÅÅÅÅÅÅÅÅÅ
11

F,: 2 Xa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

,
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

,
3 + Xa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Xa

>F, First@Transpose@Drop@D, -5DDDFF;
Dab êê MatrixFormi

k
jjjjjjjjjjjj 2 7 3 4 7ÅÅÅÅÅ9

2 XaÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa

2 11 7 12 11ÅÅÅÅÅÅÅ9
2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa

4 20 12 20 20ÅÅÅÅÅÅÅ9
3+XaÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+Xa

y
{
zzzzzzzzzzzzH* cluster multiplicity factors for the aê b-CIS problem *L

mclab = 81, 5, 3, 5, 1 ê 2, 1 ê 2<;
D0ab@tK_?NumericQD := Dab ê. Xa Ø xMax@1, tKD;
formula@i_, DabD := 8cEab, a .Dab<PAll, iT
formula@i_, D0ab@tK_DD := 8cEab, a .D0ab@tKD<PAll, iT
nab = Transpose@NullSpace@DabDD;
MatrixForm@nabDi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjj
- -7+11 XaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 H1+XaL 0 5 2

- 1-XaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H1+XaL - 1ÅÅÅÅ9 -2 -1

0 0 0 1
0 0 1 0

0 1 0 0
1 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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n0ab@tK_?HMemberQ@tKdomainab, #D &LD = nab ê. Xa Ø xMax@1, tKD;
rxn@i_, nabD := nabPAll, iT.cEab
rxn@i_, nFunc_? HHDimensions@#D ã 86, 4<L &LD := nFuncPAll, iT.cEab

The initial composition  will be set to slightly more than the lowest value

solved for the single  phase a–CIS model,  with the b–CIS species populated and

molecularity of the a–CIS phase set by a linear combination of the reactions in n0ab

to the lowest value solved for the single phase a–CIS model. The subsequent solution

of the Gibbs-Duhem equations will quantify the relaxation of this initial distribution

to its two-phase equilibrium.

mxab@c_?VectorQ, D_D ê; Length@cD ã Dimensions@DDP2T := Take@D, 3D.c
axab@c_?VectorQ, D_D ê; Length@cD ã Dimensions@DDP2T :=

mxab@c, DD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Plus üü mxab@c, DD

cXZab@c_?VectorQ, D_D ê; Length@cD ã Dimensions@DDP2T :=: mxab@c, DDP1T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
mxab@c, DDP2T ,

2 mxab@c, DDP3T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
mxab@c, DDP1T + 3 mxab@c, DDP2T >

x00ab = Array@KroneckerDelta@1, # D &, 4D - 30 Array@KroneckerDelta@2, # D &, 4D +
Array@KroneckerDelta@3, # D &, 4D + Array@KroneckerDelta@4, # D &, 4D81, -30, 1, 1<

c00ab@tK_?HMemberQ@tKdomainab, #D &LD :=

ModuleB8c00, x, normFac, xtnt<, WithB8n = n0ab@tKD, D = D0ab@tKD<,
xtnt = x ê. FindRoot@cXZab@partCIS@80, 0, 0, 0, 1, 0< + x n.x00abD, partCIS@DDDP

1T ã Last@xRangeaD + 1*^-6, 8x, 80, .01<<D;
c00 = 80, 0, 0, 0, 1, 1< H80, 0, 0, 0, 1, 0< + xtnt n.x00abL; c00 = c00 + n.x00ab 1*^-45;

normFac =
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
mxab@c00, DDP2T H1 + Last@xRangeaD + 1*^-6L ; c00 = normFac c00FF
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x0ab = Take@x000, 4D;
c0ab@tK_? HMemberQ@tKdomainab, #D &LD := c00ab@tKD + n0ab@tKD.x0ab;

The reference  state chemical  potentials  of the species aCIS and aNDC are

given by the solution function for the specific Gibbs energy of the a–CIS phase with

the value of it's net molecularity X determined by the relative concentrations of each

species, with each normalized by their binary mole fraction in the a phase to yield

their partial  molar free energies  therein. The function cXZab  and choice of basis

normalization makes the implementation  of this considerably  simpler than in the

preceding  Cu2-d Se/a–CuInSe2  equilibrium  calculations.  In  this  case  the  net

molecularity is linear with their binary mole fractions, thus the normalization factors

are both unity.  Unlike  the previous  two-phase  problem,  each secondary  phase

species contributes to the configurational  entropy of the lattice as a normal mixture

component, a consequence of the coherence of the a and b lattices.

mab@c_, tK_? HMemberQ@tKdomainab, #D &LD ê; Length@cD === Length@cEabD :=
Module@8ga<, With@8n = H# ê Plus üü #L &@c mclabD,

Xa = cXZab@partCIS@cD, partCIS@D0ab@tKDDDP1T, mclRef = m00ab@tKD<,
ga = g0a@Xa, 1, tKD; Join@Prepend@Drop@Drop@mclRef, -3D, 22D, First@mclRefDD,8ga, ga<D + rG tK Log@nDDD

gd0ab@tK_? HMemberQ@tKdomainab, #D &LD := Hmab@c0ab@#D, #D.n0ab@#DL &@tKD
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gd0ab@tMaxabD ê. Thread@x0ab Ø 80.00, 0.00, 0.00, 0.00<D
"initial total RMS convergence deviation" sSD@%D
c0ab@tMaxabD ê. Thread@x0ab Ø 80.00, 0.00, 0.00, 0.00<D;
Thread@8cEab, %<D
D0ab@tMaxabD;88"Xmixture", cXZab@%%%, %DP1T<, 8"Xa", cXZab@partCIS@%%%D, partCIS@%DDP1T<,8"Xb", cXZab@part2ndF@%%%D, part2ndF@%DDP1T<<8279803., 86033.6, -2.91331 µ 106, -1.46809 µ 106<

4.74724 µ 106 initial total RMS convergence deviation88CISb , 1.06666 µ 10-44<, 8H2VCu ∆ InCu L b15, 5.27726 µ 10-46<,8H2VCu ∆ InCu Lb13 , 1.63017 µ 10-45 <, 8H2VCu ∆ InCu Lb25 , 1.63017 µ 10-45<,8aNDC, 0.97827<, 8aCIS, 0.0217299<<88Xmixture, 0.642291<, 8Xa, 0.642291<, 8Xb, 0.627045<<
gd0ab@tMaxabD ê. xab@tMaxabD8"solution convergence sSD", sSD@%D<
c0ab@tMaxabD ê. xab@tMaxabD;
Thread@8cEab, %<D
D0ab@tMaxabD;88"Xmixture", cXZab@%%%, %DP1T<, 8"Xa", cXZab@partCIS@%%%D, partCIS@%DDP1T<,8"Xb", cXZab@part2ndF@%%%D, part2ndF@%DDP1T<<8-1.74623 µ 10-10 , -2.21189 µ 10-9, -4.37722 µ 10-8, -2.11876 µ 10-8<8solution convergence sSD, 6.73463 µ 10-8<88CISb , 0.054151<, 8H2VCu ∆ InCu L b15, 0.000064789<,8H2VCu ∆ InCu Lb13 , 0.0632205<, 8H2VCu ∆ InCu Lb25, 0.0206685<,8aNDC, 0.00341692<, 8aCIS, 0.406248<<88Xmixture, 0.642291<, 8Xa, 0.959035<, 8Xb, 0.476614<<
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gd0ab@tSTPD ê. xab@tSTPD8"STP solution convergence sSD", sSD@%D<
c0ab@tSTPD ê. xab@tSTPD;
Thread@8cEab, %<D
D0ab@tSTPD;88"Xmixture", cXZab@%%%, %DP1T<, 8"Xa", cXZab@partCIS@%%%D, partCIS@%DDP1T<,8"Xb", cXZab@part2ndF@%%%D, part2ndF@%DDP1T<<81.16415 µ 10-10 , 1.68802 µ 10-9, 1.08033 µ 10-7 , 5.3551 µ 10-8<8STP solution convergence sSD, 1.63389 µ 10-7 <88CISb , 0.0548707<, 8H2VCu ∆ InCu Lb15 , 3.9438 µ 10-6<,8H2VCu ∆ InCu Lb13 , 0.105746<, 8H2VCu ∆ InCu Lb25, 0.00157752<,8aNDC, 1.48757 µ 10-6<, 8aCIS, 0.348869<<88Xmixture, 0.642291<, 8Xa, 0.999998<, 8Xb, 0.498675<<
c0abFit = Module@8cab<, cab = Hc0ab@#D ê. xab@#DL & êü tKdomainab;
SplineFit@Thread@8tKdomainab, cabPAll, #T<D, CubicD & êü Range@Length@cEabDDD;
cab@tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB:T = HLength@tKdomainabD - 1L 
tK - tSTP

