Innovation for Our Energy Future

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results

Keith Wipke, Sam Sprik, Holly Thomas, Cory Welch¹ Sigmund Gronich, John Garbak²

NHA Conference, San Antonio, TX March 20, 2007

¹NREL, ²US Dept. of Energy

This presentation does not contain any proprietary or confidential information

Outline

Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets

Objectives

- Validate H₂ FC Vehicles and Infrastructure in Parallel
- Identify Current Status and Evolution of the Technology
 - Assess Progress Toward Technology Readiness
 - Provide Feedback to H₂ Research and Development

Key Targets

Performance Measure	2009*	2015**
Fuel Cell Stack Durability	2000 hours	5000 hours
Vehicle Range	250+ miles	300+ miles
Hydrogen Cost at Station	\$3/gge	\$2-3/gge

^{*} To verify progress toward 2015 targets

^{**} Subsequent projects to validate 2015 targets

Over Half of Project Vehicles Now Deployed, First-Generation Predominantly Uses 5000 psi Tanks

~Half of the Project's Infrastructure to Refuel Vehicles Has Been Installed – 4 Types

Mobile Refueler San Francisco, CA

Hydrogen and gasoline station Washington, DC

Refueling Stations from All Four Teams Test Vehicle/Infrastructure Performance in Various Climates

Seven Quarters of Data Analyzed To-Date

Current Status of Data Reporting to the Hydrogen Secure Data Center at NREL

Analysis Calculations and Results are from NREL-Developed GUI – Fleet Analysis Toolkit (FAT)

3rd Set of Composite Data Products Published; Updates/Additions Every Six Months

30 Composite Data
Products Have Now Been
Published

New Web Site Now Provides Direct Access to Latest Composite Data Products

Select New and Updated Learning Demo Besults

Actual Vehicle Refueling Amounts from >3700 Events: Measured by Stations or by Vehicles

Actual Vehicle Refueling Times from >3700 Events: Measured by Stations or by Vehicles

Actual Vehicle Refueling Rates from >3700 Events: Measured by Stations or by Vehicles

Updated Results for Hours Accumulated and Projected Hours to 10% Stack Voltage Degradation

- (1) Range bars created using one data point for each OEM.
- (2) Range (highest and lowest) of the maximum operating hours accumulated to-date of any OEM's individual stack in "real-world" operation.
- (3) Range (highest and lowest) of the average operating hours accumulated to-date of all stacks in each OEM's fleet.
- (4) Projection using on-road data -- degradation calculated at high stack current. This criterion is used for assessing progress against DOE targets, may differ from OEM's end-of-life criterion, and does not address "catastrophic" failure modes, such as membrane failure.
- (5) Using one nominal projection per OEM: "Max Projection" = highest nominal projection, "Avg Projection" = average nominal projection. The shaded green bar represents an engineering judgment of the uncertainty due to data and methodology limitations. Projections will change as additional data are accumulated.

Created: Feb-28-07 8:27 PM

Hydrogen Quality Index Close to Target Except for Some High Inert Gas Measurements

Hydrogen Impurities Sampled from All Stations to Date In General, Inert Gases and Sulfur Suffer from High Detection Limits

H2 FCV Safety – An Issue Has Been Identified Relative to H2 Sensor Alarms and is Currently Being Addressed

Average Refuelings Between Infrastructure Safety Events Has Increased by ~10X Since Beginning of Project

Severity Decreased: Only Infrastructure *Non-Events* Have Been Reported in Last 3 Quarters

Most of Infrastructure Safety Reports are Non-Events (and Most of Those, Alarms Only)

No Single Primary Factor Leading to Majority of Infrastructure Safety Events

Vehicle Operating Hours and Miles Traveled Distribution

The bulge of operating hours and miles traveled has now shifted to right.

New Gen 1 vehicles continue to be introduced, but 2nd bulge will appear at left with Gen 2 vehicle introduction starting this fall.

Summary

- First half of project completed
 - 69 vehicles and 10 stations deployed
 - 570,000 miles traveled, 20,000 kg H2 produced or dispensed
 - 113,000 individual vehicle trips analyzed
 - Project to continue through 2009
- More detailed examination of project safety now possible
 - Updated data templates allowed more detailed reporting
 - Infrastructure safety has seen dramatic improvement
 - H2 sensor alarm issue being resolved on vehicles
- Compressed H2 refueling time, amount, and rates indicates this technology could meet customer's refueling time expectations
 - Key will be having adequate station coverage
- Total of 30 composite data products published to-date
 - New web site allows direct web access to the most current CDPs

Questions and Discussion

Project Contact: Keith Wipke, National Renewable Energy Lab 303.275.4451 keith_wipke@nrel.gov

All public Learning Demo papers and presentations are available online at http://www.nrel.gov/hydrogen/proj_tech_validation.html