Innovation for Our Energy Future

Analysis of the Hydrogen Infrastructure Needed to Enable Commercial Introduction of Hydrogen-Fueled Vehicles

Margo Melendez March 31, 2005 NHA Conference

H2 Infrastructure Analysis Objectives

- Determine the location and quantity of hydrogen stations that
 - Address the chicken-and-egg infrastructure-vehicle problem
 - Facilitate nationwide interstate travel
 - Minimize costs, maximize impact
 - Lay foundation for widespread commercial introduction of hydrogen vehicles

H2 Infrastructure Analysis Participants and Funding

- Funded by the U.S. Department of Energy's Hydrogen, Fuel Cells & Infrastructure Technologies Program
- Ties into H2 Systems Integration and incorporates various other DOEsponsored analyses

H2 Infrastructure Analysis Key Assumptions

- Focus on early transition period (2020-2030)
- Light-duty vehicles
- Assumed range ~250 miles
- Drivers willing to travel up to 3 miles from interstate for refueling

H2 Infrastructure Analysis Methodology

- 1. Identify existing hydrogen production facilities and alternative fuel stations
- 2. Identify interstate traffic volumes
- 3. Select specific interstate routes (North-South/East-West)
- 4. Place stations along interstate routes
- 5. Estimate station utilization
- 6. Estimate total network costs

H2 Infrastructure Analysis Methodology

- 7. Identify Federal Government partners to improve economics and facilitate construction of infrastructure
- 8. Identify longer-term hydrogen distribution potential

Task 1 Identify Existing Infrastructure

- H2 production facilities
 - Source: Chemical Economics Handbook (1997, 1999, 2001)
- Natural gas and hydrogen stations
 - Source: AFDC Refueling Locator, California
 Hydrogen Highway Network, Online Fuel Cell
 Information Resource
- GIS used to provide basis for spatial analysis

Task 2 Identify Interstate Traffic

- Identified sources of traffic data
 - USDOT Bureau of Transportation Statistics
 - USDOT Federal Highway Administration
 - Individual state DOT
- Selected FHWA data
- Incorporated data into GIS

Task 3 Select Interstate Routes

- Selected a subset of interstates that constitutes a comprehensive network
 - Facilitates cross-country travel
 - Accessible to the most drivers
 - Incorporates every state
 - Incorporates major metropolitan areas

Task 4 Place Stations Along Routes

- Used GIS to incorporate all information
 - LNG/CNG stations
 - Hydrogen stations
 - Hydrogen production facilities
 - Population
 - Interstate network
 - Distance between stations

Task 4 Place Stations Along Routes

- Placed stations
 - Considering all factors
 - Manually selected data
 - 100 miles apart in the west
 - 50 miles apart in the east
 - Maximize use and coverage

Proposed Hydrogen Fueling Stations Along Major Interstates

Interstate	Mileage	Number	Existing	Existing	Sites Near	New Stations
	_	of	Natural	H2	H2	Needed
		Stations	Gas	Stations	Production	
			Stations		Facilities	
5	1,381	20	10	0	2	8
10	2,460	29	1	2	5	21
15	1,434	17	5	0	3	9
20	1,539	18	1	0	2	15
25	1,063	13	3	0	1	9
35	1,568	18	4	0	2	12
40	2,555	28	5	0	0	23
64	938	7	0	0	2	5
65	887	11	1	0	1	9
70	2,153	23	3	0	0	20
75	1,786	19	6	0	1	12
79	343	5	3	0	1	1
80	2,900	33	6	0	4	23
81	855	9	0	0	0	9
89	191	3	1	0	0	2
90	3,021	35	7	0	2	26
94	1,585	16	6	0	0	10
95	1,920	30	13	0	1	16
Total Mileage	28,580					
Total Stations		284	58	2	22	202

Task 5 Estimate Station Utilization

- Predict station utilization rate
 - Go Your Own Way (GYOW) estimates for vehicle penetration
 - 50% of passenger fuel cell vehicles passing station stop to use it in 2020
 - 91% of traffic light-duty passenger vehicles
 - 3 kg standard vehicle fill

Task 5 Estimate Station Utilization

"Go Your Own Way" Estimates for Vehicles on the Road

Year	LD H2 FCV stock (M)	Total LDV stock (M)	FCVs as % of stock
2020	3	274	1.1%
2030	59	306	19.4%
2040	140	328	42.8%
2050	175	353	49.5%