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tMaxab - tSTP

>,

Through@Hc0abFitP#T & êü Range@Length@cEabDDL@TDDPAll, 2TF
xMin@1, tK_?NumericQD ê; tSTP § tK § tMaxab :=

cXZab@partCIS@cab@tKDD, partCIS@D0ab@tKDDDP1T
xbMax@1, tK_?NumericQD ê; tSTP § tK § tMaxab :=

cXZab@part2ndF@cab@tKDD, part2ndF@D0ab@tKDDDP1T
This completes the calculation of the a/b–CIS two-phase boundary locus on

the pseudobinary section. Functions are defined next to facilitate the characterization

of the of b–CIS in equilibrium with a–CIS at its upper  molecularity  limit.  One

provides the specific molar concentrations of the b–CIS model's component species,

and the other  provides  the specific  Gibbs energy  of the b–CIS phase,  both as

functions of temperature.
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cEb = part2ndF@cEabD8CISb , H2VCu ∆ InCu Lb15, H2VCu ∆ InCu L b13, H2VCu ∆ InCu Lb25<
Db = part2ndF@DabD;
mclb = part2ndF@mclabD81, 5, 3, 5<
c0b@tK_?NumericQD ê; tSTP § tK § tMaxab :=

WithB8cb = part2ndF@cab@tKDD, xb = xbMax@1, tKD<, cb H3 + xbL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + xbL mxab@cb, DbDP3T F

Thread@8cEb, c0b@tSTPD<D88CISb , 0.08427<, 8H2VCu ∆ InCu L b15, 6.05686 µ 10-6<,8H2VCu ∆ InCu Lb13 , 0.162405<, 8H2VCu ∆ InCu Lb25, 0.00242275<<
Thread@8cEb, c0b@tMaxabD<D88CISb , 0.0917292<, 8H2VCu ∆ InCu Lb15 , 0.000109749<,8H2VCu ∆ InCu Lb13 , 0.107092<, 8H2VCu ∆ InCu Lb25, 0.0350114<<
gb@1, tK_?NumericQD ê; tSTP § tK § tMaxab := c0b@tKD. part2ndF@mab@c0b@tKD, tKDD

This completes  the calculation of all phase equilibria  on the pseudobinary

section of the Cu–In–Se ternary phase field within the temperature and composition

domain of this model.

379



380

LIST OF REFERENCES

1. Shay, J.L. and J.H. Wernick, Ternary Chalcopyrite Semiconductors:  Growth,
Electronic Properties, and Applications, Vol. 7, First ed. (Permagon Press,
Oxford, England, 1975).

2. Copper Indium Diselenide for Photovoltaic Applications, edited by Coutts, T.J.,
L.L. Kazmerski, and S. Wagner (Elsevier Science Ltd., Amsterdam, 1986).

3. Neumann, H. and R.D. Tomlinson, Solar Cells 28, 301 (1990).

4. Rockett, A. and R.W. Birkmire, Journal of Applied Physics 70, 81 (1991).

5. Champness, C.H., Journal of Materials Science 10, 605 (1999).

6. Rau, U. and H.W. Schock, Applied Physics A 69, 131 (1999).

7. Hovel, H.J., Solar Cells, Vol. 11, First ed. (Academic Press, New York, NY,
1975).

8. Tsubomura, H. and H. Kobayashi, Critical Reviews in Solid State and
Materials Sciences 18, 261 (1993).

9. Green, M.A., Solar Cells: Operating Principles, Technology, and System
Applications (University of New South Wales, Kensington, 1992).

10. Solar Cells and their Applications, edited by Partain, L.D. (John Wiley & Sons,
Inc., New York, 1995).

11. Chopra, K.L. and S.R. Das,  (Plenum Press, New York, 1983).

12. Schock, H.W., Applied Surface Science 92, 606 (1995).

13. Benner, J.P. and L. Kazmerski, IEEE Spectrum 36, 34 (1999).

14. Adams, W.G. and R.E. Day, Proceedings of the Royal Society A 25, 113
(1877).

15. Parkes, J., R.D. Tomlinson, and M.J. Hampshire, Journal of Crystal Growth
20, 315 (1973).



381

16. Rockett, A., F. Abou-Elfotouh, D. Albin, M. Bode, J. Ermer, R. Klenk, T.
Lommasson, T.W.F. Russell, R.D. Tomlinson, J. Tuttle, L. Stolt, T. Walter,
and T.M. Peterson, Thin Solid Films 237, 1 (1994).

17. Feigelson, R.S. and R.K. Route, Optical Engineering 26, 113 (1987).

18. Boehnke, U.C. and G. Kühn, Journal of Materials Science 22, 1635 (1987).

19. Tomlinson, R.D., in Ternary and Multinary Compounds, Proceedings of the
7th International Conference, 1986 (Materials Research Society, Pittsburgh),
p. 177.

20. Palatnik, L.S. and E.I. Rogacheva, Sov. Phys. Dokl. 12, 503 (1967).

21. Koneshova, T.I., A.A. Babitsyna, and V.T. Kalinnikov, Izvestiya Akademii
Nauk SSSR, Neorganicheskie Materialy 18, 1483 (1982).

22. Fearheiley, M.L., Solar Cells 16, 91 (1986).

23. Folmer, J.C.W., J.A. Turner, R. Noufi, and D. Cahen, Journal of the
Electrochemical Society 132, 1319 (1985).

24. Bachmann, K.J., M.I. Fearheily, Y.H. Shing, and N. Tran, Applied Physics
Letters 44, 407 (1984).

25. Hornung, M., Ph.D. Thesis University of Freiburg (Shaker–Verlag, Aachen,
1996).

26. Chang, C.H., A. Davydov, B.J. Stanbery, and T.J. Anderson, in The
Conference Record of the 25th IEEE Photovoltaic Specialists Conference, 1996
(Institute of Electrical and Electronic Engineers, New York), p. 849.

27. Haalboom, T., T. Gödecke, F. Ernst, M. Rühle, R. Herbholz, H.W. Schock, C.
Beilharz, and K.W. Benz, in 11th International Conference on Ternary and
Multinary Compounds, 1997 (Institute of Physics, London), p. 249.

28. Tomm, Y., S. Fiechter, and C. Fischer, in Ternary and Multinary Compounds,
Proceedings of the 11th International Conference, 1997 (Institute of Physics,
London), p. 181.

29. Palatnik, L.S. and I.K. Belova, Izvestiya Akademii Nauk SSSR,
Neorganicheskie Materialy 12, 2194 (1967).

30. Mikkelsen, J.C., Jr., Journal of Electronic Materials 10, 541 (1981).



382

31. Binsma, J.J.M., L.J. Giling, and J. Bloem, Journal of Crystal Growth 50, 429
(1980).

32. Verheijen, A.W., L.J. Giling, and J. Bloem, Materials Research Bulletin 14,
237 (1979).

33. Migge, H. and J. Grzanna, J. Mater. Res. 9, 125 (1994).

34. Abasova, A.Z., L.G. Gasanova, and A.G. Kyazym-zade, in Ternary and
Multinary Compounds, Proceedings of the 11th International Conference, 1997
(Institute of Physics, London), p. 87.

35. Fiechter, S., K. Diesner, and Y. Tomm, in Ternary and Multinary Compounds,
Proceedings of the 11th International Conference, 1997 (Institute of Physics,
London), p. 27.

