Innovation for Our Energy Future

Hydrogen Technology Analysis: H2A Production Model Update

Todd Ramsden National Renewable Energy Laboratory May 15, 2007

Project ID: ANP2

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL/PR-560-41547

Presented at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Overview

Timeline

- Project start: December 2006
- Project end: October 2007
- Percent complete: 40%

Budget

- Total funding: \$265K
 - FY 2007: \$265K

Barriers Addressed

- Stove-piped/siloed analytical capabilities (B)
- Inconsistent data, assumptions, and guidelines (C)
- Need for improvement in models for better consistency and usability (D)
- Need flexible capabilities for unplanned studies & analysis (E)

Collaborators

 NETL, DTI, Technology Insights, ANL

Objectives

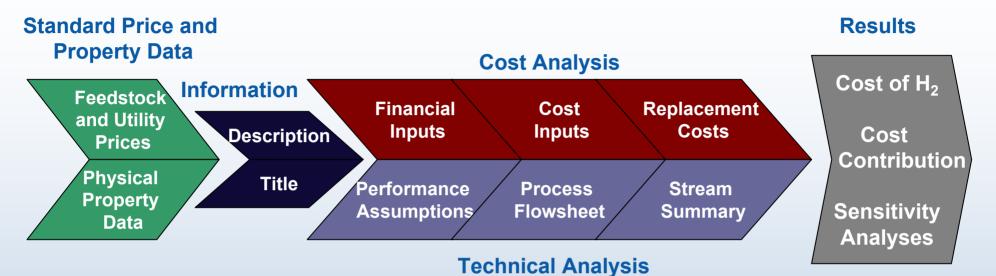
- The H2A model aims to make analyses:
 - Consistent
 - Transparent
 - Comparable
- Phase II goals:
 - Reflect current DOE program direction
 - Reflect best understanding of available technologies
 - Cost assumptions
 - Performance assumptions
 - Simplify model structure and user interface
 - Improve transparency
 - Provide new features

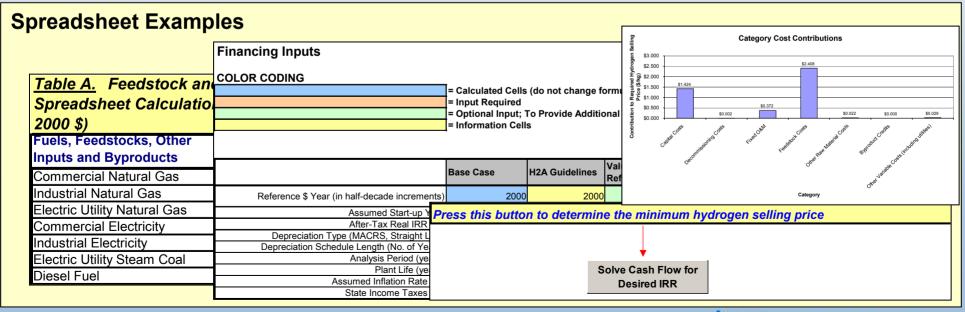
Model Approach

- Excel spreadsheet
- Discounted cash flow rate-of-return analysis
- Provides the levelized selling price of hydrogen required to attain a specified internal rate-ofreturn
 - i.e., minimum hydrogen price or profited cost (not market price)
- Model is meant to be a means of reporting assumptions as well as calculating minimum hydrogen selling price
- Transparency is absolute

Revision Approach

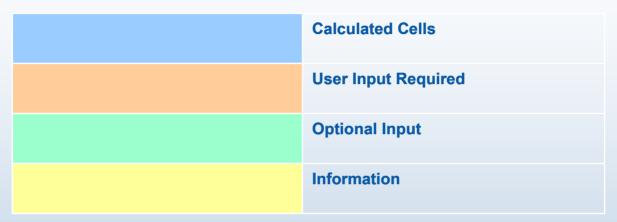
- Build on existing H2A model
- Develop specific revisions to the model structure and user interface
- Insure accuracy and detail of specific production cases
- Improve model outputs and user-specified inputs
- Develop model documentation
- Only addressing H2A production, not HD-SAM (H2A delivery)


Model Changes


- Simplify underlying spreadsheet structure
- Develop user interface and improve user inputs
- Develop flat-file output capability
- Use Hydrogen Analysis Resource Center data
 - Hydrogen and physical properties data
- Monte Carlo sensitivity analysis
- Develop specific new features
- Develop import/export capabilities

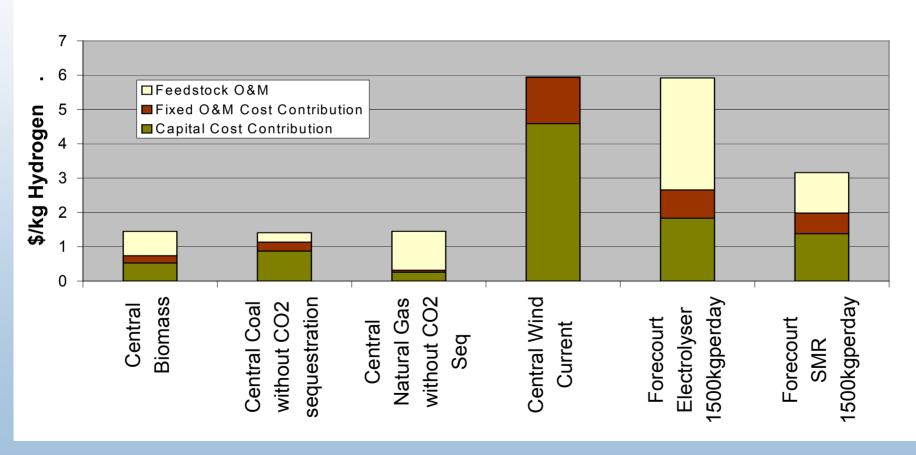
New Features

- Plant size scaling
- Automated sensitivity analyses and graphing
- Carbon sequestration costs and amounts
- WTW/WTP emissions calculations
- Maintain 2005 for baseline feedstock and utility prices (AEO2005 High A), but develop toggle to use AEO2007 prices


