Innovation for Our Energy Future

Renewable Energy: A Significant Contributor?

Achieving the Goal of 30% Transportation Fuels from Biomass by 2030

10th Annual Green Chemistry & Engineering Conference

June 29, 2006

Dr. Dan E. Arvizu

Director, National Renewable Energy Laboratory

Energy Solutions are Enormously Challenging

We need a balanced portfolio of options

World Energy Supply and the Role of Renewable Energy

Source: OECD/IEA, 2004

U.S. Energy Consumption and the Role of Renewable Energy

Source: Energy Information Administration, Annual Energy Outlook 2006. Table D4

Magnitude of Challenge Requires Global Action and a Change in Trajectory

Technology-based Solutions:

There is no single nor simple answer

- Energy efficiency
- Renewable energy
- Non-polluting transportation fuels
- Separation and capture of CO₂ from fossil fuels
- Next generation of nuclear fission and fusion technology
- Transition to smart, resilient, distributed energy systems coupled with pollution-free energy carriers, e.g. hydrogen and electricity

Energy Efficiency & Renewable Energy Technology Development Programs

Efficient Energy Use

- Vehicle Technologies
- Building Technologies
- Industrial Technologies

Renewable Resources

- Wind
- Solar
- Biomass
- Geothermal

Energy Delivery & Storage

- Electricity
 Transmission &
 Distribution
- Alternative Fuels
- Hydrogen Delivery and Storage

Renewable Energy Electricity Generation Costs as Percentage of 1980 Levels:

Historical and Projected

Source: NREL 2005, 2002

National Resources

Renewable Energy is Growing

Renewable Energy Annual Growth Rates

Energy-Tech Investments as a Percent of Total U.S. Venture Capital

Source: Nth Power LLC

Wind & Solar are each \$10B+ industries and there is over a \$1B clean energy venture capital market

Wind

Today's Status in U.S.:

- 9,200 MW installed as of Dec 2005
- Cost 6-9¢/kWh at good wind sites with no PTC

U.S. DOE Cost Goals:

- 3.6¢/kWh, onshore at low wind sites by 2012
- 5¢/kWh, offshore in shallow water by 2014

Long Term Potential:

- 20% of the nation's electricity supply
- Major benefits to rural economy

NREL Research Thrusts:

- Low wind speed technology
- Advanced rotor development
- Utility grid integration

Geothermal

Today's U.S. Status:

- 2,800 MWe installed, 500 MWe new contracts
- Cost 5-8¢/kWh with no PTC
- Capacity factor typically > 90%, base load power

U.S. DOE Cost Goals:

- <5¢/kWh, for typical hydrothermal sites by 2010
- <5¢/kWh, for enhanced geothermal systems by 2040

Long Term Potential:

- 40,000 MWe installed by 2040
- Ultimate potential to supply a significant portion of domestic electricity

NREL Research Thrusts:

- Low temperature conversion cycles
- Better performing, lower cost components
- Innovative materials

Biopower

Today's U.S. status:

- 2004 Capacity 10 GWe
 - 5 GW Pulp and Paper
 - 2 GW Dedicated Biomass
 - 3 GW MSW and Landfill Gas
- 2004 Generation 60 TWh
- Cost 8¢-10¢/kWh

Long-term potential:

- Cost 4-6¢/kWh for integrated gasification combined cycle
- 160 TWh of net electricity exported to grid from integrated 60 billion gal/yr biorefinery industry by 2030

NREL National Renewable Energy Laboratory

Solar

Photovoltaics and Concentrating Solar Power

U.S. Solar Status:

PV

- 450 MW
- Cost 18-23¢/kWh

CSP

- 355 MW
- Cost 12¢/kWh

Potential:

PV

- 11-18¢/kWh by 2010
- 5-10 ¢/kWh by 2015

CSP

- 8.5¢/kWh by 2010
- 6¢/kWh by 2015

NREL Research Thrusts: PV

- Advanced manufacturing techniques
- Higher efficiency devices
- New nanomaterials applications

CSP

- Next generation solar collectors
- High performance, high efficiency storage

REL National Renewable Energy Laboratory

Source: U.S. Department of Energy, NREL Updated 5/15/06

Worldwide PV Shipments

Policy

Stimulates markets

Federal, state, and local governments are the STEWARDS

"BIG 3" Experience (It works . . .!)