36. Grimm, H.G. and A. Sommerfield, Z. Phys. 36, 439 (1926).

37. Zunger, A. and J.E. Jaffe, Physical Review Letters 51, 662 (1983).

38. Spiess, H.W., U. Haeberlen, G. Brandt, A. Räuber, and J. Schneider, Physica
Status Solidi (b) 62, 183 (1974).

39. Chang, C.H., J.W. Johnson, B.J. Stanbery, T.J. Anderson, S.H. Wei,
R.N. Battacharya, R. Duran, and G. Bunker, Journal of Applied Physics,
submitted (2000).

40. Chang, C.-H., Dissertation, University of Florida, 1999.

41. Wei, S.-H., L.G. Ferreira, and A. Zunger, Physical Review B 45, 2533–2536
(1992).

42. Swalin, R.A., Thermodynamics of Solids, 2nd ed. (John Wiley & Sons, New
York, 1972).

43. Delgado, J.M., in Ternary and Multinary Compounds, Proceedings of the 11th
International Conference, 1997 (Institute of Physics, London), p. 45.

44. Leicht, M., D. Stenkamp, H.P. Strunk, M. Hornung, C. Beilharz, and K.W.
Benz, in Ternary and Multinary Compounds, Proceedings of the 11th
International Conference, 1997 (Institute of Physics, London), p. 31.

45. Leicht, M., T. Remmelle, D. Stenkamp, and H.P. Strunk, Journal of Applied
Crystallography 32, 397 (1999).



383

46. Hönle, W., G. Kühn, and U.-C. Boehnke, Crystal Research and Technology
23, 1347 (1988).

47. Schmid, D., M. Ruckh, F. Grunwald, and H.W. Schock, Journal of Applied
Physics 73, 2902 (1993).

48. Scheer, R. and H.-J. Lewerenz, Journal of Vacuum Science & Technology A
13, 1924 (1995).

49. Schmid, D., M. Ruckh, and H.W. Schock, Applied Surface Science 103, 409
(1996).

50. Herberholz, R., U. Rau, H.W. Schock, T. Haalboom, T. Goedecke, F. Ernst,
C. Beilharz, K.W. Benz, and D. Cahen, EPJ Applied Physics 6, 131 (1999).

51. Chang, C.H., S.H. Wei, S.P. Ahrenkiel, J.W. Johnson, B.J. Stanbery,
T.J. Anderson, S.B. Zhang, M.M. Al-Jassim, G. Bunker, E.A. Payzant,
and R. Duran, II-VI Compound Semiconductor Photovoltaic Materials, 2001
(Materials Research Society, Pittsburgh), in press.

52. Ashcroft, N.W. and N.D. Mermin, Solid State Physics, 1st ed. (Holt, Rinehart
and Winston, New York, 1976).

53. Gödecke, T., T. Haalboom, and F. Sommer, Journal of Phase Equilibria 19,
576 (1998).

54. Collongues, R., in Ternary and Multinary Compounds, Proceedings of the 9th
International Conference, 1993 (Japanese Journal of Applied Physics), p. 442.

55. Bode, M.H., Journal of Applied Physics 76, 159 (1994).

56. Kuan, T.S., T.F. Kuech, W.I. Wang, and E.L. Wilkie, Physical Review Letters
54, 201 (1985).

57. Su, D.S., W. Neumann, R. Hunger, P. Schubert-Bischoff, M. Giersig, H.J.
Lewerenz, R. Scheer, and E. Zeitler, Applied Physics Letters 73, 785 (1998).

58. Fons, P., S. Niki, A. Yamada, D.J. Tweet, and H. Oyanagi, in Ternary and
Multinary Compounds, Proceedings of the 11th International Conference, 1997
(Institute of Physics, London), p. 711.

59. Panchekha, P., B. Boyko, V. Novikov, and A. Chernikov, in 2nd World
Conference on Photovoltaic Solar Energy Conversion, 1998 (European
Commission Joint Research Centre, Brussels), p. 485.



384

60. Horikoshi, Y., M. Kawashima, and Y. Yamahuchi, Japanese Journal of
Applied Physics 25, L868 (1986).

61. Stanbery, B.J., C.H. Chang, S. Kim, S. Kincal, G. Lippold, A.P. Ahrenkiel, L.
Li, T.J. Anderson, and M.M. Al-Jassim, in Self-Organized Processes in
Semiconductor Alloys, 1999 (Materials Research Society, Pittsburgh), p. 195.

62. Wei, S.-H., S.B. Zhang, and A. Zunger, Physical Review B 59, R2478 (1999).

63. Groenink, A. and P.H. Janse, Zeitschrift für Physikalische Chemie Neue
Folge 110, 17 (1978).

64. Schmalzried, H., Progress in Solid State Chemistry 2, 265 (1965).

65. Rincón, C. and S.M. Wasim, in Ternary and Multinary Compounds, Proceedings
of the 7th International Conference, 1986 (Materials Research Society,
Pittsburgh), p. 443.

66. Endo, S., T. Irie, and H. Nakanishi, Solar Cells 16, 1 (1986).

67. Rincón, C. and C. Bellabarba, Physical Review B 33, 7160 (1986).

68. Wasim, S.M., Solar Cells 16, 289 (1986).

69. Flygare, W.H., Molecular Structure and Dynamics, 1st ed. (Prentice–Hall, Inc.,
Englewood Cliffs, NJ, 1978).

70. Zhang, S.B., S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, Physical
Review B 57, 9642–9656 (1998).

71. Zhang, S.B., S.-H. Wei, and A. Zunger, Physical Review Letters 78, 4059
(1997).

72. Rockett, A., Thin Solid Films 361-362, 330 (2000).

73. Parthé, E., Elements of Inorganic Structural Chemistry, 2nd ed. (Sutter-Parthé,
Petit-Lancy, Switzerland, 1996).

74. Migliorato, P., J.L. Shay, H.M. Kasper, and S. Wagner, Journal of Applied
Physics 46, 1777 (1975).

75. Niki, S., R. Suzuki, S. Ishibashi, T. Ohdaira, P.J. Fons, A. Yamada, and H.
Oyanagi, in Proceedings of the 2nd World Conference on Photovoltaic Solar
Energy Conversion, 1998 (European Commission Joint Research Centre,
Brussels), p. 616.



385

76. Suzuki, R., T. Ohdaira, S. Ishibashi, A. Uedono, S. Niki, P.J. Fons, A.
Yamada, T. Mikado, T. Yamazaki, and S. Tanigawa, in Ternary and
Multinary Compounds, Proceedings of the 11th International Conference, 1997
(Institute of Physics, London), p. 757.

77. Suzuki, R., T. Ohdaira, S. Ishibashi, S. Niki, P.J. Fons, A. Yamada, T.
Mikado, T. Yamazaki, A. Uedono, and S. Tanigawa, in Proceedings of the 2nd
World Conference on Photovoltaic Solar Energy Conversion, 1998 (European
Commission Joint Research Centre, Brussels), p. 620.

78. Wei, S.-H., S.B. Zhang, and A. Zunger, Journal of Applied Physics 85, 7214
(1999).

79. van Vechten, J.A., in Ternary and Multinary Compounds, Proceedings of the 7th
International Conference, 1986 (Materials Research Society, Pittsburgh),
p. 423.

80. Parkes, J., R.D. Tomlinson, and M.J. Hampshire, Solid State Electronics 16,
773 (1973).

81. Shay, J.L., B. Tell, M.K. Kasper, and L.M. Schiavone, Physical Review 7, 4485
(1973).

82. Hörig, W., H. Neumann, and H. Sobotta, Thin Solid Films 48, 67 (1978).

83. Rincón, C. and J. González, Physica Status Solidi (b) 118, K21 (1983).

84. Kazmerski, L.L., F.R. White, and G.K. Morgan, Applied Physics Letters 29,
268 (1976).

85. Nakanishi, H., S. Endo, T. Irie, and B.H. Chang, in Ternary and Multinary
Compounds, Proceedings of the 7th International Conference, 1986 (Materials
Research Society, Pittsburgh), p. 99.