- Rapid pace of technological innovation
- High level of environmental responsiveness

Task 5 Estimate Station Utilization

Sample: Colorado Stations Summary

Station	Interstate	AADT	FC Vehicles Using Station	H2 Demand (kg)
Flagler	70	3569	17	52
Walsenburg	25	6006	29	88
Grand Junction	70	14858	72	217
Vail	70	16286	79	237
Glenwood Springs	70	19612	95	286
Colorado Springs	25	35271	171	514
Denver	25, 70	60084	292	876

Assumes 3kg fill up, 50% of vehicles stop at station, President's H2 initiative penetration estimates for year 2020

Task 6 Estimate Total Network Costs

- Select station design for each station
 - Incorporate existing infrastructure
 - Natural gas stations
 - H2 stations or facilities
 - Based on H2 demand at each location
 - Use UC-Davis estimates for station capital costs

Task 6 Estimate Total Network Costs

Station Type	Cost per Station (\$M)
Steam Methane Reformer, 100	1.05
Steam Methane Reformer, 1000	5.14
Electrolyzer, grid 30	0.55
Electrolyzer, grid 100	0.92
Electrolyzer, renewable, 30	0.62
Mobile Refueler	0.24
Delivered LH2, 1000	2.68
Pipeline Delivered	0.58

Conditions for Assigning Station Types					
Existing Infrastructure	Volume of H2 (kg/day)	Station Type			
CNG	<30	Mobile			
LNG	<30	Mobile			
HF	<30	Pipeline			
H2	<30	No Change			
None	<30	E30			
CNG	30-100	SMR100			
LNG	30-100	SMR100			
HF	30-100	Pipeline			
H2	30-100	No Change			
None	30-100	E100			
CNG	100-1000	SMR100/SMR1000			
LNG	100-1000	SMR1000			
HF	100-1000	Pipeline			
H2	100-1000	No Change			
None	100-1000	Delivered LH2			
CNG	>1000	SMR1000			
LNG	>1000	Delivered LH2			
HF	>1000	Pipeline			
H2	>1000	No Change			
None	>1000	Delivered LH2			

Task 6 Estimate Total Network Costs

- 2020 Station Costs: \$1.1B
 - General Motors estimate: \$11.7B
 - NREL spreadsheet analysis (urban focus): \$5B-\$10B

Station Type	Quantity
SMR1000	48
SMR100	7
Pipeline	22
No Change	2
E100	19
Delivered LH2	186

Task 7 Identify Federal Govt. Partners

- Federal Executive Order 13149 requires federal fleets to purchase AFVs and reduce petroleum consumption
 - H2 vehicles qualify as AFVs
 - H2 displaces 100% petroleum for every "gallon" used
- Federal fleets also represent co-generation and public fueling opportunities

USPS Fleet Statistics

Fiscal Year	Light-duty vehicle acquisitions	Total AFVs and other credits	Total inventory of light-duty AFVs
FY1996	10,071	2,656	6,748
FY1997	2,916	825	7,653
FY1998	12,223	10,767	18,397
FY1999	13,865	13,267	31,560
FY2000	2,838	2,452	33,554
FY2001	1,405	1,189	31,110
FY2002	855	641	32,001
FY2003	9,197	7,861	37,573

Proposed Hydrogen Fueling Stations in Relation to USPS Facilities

- Proposed Hydrogen Fueling Stations
- USPS Facilities

Conclusions

- 284 stations identified to make up potential transition hydrogen fueling infrastructure backbone
- Assumes 1% fuel cell vehicles in 2020, 20% in 2030, 50% in 2050
- \$1.1B construction cost to support 2020 demand
- Federal facilities could play key role in making H2 stations available in near term

H2 Infrastructure Analysis Future Work

- Expand to urban analysis, with primary focus on key metropolitan areas (Clean Cities, population, air quality, etc.)
- Improve utilization/hydrogen demand estimates
- Identify co-generation options for federal facilities
- Tailor station types to available renewable resources

Acknowledgements

- U.S. Department of Energy's Hydrogen, Fuel Cells & Infrastructure Technologies Program
 - Sig Gronich
 - Frederick Joseck
- National Renewable Energy Laboratory
 - Anelia Milbrandt
 - George Sverdrup
 - Keith Wipke
 - Margaret Mann

For More Information

Margo Melendez

National Renewable Energy Laboratory

303-275-4479

margo melendez@nrel.gov