H2A Cash Flow Modeling Tool

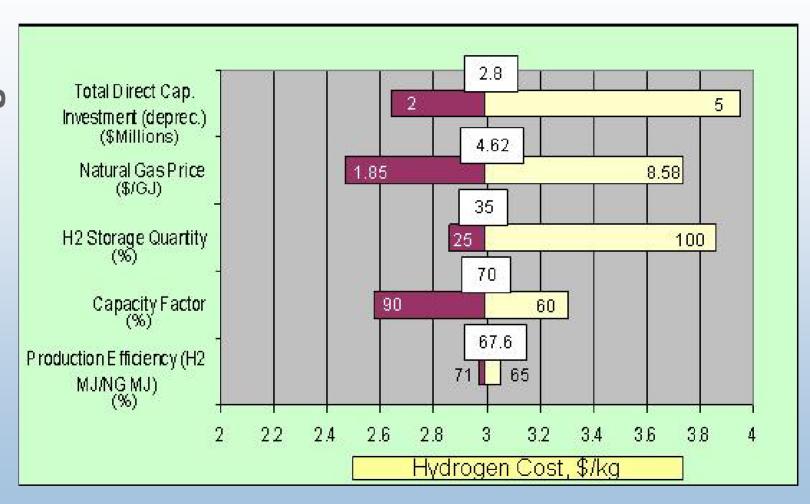
H2A Spreadsheet Features

Color-coded to facilitate user input


- Inputs may be either H2A standard inputs or user-defined
- Error messages included to alert user when input errors are made
- Documentation available for model support

Key Financial Parameters

- Reference year (2005 \$)
- Debt versus equity financing (100% equity)
- After-tax internal rate-of-return (10% real)
- Inflation rate (1.9%)
- Effective total tax rate (38.9%)
- Design capacity (varies)
- Capacity factor (90% for central [exc. wind]; 70% for forecourt)
- Length of construction period (0.5 3 years for central; 0 for forecourt)
- Production ramp-up schedule (varies according to case)
- Depreciation schedule (MACRS 20 yrs for central; 7 yrs for forecourt)
- Plant life and economic analysis period (40 yrs for central; 20 yrs for forecourt)
- Cost of land (\$5,000/acre for central; land is rented in forecourt)
- Burdened labor cost (\$50/hour central; \$15/hour forecourt)
- G&A rate as % of labor (20%)


H2A Current Technology Results

Profited Cost Contributions, Current Technology Status, 10% IRR

Sample Sensitivity Analysis

Distributed Steam Methane Reforming

"Tornado" Chart: Single-parameter sensitivity

Production Case Updates

- Up-to-date technology assumptions
 - Performance assumptions, cost assumptions (capital, fixed O&M)
- Consistency and robustness
 - Consistent assumptions, level of detail, process flow diagrams, conversions
- Improve transparency
 - More detailed break down of costs, technologies modeled, components and subsystems used

Case Studies: Central Technologies

	Coal Gasification	Coal Gasification w/ CO ₂ Sequestration	Coal Gasif w/ CO ₂ Seq & Power Co-Production	Biomass Gasification	
Prod Rate	250 tpd	250 tpd	250 tpd	155 tpd	
Current	Conventional	Conventional	Conventional	Distinct	
Future	+Membrane	+Membrane Separation	+Membrane Separation	Integrated	

	Natural Gas Reforming	Nat Gas Reforming w/ CO ₂ Sequestration	Nuclear-Steam Electrolysis	Nuclear Sulfur-lodine
Prod Rate	250 tpd	250 tpd	700 tpd	700 tpd
Current	Conventional	Conventional	N/A	N/A
Future	Improved Efficiency	Improved Efficiency	High-Temp Steam Electrolysis	SI Thermo-Chemical

	Electrolysis (Grid Electricity)	Electrolysis (Wind + Grid)	Electrolysis (Low-Temp Nuclear)
Prod Rate	100 tpd	100 tpd	700 tpd
Current	Low Pressure	Low Pressure	Low Pressure
Future	High Pressure	High Pressure	High Pressure

Case Studies: Forecourt Technologies

Type of Station	Small (100 kg/day)	Large (1,500 kg/day)	Current Technology / Design Assumptions
Natural Gas Reformer	X	X	SMR with PSA cleanup, 6250 psi piston compressors, cascade dispensing
Methanol Reformer	X	X	Comparable to SMR design, low temperature
Ethanol Reformer	X	X	Comparable to SMR design
Electrolysis	X	X	Electrolyzer, 6250 psi piston compressors, cascade storage and dispensing

Note: All cases include assessment of current and future technologies.

Future Work

- Expand model to address hydrogen quality
- Address other environmental concerns
 - e.g., water use and water quality
- Develop city-gate/semi-central production cases
- Expand available production cases
 - Coal to Fischer-Tropsch liquids
 - Forecourt aqueous phase reactor
 - Advanced bio-derived liquids

Project Summary

- Specific revisions to existing H2A model structure and interface
- Add new model features
 - Plant scaling, carbon sequestration, WTP emissions, automated sensitivity analyses
- Improve model outputs and user-specified inputs
- Insure accuracy/detail of specific production cases and improve transparency
- Develop model documentation
- Only addressing H2A production, not HD-SAM (H2A delivery)