86. Niki, S., H. Shibata, P.J. Fons, A. Yamada, A. Obara, Y. Makita, T. Kurafuji,
S. Chichibu, and H. Nakanishi, Applied Physics Letters 67, 1289 (1995).

87. Varshni, Y.P., Physica 34, 149 (1967).

88. Yu, P.W., Journal of Applied Physics 47, 677 (1976).

89. Lárez, C., C. Bellabarba, and C. Rincon, Applied Physics Letters 65, 1650
(1994).

90. Manoogian, A. and J.C. Woolley, Canadian Journal of Physics 62, 285 (1983).



386

91. Rincón, C., Physica Status Solidi (a) 134, 383 (1992).

92. Abou-Elfotouh, F.A., H. Moutinho, A. Bakry, T.J. Coutts, and L.L.
Kazmerski, Solar Cells 30, 151 (1991).

93. Bottomley, D.J., A. Mito, S. Niki, and A. Yamada, Applied Physics Letters
82, 817 (1997).

94. Xiao, H.Z., L.-C. Yang, and A. Rockett, Journal of Applied Physics 76, 1503
(1994).

95. Wasim, S.M., G. Marin, C. Rincón, P. Bocaranda, C. Mazón, S.G. Pérez, A.E.
Mora, M. Iqbal, and G. Bacquet, in Ternary and Multinary Compounds,
Proceedings of the 11th International Conference, 1997 (Institute of Physics,
London), p. 55.

96. Pankove, J.I., Optical Processes in Semiconductors (Dover Publications, Inc.,
New York, 1971).

97. Urbach, F., Physical Review 92, 1324 (1953).

98. Redfield, D., Physical Review 130, 916 (1963).

99. Redfield, D. and M.A. Afromowitz, Applied Physics Letters 11, 138 (1967).

100. Mahan, G.D. and J.W. Conley, Applied Physics Letters 11, 29 (1967).

101. Nakanishi, H., T. Sawaya, S. Endo, and T. Irie, Japanese Journal of Applied
Physics 32–3, 200 (1993).

102. Dow, J.D. and D. Redfield, Physical Review B 5, 594 (1972).

103. Kurkik, M.V., Physica Status Solidi (a) 8, 9 (1971).

104. Medvedkin, G.A. and M.A. Magomedov, Journal of Applied Physics 82,
4013 (1997).

105. Ikari, T., K. Yoshino, T. Shimizu, A. Fukuyama, K. Maeda, P.J. Fons, A.
Yamada, and S. Niki, in Ternary and Multinary Compounds, Proceedings of the
11th International Conference, 1997 (Institute of Physics, London), p. 511.

106. Boyd, G.D., H.M. Kasper, J.H. McFee, and F.G. Storz, IEEE Journal of
Quantum Electronics QE8, 900 (1972).

107. Angelov, M., R. Goldhahn, G. Gobsch, M. Kanis, and S. Fiechter, Journal of
Applied Physics 75, 5361 (1994).



387

108. Hsu, T.M., H.Y. Chang, H.L. Hwang, and S.Y. Lee, in Ternary and Multinary
Compounds, Proceedings of the 7th International Conference, 1986 (Materials
Research Society, Pittsburgh), p. 93.

109. Hsu, T.M., Journal of Applied Physics 59, 2538 (1986).

110. Binsma, J.J.M., L.J. Giling, and J. Bloem, Journal of Luminescence 27, 55
(1982).

111. Hsu, T.M., J.S. Lee, and H.L. Hwang, Journal of Applied Physics 68, 283
(1990).

112. Boyd, G.D., H.M. Kasper, and J.H. McFee, IEEE Journal of Quantum
Electronics QE7, 563 (1971).

113. Beilharz, C., Charakterisierung von aus der Schmelze gezüchteten Kristallen in
den Systemen Kupfer–Indium–Selen und Kupfer-Indium–Gallium–Selen für
photovoltaische Anwendungen (Shaker Verlag, Aachen, 1999).

114. Herberholz, R., V. Nadenau, U. Ruhle, C. Koble, H.W. Schock, and B.
Dimmler, Solar Energy Materials and Solar Cells 49, 227 (1997).

115. Shafarman, W.N., R. Klenk, and B.E. McCandless, Journal of Applied
Physics 79, 7324 (1996).

116. Wei, S.-H., S.B. Zhang, and A. Zunger, Applied Physics Letters 72, 3199
(1998).

117. Schroeder, D.J., J.L. Hernandez, G.D. Berry, and A.A. Rockett, Journal of
Applied Physics 83, 1519 (1998).

118. Chen, A.-B. and A. Sher, Semiconductor Alloys: Physics and Materials
Engineering (Plenum Press, New York, 1995).

119. Albin, D.S., J.R. Tuttle, G.D. Mooney, J.J. Carapella, A. Duda, A. Mason, and
R. Noufi, in The Conference Record of the 21st IEEE Photovoltaic Specialists
Conference, 1990 (Institute of Electrical and Electronic Engineers, New York),
p. 562.

120. Chen, W.S., J.M. Stewart, B.J. Stanbery, W.E. Devany, and R.A. Mickelsen, in
The Conference Record of the 19th IEEE Photovoltaic Specialists Conference, 1987
(Institute of Electrical and Electronic Engineers, New York), p. 1445.



388

121. Ciszek, T.F., R. Bacewicz, J.R. Durrant, S.K. Deb, and D. Dunlavy, in The
Conference Record of the 19th IEEE Photovoltaic Specialists Conference, 1987
(Institute of Electrical and Electronic Engineers, New York), p. 1448.

122. Bodnar, I.V., A.P. Bologa, and B.V. Korzun, Physica Status Solidi (b) 109,
K31 (1982).

123. Bodnar, I.V., B.V. Korzun, and A.J. Lakomskii, Physica Status Solidi (b) 105,
K143 (1981).

124. Miyake, H., M. Tsuda, and K. Sugiyama, in Ternary and Multinary
Compounds, Proceedings of the 11th International Conference, 1997 (Institute of
Physics, London), p. 83.

125. Neff, H., P. Lange, M.L. Fearheiley, and K.J. Bachmann, Applied Physics
Letters 47, 1089 (1985).

126. Shirakata, S., A. Ogawa, S. Isomura, and T. Kariya, in Ternary and Multinary
Compounds, Proceedings of the 9th International Conference, 1993 (Japanese
Journal of Applied Physics), p. 94.

127. Antonioli, G., S. Bini, P.P. Lottici, C. Razzetti, and G. Vlaic, in Ternary and
Multinary Compounds, Proceedings of the 7th International Conference, 1986
(Materials Research Society, Pittsburgh), p. 149.

128. Hedström, J., H. Ohlsén, M. Bodegård, A. Kylner, L. Stolt, D. Hariskos, M.
Ruckh, and H.-W. Schock, in The Conference Record of the 23rd IEEE
Photovoltaic Specialists Conference, 1993 (Institute of Electrical and Electronic
Engineers, New York), p. 364.

129. Rockett, A., K. Granath, S. Asher, M.M.A. Jassim, F. Hasoon, R. Matson, B.
Basol, V. Kapur, J.S. Britt, T. Gillespie, and C. Marshall, Solar Energy
Materials and Solar Cells 59, 255 (1999).

130. Probst, V., J. Rimmasch, W. Riedl, W. Stetter, J. Holz, H. Harms, F. Karg,
and H.W. Schock, in 1st World Conference on Photovoltaic Energy Conversion,
1994 (Institute of Electrical and Electronic Engineers, New York), p. 144.

131. Bodegård, M., J. Hedström, K. Granath, A. Rockett, and L. Stolt, in
Proceedings of the 13th European Photovoltaic Solar Energy Conference, 1995
(H.S. Stephens & Associates, Bedford), p. 2080.

132. Granath, K., M. Bodegård, and L. Stolt, Solar Energy Materials and Solar
Cells 60, 279 (1999).



389

133. Rau, U., M. Schmitt, D. Hilburger, F. Engelhardt, O. Seifert, and J. Parisi, in
The Conference Record of the 25th IEEE Photovoltaic Specialists Conference, 1996
(Institute of Electrical and Electronic Engineers, New York), p. 1005.