Solar America Initiative

Projected Cost Reductions for Solar PV

Market Sector	Current U.S. Market Price Range (¢/kWh)	Cost (¢/kWh) Benchmark 2005	Cost (¢/kWh) Target 2010	Cost (¢/kWh) Target 2015
Residential	5.8-16.7	23-32	13-18	8-10
Commercial	5.4-15.0	16-22	9-12	6-8
Utility	4.0-7.6	13-22	10-15	5-7

Technology Investment Pathways

Revolutionary (10 years and beyond)

Basic Research Driven

quantum dots nanotechnology multi-multijunctions thermophotonics intermediate band bio-inspired

Technology Driven

Accelerated Evolutionary (3 years)

Disruptive (3–10 years)

1st & 2nd Generation PV

Industry Driven

lower Si feedstock prices
thinner Si wafer technology
thin films
improved processing
improved performance
advanced integration
advanced packaging

2nd Generation PV

thin films concentrators organics Si wafers < 100 µm Si cells beyond 25%

Hydrogen

Status

 Working with industry to develop technologies in quantities large enough, and at costs low enough, to compete with traditional energy sources.

Potential

 Commercially viable hydrogen and fuel cell systems by 2015

NREL Research Thrusts

- Hydrogen production, delivery, storage and manufacturing
- Fuel cells
- Safety, codes, and standards

Biofuels

U.S. Biofuels status

- Biodiesel 75 million gallons (2005)
- Corn ethanol
 - 81 commercial plants
 - 3.9 billion gallons (2005)
 - Today's cost ~\$1.35/gallon of gasoline equivalent (gge)
- Cellulosic ethanol
 - Projected commercial cost ~\$3.00/gge

Potential

- 2012 goal cellulosic ethanol ~\$1.42/gge
- 2030 goal all ethanol = 30% of transportation fuels

NREL Research Thrusts

- The Biorefinery
- Solutions to under-utilized waste residues
- Energy crops

Significance of the 1.3 Billion Ton Biomass Scenario

Based on ORNL & USDA Resource Assessment Study by Perlach et.al. (April 2005) http://www.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf

Biomass Conversion Technology Reducing the Cost of Ethanol from Stover

Getting to 60 Billion Gallons per Year Ethanol From Biomass

Biomass Feedstock Supply

Renewable Waste Resources

Source: National Commission on Energy Policy, *Ending the Energy Stalemate*, December 2004

Biomass Feedstock Transport

Current Distribution Infrastructure

Source: MapSearch, PennWell, Renewable Fuels Association, June 2006

Biomass Feedstock Transport Ethanol Distribution Infrastructure Hurdles

- Estimate that E85 pumps will be required in 50% of U.S. service stations
 - Public policy support
- E10 and E85 may enter U.S. pipeline system
 - E10 may move through product pipelines if they are modified to trap water, sediment and to keep ethanol from other products (diesel)
 - E85 dedicated pipelines will be created to connect large producing centers to large use centers

30 x 30 Overview

Replace 30% of 2004 motor gasoline demand with ethanol by 2030 – 60 billion gallons

Policies

Markets

2005 DOE Biomass Energy Workshop

Sponsored by the DOE Office of Science OBER and Energy Efficiency and Renewable Energy OBP

Desired Outcomes

- Comprehensive summary (Roadmap) by highly respected technical authors indicating that there are numerous research topical area that must be pursued to ensure success.
- Utilize joint office collaboration to provide efficient coverage of near and mid-term science and technology, including transfer to industry.
- Employ technical coverage spanning directed science through commercialization.
- Generate key research results at level sufficiently deep to provide robust scientific conclusions.