134. Granata, J.E., J.R. Sites, S. Asher, and R.J. Matson, in Conference Record of the
26th IEEE Photovoltaic Specialists Conference, 1997 (Institute of Electrical and
Electronic Engineers, New York), p. 387.

135. Granata, J.E. and J.R. Sites, in 2nd World Conference on Photovoltaic Solar
Energy Conversion, 1998 (European Commission Joint Research Centre,
Brussels), p. 604.

136. Rau, U., M. Schmitt, F. Engelhardt, O. Seifert, J. Parisi, W. Riedl, J.
Rimmasch, and F. Karg, Solid State Communications 107, 59 (1998).

137. Niles, D.W., K. Ramanathan, F. Hasoon, R. Noufi, B.J. Tielsch, and J.E.
Fulghum, Journal of Vacuum Science & Technology A 15, 3044 (1997).

138. Rockett, A., M. Bodegård, K. Granath, and L. Stolt, in The Conference Record
of the 25th IEEE Photovoltaic Specialists Conference, 1996 (Institute of Electrical
and Electronic Engineers, New York), p. 985.

139. Niles, D.W., M. Al-Jassim, and K. Ramanathan, Journal of Vacuum Science
& Technology A 17, 291 (1999).

140. Holz, J., F. Karg, and H. von Philipsborn, in Proceedings of the 12th European
Photovoltaic Solar Energy Conference, 1994 (H.S. Stephens & Associates,
Bedford), p. 1592.

141. Keyes, B.M., F. Hasoon, P. Dippo, A. Balcioglu, and F. Abufotuh, in
Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 1997
(Institute of Electrical and Electronic Engineers, New York), p. 479.

142. Schroeder, D.J. and A.A. Rockett, Journal of Applied Physics 82, 4982 (1997).

143. Bodegård, M., L. Stolt, and J. Hedström, in Proceedings of the 12th European
Photovoltaic Solar Energy Conference, 1994 (H.S. Stephens & Associates,
Bedford), p. 1743.

144. Basol, B.M., V.K. Kapur, C.R. Leidholm, A. Minnick, and A. Halani, in
The 1st World Conference on Photovoltaic Energy Conversion, 1994 (Institute of
Electrical and Electronic Engineers, New York), p. 147.

145. Nakada, T., H. Ohbo, M. Fukuda, and A. Kunioka, Solar Energy Materials
and Solar Cells 49, 261 (1997).



390

146. Ruckh, M., D. Schmid, M. Kaiser, R. Schäffler, T. Walter, and H.W. Schock,
in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion,
1994 (Institute of Electrical and Electronic Engineers, New York), p. 156.

147. Contreras, M.A., B. Egaas, P. Dippo, J. Webb, J.E. Granata, K. Ramanathan,
S. Asher, A. Swartzlander, and R. Noufi, in Conference Record of the 26th IEEE
Photovoltaic Specialists Conference, 1997 (Institute of Electrical and Electronic
Engineers, New York), p. 359.

148. Stanbery, B.J., C.H. Chang, and T.J. Anderson, in Ternary and Multinary
Compounds, Proceedings of the 11th International Conference, 1997 (Institute of
Physics, London), p. 915.

149. Stanbery, B.J., A. Davydov, C.H. Chang, and T.J. Anderson, in NREL/SNL
Photovoltaics Program Review, Proceedings of the 14th Conference, 1996
(American Institute of Physics, New York), p. 579.

150. Stanbery, B.J., E.S. Lambers, and T.J. Anderson, in Conference Record of the
26th IEEE Photovoltaic Specialists Conference, 1997 (Institute of Electrical and
Electronic Engineers, New York), p. 499.

151. Stanbery, B.J., S. Kincal, S. Kim, T.J. Anderson, O.D. Crisalle, S.P. Ahrenkiel,
and G. Lippold, in Conference Record of the 28th IEEE Photovoltaic Specialists
Conference, 2000 (Institute of Electrical and Electronic Engineers, New York).

152. Klein, A., T. Loher, C. Pettenkofer, and W. Jaegermann, Journal of Applied
Physics 80, 5039 (1996).

153. Kronik, L., D. Cahen, and H.W. Schock, Adv. Mater. 10, 31 (1998).

154. Kronik, L., D. Cahen, U. Rau, R. Herberholz, and H.W. Schock, in
Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion,
1998 (European Commission Joint Research Centre, Brussels),
p. 453.

155. Braunger, D., D. Hariskos, G. Bilger, U. Rau, and H.W. Schock, Thin Solid
Films 361-362, 161 (2000).

156. Jaffe, J.E. and A. Zunger, Physical Review B 28 (1983).

157. Kröger, F.A., The Chemistry of Imperfect Crystals, Vol. 2: Imperfection
Chemistry of Crystalline Solids, 2nd revised ed. (North-Holland Publishing
Co., Amsterdam, 1973).



391

158. Modell, M. and R.C. Reid, Thermodynamics and Its Applications, second ed.
(Prentice–Hall, Inc., Englewood Cliffs, New Jersey, 1983).

159. Hill, T.L., An Introduction to Statistical Thermodynamics, 2nd ed. (Addison-
Wesley Publishing Company, Reading, MA, 1962).

160. Chakrabarti, D.J. and D.E. Laughlin, Bulletin of Alloy Phase Diagrams 2,
305 (1981).

161. Dinsdale, A.T., CALPHAD 15, 317 (1991).

162. Hornung, M., K.W. Benz, L. Margulis, D. Schmid, and H.W. Schock, Journal
of Crystal Growth 154, 315–321 (1995).

163. Chang, C.H., A. Davydov, B.J. Stanbery, and T.J. Anderson, unpublished.

164. Barin, I., Thermochemical Data of Pure Substances (VCH, Weinheim, 1993).

165. Guggenheim, E.A., Mixtures (Oxford University Press, Oxford, 1952).

166. Bethe, H., Proceedings of the Royal Society A 150, 552 (1935).

167. Schottky, W., Halbleiter Probleme 4, 235 (1959).

168. van Vechten, J.A., Handbook of Semiconductors, Vol. 3 (North Holland,
Amsterdam, 1980).

169. van Vechten, J.A., Journal of the Electrochemical Society 122, 423 (1975).

170. Libowitz, G.G. and J.B. Lightstone, Journal of the Physics and Chemistry of
Solids 28, 1145 (1967).

171. Sha, Y.G. and R.F. Brebrick, Journal of Electronic Materials 18, 421 (1989).

172. Borgoin, J.C. and J.W. Corbett, Point Defects in Solids (Plenum Press, London,
1975).

173. Pankajavalli, R., M. Ider, B.J. Stanbery, and T.J. Anderson, Journal of
Materials Science (in preparation for submission).

174. Bachmann, K.J., F.S.L. Hsu, F.A. Thiel, and H.M. Kasper, Journal of
Electronic Materials 6, 431 (1977).

175. Neumann, H., G. Kühn, and W. Möller, Physica Status Solidi (b) 144, 565
(1987).



392

176. Zhuang, W., C.-H. Chang, and T.J. Anderson, CALPHAD, submitted (2001).

177. Mickelsen, R.A. and W.S. Chen, in The Conference Record of the 15th IEEE
Photovoltaic Specialists Conference, 1981 (Institute of Electrical and Electronic
Engineers, New York), p. 800.

178. Schumann, B., G. Kühn, U. Boehnke, and H. Neels, Soviet Physical
Crystallography 26, 678 (1981).

179. Herman, M.A. and H. Sitter, Molecular Beam Epitaxy: Fundamentals and
Current Status, Vol. 7 (Springer–Verlag, Berlin, 1989).

180. Weir, B.E., B.S. Freer, R.L. Headrick, and D.J. Eaglesham, Applied Physics
Letters 59, 204 (1991).

181. Barker, J.A. and D.J. Auerbach, Surface Science Reports 4, 1 (1984).

182. Taylor, J.B. and I. Langmuir, Physical Review 44, 423 (1933).

183. D'Evelyn, M.P. and R.J. Madix, Surface Science Reports 3, 413 (1983).

184. Kim, S.K. and H.H. Lee, Journal of Crystal Growth 151, 200 (1994).

185. Kim, S.K. and H.H. Lee, Journal of Applied Physics 78, 3809 (1995).

186. Suntola, T. and M.J. Antson, U.S. Patent No. 4,058,430 (1977).

187. Goodman, C.H.L. and M.V. Pessa, Journal of Applied Physics 60, R65
(1986).

188. Cho, A.Y. and J.R. Arthur, Progress in Solid-State Chemistry 10, 157 (1975).

189. Zhu, Z., T. Nomura, M. Miyao, and M. Hagino, in Workbook of the Fifth
International Conference on Molecular Beam Epitaxy, 1988 (Tokyo Institute of
Technology, Tokyo), p. 290.

190. Künzel, H. and K. Ploog, Applied Physics Letters 37, 416 (1980).

191. Cammack, D.A., K. Shahzad, and T. Marshall, Applied Physics Letters 56,
845 (1990).

192. Cheng, H., J.M. DePuydt, M. Haase, and J.E. Potts, Applied Physics Letters
56, 848 (1990).

193. Takenaka, K., T. Hariu, and Y. Shibata, Japanese Journal of Applied Physics
19-2, 183 (1980).



393

194. Pande, K.P. and A.C. Seabaugh, Journal of the Electrochemical Society 131,
1357 (1984).

195. Kunitsugu, Y., I. Suemune, Y. Tanaka, Y. Kan, and M. Yamanishi, in
Workbook of the Fifth International Conference on Molecular Beam Epitaxy, 1988
(Tokyo Institute of Technology, Tokyo), p. 134.

196. Sato, H., O. Osada, K. Matsushita, T. Hariu, and Y. Shibata, Vacuum 36, 133
(1986).

197. Oda, S., R. Kawase, T. Sato, I. Shimizu, and H. Kokado, Applied Physics
Letters 48, 33 (1986).

198. Matsushita, K., T. Hariu, S.F. Fang, K. Shida, and Q.Z. Gao, in Materials for
Infrared Detectors and Sources, 1986 (Materials Research Society, Pittsburgh),
p. 479.

199. Lu, P.-Y., L.M. Williams, C.-H. Wang, S.N.G. Chu, and M.H. Ross, in Epitaxy
of Semiconductor Layered Structures, 1987 (Materials Research Society,
Pittsburgh), p. 77.

200. Zembutsu, S. and T. Sasaki, Applied Physics Letters 48, 870 (1986).

201. Shiosaki, T., T. Yamamoto, M. Yagi, and A. Kawabata, Applied Physics
Letters 39, 399 (1981).

202. Farrow, R.F.C., P.W. Sullivan, G.M. Williams, and C.R. Stanley, in Collected
Papers of MBE-CST-2, 1982 (Tokyo Institute of Technology, Tokyo), p. 169.

203. Foxon, C.T., M.R. Boudry, and B.A. Joyce, Surface Science 44, 69 (1974).

204. Fujisaki, H., J.B. Westmore, and A.W. Tickner, Canadian Journal of
Chemistry 44, 3063 (1966).

205. Foxon, C.T., B.A. Joyce, R.F.C. Farrow, and R.M. Griffiths, Journal of Physics
D: Applied Physics 7, 2422 (1974).

206. Berkowitz, J. and W.A. Chupka, Journal of Chemical Physics 45, 4289 (1966).

207. Simon, W., International Journal of Mass Spectrometry and Ion Physics 12,
159 (1973).

208. Hobson, W.S., in Advanced III-V Compound Semiconductor Growth, Processing
and Devices, 1991 (Materials Research Society, Pittsburgh), p. 45.



394

209. Giapis, K.P., L. Da-Cheng, and K.F. Jensen, in Chemical Perspectives of
Microelectronic Materials, 1988 (Materials Research Society, Pittsburgh), p. 63.

210. Sato, Y., K. Matsushita, T. Hariu, and Y. Shibata, Applied Physics Letters 44,
592 (1984).

211. Lu, Z.H., T.K. Sham, and P.R. Norton, Applied Physics Letters 57, 37 (1990).

212. Kondo, N. and M. Kawashima, in International Symposium on GaAs and
Related Compounds, 1985 (Adam Hilger, Ltd., London), p. 97.

213. Omstead, T.R., A.V. Annapragada, and K.F. Jensen, Applied Physics Letters
57, 2543 (1990).

214. Chen, F.F., Introduction to Plasma Physics and Controlled Fusion, Vol. 1, 2nd ed.
(Plenum Press, New York, 1984).

215. Matsuoka, M. and K.I. Ono, Journal of Vacuum Science & Technology A 6,
25 (1988).

216. Lisitano, G., M. Fontanesi, and E. Sindoni, Applied Physics Letters 16, 122
(1970).

217. Agdur, B. and B. Enander, Journal of Applied Physics 33, 575 (1961).

218. Kraus, J.D., in Antennas, 2nd ed. (McGraw-Hill Book Company, New York,
1988).

219. Diehl, R., D.M. Wheatley, and T.G. Castner, Review of Scientific
Instruments 67, 3904 (1996).

220. Macalpine, W.W. and R.O. Schildknecht, Proceedings of the IRE, 2099
(1959).

221. Kraus, J.D., IEEE Transactions on Antennas and Propagation AP-25, 913
(1977).

222. Collin, R.E., Foundations for Microwave Engineering (McGraw-Hill Book
Company, New York, 1966).

223. Welton, R.F., E.W. Thomas, R.K. Feeney, and T.F. Moran, Measurement
Science and Technology 2, 242 (1991).

224. Summers, R.L., “Ionization Gauge Sensitivities as Reported in the
Literature,” Report No. TND 5285 (National Aeronautic and Space
Administration, Washington, D.C.).



395

225. Brown, S.C., Basic Data of Plasma Physics (American Institute of Physics
Press, New York, 1994).

226. Heald, M.A. and C.B. Wharton, Plasma Diagnostics with Microwaves (John
Wiley & Sons Inc., New York, 1965).

227. Chatillon, C. and J.-Y. Emery, Journal of Crystal Growth 129, 312 (1993).

228. Heckingbottom, R., in Molecular Beam Epitaxy and Heterostructures; Vol. 87,
edited by L.L. Chang and K. Ploog (Martinus Nijhoff Publishers, Dordrecht,
1985), p. 71.

229. Shen, J. and C. Chatillon, Journal of Crystal Growth 106, 553 (1990).

230. Theis, W. and R.M. Tromp, Physical Review Letters 76, 2770 (1996).

231. Karg, F., V. Probst, H. Harms, J. Rimmasch, W. Riedl, J. Kotschy, J. Holz, R.
Treichler, O. Eibl, A. Mitwalsky, and A. Kiendl, in The Conference Record of
the 23rd IEEE Photovoltaic Specialists Conference, 1993 (Institute of Electrical
and Electronic Engineers, New York), p. 441.

232. Tuttle, J.R., M. Contreras, A. Tennant, D. Albin, and R. Noufi, in The
Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, 1993
(Institute of Electrical and Electronic Engineers, New York), p. 415.

233. Wolf, D. and G. Muller, Thin Solid Films 361-362, 155 (2000).

234. Chang, C.-H., B.J. Stanbery, A.A. Morrone, A. Davydov, and T.J. Anderson,
in Thin-Film Structures for Photovoltaics, 1997 (Materials Research Society,
Pittsburgh), p. 163.

235. Basol, B.M., Japanese Journal of Applied Physics 32–3, 35 (1993).

236. Gabor, A.M., J.R. Tuttle, M. Contreras, D.S. Albin, A. Franz, D.W. Niles, and
R. Noufi, in Proceedings of the 12th European Photovoltaic Solar Energy
Conference, 1994 (H.S. Stephens & Associates, Bedford), p. 939.

237. Walter, T. and H.W. Schock, Japanese Journal of Applied Physics 32–3, 116
(1993).

238. Contreras, M.A., B. Egaas, D. King, A. Swartzlander, and T. Dullweber, Thin
Solid Films 361-362 (2000).

239. Contreras, M.A., B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F.
Hasoon, and R. Noufi, Progress in Photovoltaics 7, 311 (1999).