Strategy for Joint Workshop

Define how work at the frontiers of science can enable the biorefinery industry

Need a NEW Roadmap

Biomass to Ethanol Process at a Glance

DOE Office of the Biomass Program Barriers

Commercial Success Barriers

Price & Volume of Ethanol from Cellulosic Biomass

Major General Barriers

Feedstock Cost Sugars Yield Conversion Rate Capital Investment

R&D Technical Barriers

Feedstock Interface
Biomass Pretreatment
Enzymatic Hydrolysis
Sugars Conversion
Process Integration

From DOE GTL Bioenergy Roadmap

Systems Biology to Overcome Barriers to Cellulosic Ethanol

Focus on Feedstock Engineering

Simultaneous saccharification & Fermentation - SSF

Feedstock Engineering

- Increase crop production (agronomics and plant engineering)
- Increase composition of desirable polysaccharides (cellulose)
- Decrease composition of undesirable polymers (lignins)

NREL "Corn Stem Tour"

Focus on Feedstock Cell Wall Deconstruction

Biomass Recalcitrance

- Lignocellulosic biomass is often described as "recalcitrant"
- Plant biomass has evolved superb mechanisms for resisting assault on its structural sugars from the microbial and animal kingdoms
- These mechanisms are comprised of both chemical and structural elements:
 - the waxy barrier & dense cells forming the rind of grasses and bark of trees
 - the vascular structures (tubes) that limit liquid penetration in plant stems
 - the composite nature of the plant cell wall that restricts catalyst penetration
 - the hemicellulose coating on the microfibrils in the cell wall
 - the crystalline nature of cellulose itself
 - the inherent difficulty enzymes have acting on insoluble surfaces like cellulose

Plant Biomass Must be Studied over Wide Range of Length Scales

SEM

From new NREL **Biomass Surface** Characterization Lab

How Do Chemicals and Enzymes Penetrate Biomass?

Corn Stem Cross Sections in SEM

What Does the Recalcitrant Plant Cell Wall Look Like?

Close up view of plant cell wall shows matrix of tightly associated structures (microfibrils)

Cellulose is a
Crystalline
Structure that Resists
Water Penetration
This makes disassembly
very difficult

John Brady, Cornell NREL subcontractor

Cellulases Must Function on an Insoluble Substrate

Summary: Biomass Recalcitrance vascular tubes corn stems **Impacts at many** length scales (mm to nm) cellulose microfibril cell walls microfibrils

Focus on Fermentation Microbe (Ethanologen development)

Challenges in Biomass Sugar Fermentation

- Must ferment all biomass sugars at high conversion yield
 - Glucose, xylose, arabinose, mannose, galactose (most natural yeast do not ferment xylose or arabinose)
- Must be resistant to toxic compounds present after pretreatment
 - Acids (acetate), phenols, salts, sugar degradation products
- Must be robust, able to out-compete contaminant microorganisms
- High final ethanol concentration (7% or higher)

Pilot-Scale, 5-Stage Fill and Draw Fermentation with *Z. mobilis* 31821(pZB5)

Example: Pathways Engineered for Xylose Fermentation in Zymomonas at NREL

Example: Sugar Transporter Proteins

Next Generation Biorefineries will Use Consolidated Processes

Summary and Future Outlook for Bioethanol

Challenges and Barriers:

- The high cost of feedstocks
- The high capital cost of biomass pretreatment
- The high cost and loadings of cellulase enzymes
- The inability of current fermentation strains to convert ALL biomass sugars
- Overall sugar to ethanol yields far less than theoretical
- Considerable disagreement over "readiness" of the industry for commercialization

We Need a Deeper Understanding of:

- The genetic controls of plant composition and ultrastructure
- The resistance of lignocellulosic biomass to deconstruction.
- The structure and function of cellulases and other plant cell wall depolymerizing enzymes.
- The cellular controls for multi-sugar transport and ethanol fermentation.
- The cell's mechanisms for toxicity response
- And many more......

Energy Science and Technology: Enabling the Future

- Supercomputing
- Genomics
- Nanoscience
- Green Chemistry
- Informatics
- Cellulosic and biofuels applications
- Hydrogen

Nano/Bio/Info

The U.S. Department of Energy's National Renewable Energy Laboratory

www.nrel.gov