396

240. Li, S.S., B.J. Stanbery, C.H. Huang, C.H. Chang, T.J. Anderson, and Y.S.
Chang, in The Conference Record of the 25th IEEE Photovoltaic Specialists
Conference, 1996 (Institute of Electrical and Electronic Engineers, New York),
p. 821.

241. Huang, C.H., S.S. Li, B.J. Stanbery, C.H. Chang, and T.J. Anderson, in
Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 1997
(Institute of Electrical and Electronic Engineers, New York), p. 407.

242. Kincal, S. and O.D. Crisalle, in Proceedings of the American Control Conference,
2000 (American Institute of Chemical Engineers, New York), p. 4401.

243. Lippold, G., A. Eifler, M.V. Yakushev, R.D. Tomlinson, R. Klenk, H.W.
Schock, and W. Grill, in Ternary and Multinary Compounds, Proceedings of the
11th International Conference, 1997 (Institute of Physics, London), p. 697.

244. Niki, S., Y. Makita, A. Yamada, A. Obara, S. Misawa, O. Igarashi, K. Aoki,
and N. Kutsuwada, Japanese Journal of Applied Physics 32–3, 161 (1993).

245. Dittrich, H., R. Menner, and H.W. Schock, in The Conference Record of the 21st

IEEE Photovoltaic Specialists Conference, 1990 (Institute of Electrical and
Electronic Engineers, New York), p. 787.

246. Hunger, R., M. Wilhelm, K. Diesner, J. Bruns, G. Lippold, K. Hinrichs, N.
Esser, H.J. Lewerenz, and R. Scheer, in 2nd World Conference and Exhibition on
Photovoltaic Solar Energy Conversion, 1998 (European Commission Joint
Research Centre, Brussels), p. 541.

247. Fons, P., S. Niki, A. Yamanda, and H. Oyanagi, Journal of Applied Physics
84, 6926 (1998).

248. Christiansen, S., M. Albrecht, J. Michler, and H.P. Strunk, Physica Status
Solidi (a) 156, 129 (1996).

249. Albrecht, M., S. Christinsen, J. Michler, H.P. Strunk, P.O. Hansson, and E.
Bauser, Journal of Crystal Growth 167, 24 (1996).

250. Christiansen, S.H., H.P. Strunk, H. Wawra, M. Becker, and M. Albrecht,
Solid State Phenomena 69, 93 (1999).

251. Dorsch, W., B. Steiner, M. Albrecht, H.P. Strunk, H. Wawra, and G. Wagner,
Journal of Crystal Growth 183, 305 (1998).

252. Strunk, H.P., M. Albrecht, S. Christiansen, W. Dorsch, U. Hormann, B.
Jahnen, and T. Remmele, Physica Status Solidi (a) 171, 215 (1999).



397

253. Ehrlich, G. and F.G. Hudda, Journal of Chemical Physics 44, 1030 (1966).

254. Schwoebel, R.L. and E.J. Shipsey, Journal of Applied Physics 37, 3682 (1966).

255. Kajikawa, Y., M. Hata, T. Isu, and Y. Katayama, Surface Science 265, 241
(1992).

256. Villian, J., Journal of Physics I 1, 19 (1991).

257. Orme, C., M.D. Johnson, J.L. Sudijono, K.T. Leung, and B.G. Orr, Applied
Physics Letters 64, 860 (1993).

258. Heim, K.R., S.T. Coyle, G.G. Hembree, J.A. Venables, and M.R. Scheinfein,
Journal of Applied Physics 80, 1161 (1996).

259. Venables, J.A., Physica A 239, 35 (1997).

260. Bartelt, N.C., R.M. Tromp, and E.D. Williams, Physical Review Letters 73,
1656 (1994).

261. Theis, W., N.C. Bartelt, and R.M. Tromp, Physical Review Letters 75, 3328
(1995).

262. Nelson, A.J., M. Bode, G. Horner, K. Sinha, and J. Moreland, Mat. Res.
Soc.Symp.Proc. 340, 599 (1994).

263. Tiwari, A.N., S. Blunier, M. Filzmoser, H. Zogg, D. Schmid, and H.W.
Schock, Applied Physics Letters 65, 3347 (1994).

264. Yakushev, M.V., G. Lippold, A.E. Hill, R.D. Pilkington, and R.D. Tomlinson,
Crystal Research and Technology 31, 357 (1996).

265. Contreras, M.A., B. Egaas, P. Dippo, J. Webb, S. Asher, A. Swartzlander, K.
Ramanathan, F.S. Hasoon, and R. Noufi, in Ternary and Multinary
Compounds, Proceedings of the 11th International Conference, 1997 (Institute of
Physics, London), p. 333.

266. Tromp, R.M. and M.C. Reuter, Physical Review Letters 68, 954 (1992).

267. Copel, M., M.C. Reuter, E. Kaxiras, and R.M. Tromp, Physical Review
Letters 63, 632 (1989).

268. Stringfellow, G.B., R.T. Lee, C.M. Fetzer, J.K. Shurtleff, Y. Hsu, S.W. Jun, S.
Lee, and T.Y. Seong, Journal of Electronic Materials 29, 134 (2000).



398

269. Vegt, H.A.v.d., M. Breeman, S. Gerrer, V.H. Etgens, X. Torrelles, P. Fajardo,
and E. Vlieg, Physical Review B 51, 14806 (1995).

270. Dirnstorfer, I., M. Wagner, D.M. Hofmann, M.D. Lampert, F. Karg, and B.K.
Meyer, Physica Status Solidi (a) 168, 163 (1998).

271. Stanbery, B.J., U.S. Patent No. 5,261,969 (1993).

272. Kahn, A., Surface Science Reports 3, 193 (1983).

273. Hoegen, M.H.-v., F.K. LeGoues, M. Copel, M.C. Reuter, and R.M. Tromp,
Physical Review Letters 67, 1130 (1991).

274. de Vries, S.A., W.J. Huisman, P. Goedtkint, M.F. Zwanenburg, S.L. Bennett,
and E. Vlieg, Physical Review Letters 81, 381 (1998).

275. Cullity, B.D., Elements of X-Ray Diffraction, 3rd ed. (Addison-Wesley
Publishing Co., Reading, MA, 1956).

276. Hanada, T., A. Yamana, Y. Nakamura, O. Nittono, and T. Wada, in 9th

International Photovoltaic Science and Engineering Conference, 1996, p. 595.

277. Gödecke, T., T. Haalboom, and F. Ernst,  (unpublished, 1998). Cited in
Beilharz, C.; Charakterisierung von aus der Schmelze gezüchteten Kristallen in
den Systemen Kupfer–Indium–Selen und Kupfer-Indium–Gallium–Selen für
photovoltaische Anwendungen, (Shaker Verlag, Aachen, 1999).

278. Franklin, A.D., in Point Defects in Solids; Vol. 1, edited by J.H. Crawford, Jr.
and L.M. Slifkin (Plenum Press, New York, 1972), p. 4-80.

279. Hagemark, cited by A. D. Franklin, in Point Defects in Solids; Vol. 1, edited by
J. H. Crawford, Jr. and L. M. Slifkin (Plenum Press, New York, 1972),
p. 4-80.

280. Thurmond, C.D., Journal of the Electrochemical Society 122, 1133 (1975).

281. Kubo, R., Statistical Mechanics, 1st ed. (North-Holland Publishing Company,
Amsterdam, 1965).



399

BIOGRAPHICAL SKETCH

Billy Jack Stanbery was born in Nacogdoches, Texas, on December 26th,

1952, to Martha Mae Stanbery (neé Ellis, from Huntington, Texas) while his

father, Billy Mack Stanberry (from Canton, Texas), was attending the United

States Army Officer Candidate School in California. He attended twelve different

schools during his elementary and secondary education, graduating in 1970 from

Wagner High School, Clark Air Base, Philippines. During his final year of high

school, he was elected to the National Honor Society and was a National Merit

Scholarship Semifinalist, receiving an Associate National Merit Scholarship to

attend college.

He was nominated to the honorary academic societies Sigma Pi Sigma

(physics), Pi Mu Epsilon (mathematics), and Phi Beta Kappa while attending

undergraduate school. He received two coterminal undergraduate diplomas, a

Bachelor of Science with Honors in mathematics and Bachelor of Science with

High Honors in physics from the University of Texas at Austin in 1977,

whereupon he accepted a teaching assistanceship in physics at the University of

Washington in Seattle. He began research in the field of photovoltaics in 1978

upon accepting a summer job with The Boeing Company, where he remained a

full-time employee for one year before returning to graduate school.



400

His master’s research, under Professor Martin P. Gouterman of the

Department of Chemistry, involved the study of photovoltaic devices fabricated

in ultra-high vacuum from organic semiconductor films using compounds from

the porphyrin family. He graduated in 1982 with a master’s degree in physics,

returning to The Boeing Company to join a team working on CuInSe2-based solar

cells, headed by Drs. Reid A. Mickelsen and Wen S. Chen.

While employed at Boeing, he received seven United States Patents for

photovoltaic devices and manufacturing methods, and in 1987 was awarded the

Boeing Outstanding Engineer Fellowship to the Massachussetts Institute of

Technology, where he studied during the 1987-1988 academic year at the

Center for Advanced Engineering Studies. In 1990, he led the joint Boeing/Kopin

Corporation development team to achievement of the highest confirmed

efficiency for any thin-film solar cell in history (23.1% AM0 or 25.8% AM1.5G), a

record that still stands today.

He left The Boeing Company to pursue a doctorate in chemical

engineering from the University of Florida in 1994.



REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2001

3. REPORT TYPE AND DATES COVERED
Final Report
6 May 1995 – 31 December 1998

4. TITLE AND SUBTITLE
Processing of CuInSe2-Based Solar Cells: Characterization of Deposition Processes in
Terms of Chemical Reaction Analyses, Final Report, 6 May 1995–31 December 1998
6. AUTHOR(S)
    T.J. Anderson and B. J. Stanbery

5. FUNDING NUMBERS
C:  XAF-5-14142-10
TA:  PVP15001

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida
Gainesville, Florida

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
NREL/SR-520-30391

11. SUPPLEMENTARY NOTES
NREL Technical Monitor: Bolko von Roedern

12a. DISTRIBUTION/AVAILABILITY STATEMENT
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)  This project describes a novel rotating-disc reactor has been designed and built to enable
modulated flux deposition of CuInSe2 and its related binary compounds. The reactor incorporates both a thermally activated
source and a novel plasma-activated source of selenium vapor, which have been used for the growth of epitaxial and
polycrystalline thin-film layers of CuInSe2. A comparison of the different selenium reactant sources has shown evidence of
increases in its incorporation when using the plasma source, but no measurable change when the thermally activated source
was used. We concluded that the chemical reactivity of selenium vapor from the plasma source is significantly greater than
that provided by the other sources studied. Epitaxially grown CuInSe2 layers on GaAs, ZnTe, and SrF2 demonstrate the
importance of nucleation effects on the morphology and crystallographic structure of the resulting materials. These studies
have resulted in the first reported growth of the CuAu type-I crystallographic polytype of CuInSe2, and the first reported
epitaxial growth of CuInSe2 on ZnTe. Polycrystalline binary (Cu,Se) and (In,Se) thin films have been grown, and the molar flux
ratio of selenium to metals was varied. It is shown that all of the reported binary compounds in each of the corresponding
binary phase fields can be synthesized by the modulated flux deposition technique implemented in the reactor by controlling
this ratio and the substrate temperature. These results were employed to deposit bilayer thin films of specific (Cu,Se) and
(In,Se) compounds with low melting-point temperature, which were used to verify the feasibility of synthesizing CuInSe2 by
subsequent rapid-thermal processing. The studies of the influence of sodium during the initial stages of epitaxy have led to a
new model to explain its influences based on the hypothesis that it behaves as a surfactant in the Cu–In–Se material system.
This represents the first unified theory on the role of sodium that explains all of sodium’s principal effects on the growth and
properties of CuInSe2 that have been reported in the prior scientific literature. Comprehensive statistical mechanical
calculations have been combined with published phase diagrams and results of ab-initio quantum mechanical calculations of
defect formation enthalpies from the literature to develop the first free-energy defect model for CuInSe2 that includes the
effects of defect associates (complexes). This model correctly predicts the α/β ternary phase boundary.

15. NUMBER OF PAGES14. SUBJECT TERMS
PV; novel rotating-disc reactor; modulated flux deposition; binary compounds; chemical
reactivity; selenium vapor; crystallographic structure; polycrystalline binary; bilayer thin
films; flux deposition technique; surfactant; ab-initio quantum mechanics 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

UL

  NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102


	ACKNOWLEDGMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	ABSTRACT
	REVIEW OF PRIOR RESEARCH: �CIS MATERIALS FOR PHOTOVOLTAIC DEVICES
	Phase Chemistry of Cu–III–VI Material Systems
	The Cu–In–Se (CIS) Material System
	The Cu–Ga–Se (CGS) Material System
	The Cu–In–S (CISu) Material System

	Crystallographic Structure of the Ternary cis Compounds
	alpha–CIS (Chalcopyrite CuInSe2)
	delta–CIS (Sphalerite)
	beta–CIS (Cu2In4Se7 and CuIn3Se5)
	gamma–CIS (CuIn5Se8)
	Metastable Crystallographic Structures — CuAu–ordering
	Defect Structure of alpha–CIS

	Optical Properties of Ternary Cu–III–VI Materials
	Optical Properties of alpha–CIS and beta–CIS
	Optical Properties of alpha–CGS
	Optical Properties of alpha–CISu

	Alloys and Dopants Employed in cis Photovoltaic Devices
	Gallium Binary Alloy — CIGS
	Sulfur Binary Alloy — CISS
	Alkali Impurities in CIS and Related Materials

	Summary

	CIS POINT DEFECT CHEMICAL REACTION EQUILIBRIUM MODEL
	Approach
	Formulation of the Problem
	Results
	Interphase Reaction Equilibria
	Stoichiometric CuInSe2 and the Cu2Se/alpha–CIS phase equilibrium
	The alpha–CIS/beta–CIS phase equilibrium

	Equilibrium Defect Concentrations in the Cu–In–Se Alpha Phase
	Lattice defects
	Electronic defects


	Summary

	REACTOR DESIGN AND CHARACTERIZATION
	Design
	Operational Characteristics
	Substrate Temperature Calibration
	Flux Calibration
	Metal (copper and indium) sources
	Selenium sources



	ACTIVATED DEPOSITION SOURCES
	Thermally Activated Source and its Molecular Species Distribution
	Plasma Source
	Source Design
	Antenna Design
	Cavity Design
	Magnetic Flux Shunt Design
	Microwave Characterization
	Magnetic Profiling
	Source Installation
	Source Operational Characteristics

	Molecular Species Distribution of the Plasma Source Flux
	Ion Flux from the Plasma Source


	GROWTH OF METAL CHALCOGENIDES
	Binary Chalcogenides
	Thermodynamic Phase Control
	Deposition of (Cu,Se) polycrystalline thin films
	Deposition of (In,Se) polycrystalline thin films

	Deposition of RTP Precursor Films

	Ternary Chalcogenides
	Deposition of CIS Photovoltaic Absorber Films
	Epitaxial Growth
	Heteroepitaxy of CIS on GaAs Substrates
	Heteroepitaxy on ZnTe
	Heteroepitaxy on SrF2
	Epitaxial Growth of CIS Using Activated Reactant Sources



	SUMMARY AND CONCLUSIONS
	GLOSSARY
	APPENDIX
	Formula Matrices
	Reaction Stoichiometry Matrices
	Boundary Conditions
	Thermodynamic Functions
	Compounds
	Binary copper selenides
	Ternary compound CuInSe2


	State Vectors
	Initial Concentration Vector
	Reference State Chemical Potential Vector
	Reaction Extents Vector

	Defect Quasichemical Reaction Equilibria Calculations

	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

