Innovation for Our Energy Future

R&D Needs for Integrated Biorefineries The 30 x 30 Vision

(30% of 2004 Motor Gasoline Supplied by Biofuels by 2030)

David C. Dayton
Thermochemical Area Leader
National Renewable Energy Laboratory

Annual California Biomass Collaborative Forum

March 27, 2007

The President's Biofuels Initiative: The 30x30 Vision

Transformation through Intermediates (sugars)

"Biochemical conversion"

main difference is in the primary catalysis system

Reduction to building blocks (CO, H₂)

"Thermochemical conversion"

30 X 30 Plan Development in Support of OBP

Authors

Thomas Foust - National Renewable Energy Laboratory John Ashworth - National Renewable Energy Laboratory Paul Bergeron - National Renewable Energy Laboratory **David Dayton – National Renewable Energy Laboratory** Richard Hess - Idaho National Laboratory Michael Himmel - National Renewable Energy Laboratory Kelly Ibsen - National Renewable Energy Laboratory John Jechura - National Renewable Energy Laboratory Jonathan Mielenz - Oak Ridge National Laboratory Margo Melendez – National Renewable Energy Laboratory **Seth Snyder – Argonne National Laboratory** John Sheehan - National Renewable Energy Laboratory Michael Wang - Argonne National Laboratory Robert Wallace - National Renewable Energy Laboratory **Todd Werpy – Pacific Northwest Laboratory** Robert Wooley - National Renewable Energy

30 X 30 Scenario Model-Developed

- System dynamics model
- Dynamic implications of how the marketplace behaves in response to new technology
- Models behaviors of:
 - Investors
 - Farmers
 - Policymakers
- Can test different strategies to see whether or not they lead to successful achievement of the 30 x 30 goal
- Drivers can be either technology price targets or policy incentives

Five Critical Aspects to Achieving the 30 x 30 Scenario

- Continue rapid deployment of starch based ethanol technology in the next decade
- 2. Achieve "\$1.07/gallon" production cost target in 2012
- 3. Cost share deployment with industry to reduce risk hurdle
- 4. Achieve the advanced technology target to reduce the conversion cost component of the ethanol production cost by addressing identified barriers in 2025 2030
- 5. Continue tax incentive of \$0.50/gallon and raise Renewable Fuels Standard ceiling to 20 billion gallons or develop more dynamic market driven incentive

Historic Fuel Ethanol Prices

Achieving the \$1.07 Production Cost Target by 2012

Biochemical

Thermochemical

Technical Barrier Areas for \$1.07 <u>Biochemical</u> Ethanol

Summary: Biomass Recalcitrance vascular tubes corn stems **Impacts at many** length scales (mm to nm) cellulose microfibril cell walls microfibrils

Pretreatment

- Converts hemicellulose to fermentable sugars
- Makes cellulose susceptible to enzymatic hydrolysis

How Do Chemicals Penetrate Biomass?

Saccharification

Enzymatic hydrolysis of cellulose or starch to glucose

Buffer treated corn stover

Enzyme treated corn stover

Note: zone around vascular bundle is eroded compared to native (suggests enzymes leak through pores in bundle)

Enzyme Costs Have Fallen Sharply

- DOE Subcontracts to Genencor and Novozymes (cost-shared)
 Focus: lower production cost, increase enzyme system efficacy
 - Enzyme cost (\$/gallon EtOH) = Prod. Cost (\$/kg) x Usage Req. (kg/gallon EtOH)
 - Cellulase cost reduced 20-30X reduction (by subcontract metric)

Cofermentation Pathway in Engineered

Technical Barrier Areas for \$1.07 Thermochemical Ethanol

Thermochemical Route to Ethanol

Overall Stoichiometry: $nCO + 2_nH_2 \rightarrow C_nH_{2n+1}OH + (n-1)H_2O$

Optimal H2/CO ratio $\sim 1 - 1.2$ due to water-gas shift (WGS) activity of catalysts

Reactions largely kinetically controlled

Gasification R&D for "\$1.07" Thermochemical Ethanol Target

Gas Cleanup and Conditioning – Tar Reforming Catalyst Development

Consolidated tar and light hydrocarbon reforming to reduce capital and operating costs
 Tar Reformer Performance - % Conversion

Compound	Current	Goal
Methane (CH ₄)	20%	80%
Ethane (C ₂ H ₆)	90%	99%
Ethene (C ₂ H ₄)	50%	99%
Tars (C10+)	95%	99.9%
Benzene (C ₆ H ₆)	70%	99%
Ammonia (NH ₃)	70%	90%

- Advanced Catalysts and Process Improvements for Mixed Alcohol Synthesis
 - Increase single pass conversion efficiency (38.5% to 50%)
 - Improve selectivity (80% to 90%)
 - Improve yields at lower synthesis pressure
- Fundamental Gasification Studies
 - Technical validation of comparable syngas quality from biorefinery residues and wood residues

Pros & Cons of Mixed Alcohol Catalysts

Catalyst Class	Benefits	Negatives	Likely C2+ alcohol STY g/L/hr possible
Std MeOH Cu-Zn-Al	Excellent performance & commercial record	Highly sensitive to reduction, sintering, CI- & S	Very low
Modified Methanol (Cu/Zn/Al + X)	Easy to make & retrofit into existing units	Low overall yields, same sensitivity as parent Cu-Zn-Al, branched prods may dominate.	> 50, < 500
Molybdenum Sulfide	Good linear alcohol selectivity is claimed	S required in feed, & S is in product, highly sensitive to the activation process & O2 HC yield possibly high	500-1000
Molybdenum Oxide + XYZ	No S required, good linear product yield	Composition not optimized, HC yield higher than desired	800-1200
Rhodium based +XYZ	Good ethanol selectivity	Composition not optimized, high costs for Rh, HC yields are too high	500-1000
Fischer- Tropsch + modifiers	Good activity & many opportunities for improvement	Composition is not optimized alcohol selectivity may be too low HC yields may be high?	400-1000
Mixed Composite Catalysts (Inui claims)	Good reported C2+ yields reported, many possible improvements & refinements	Very complex system, optimization difficult,, yields of HC, acids & aldehydes are too high	600 - >1000

ALTERNATE SYNGAS ROUTES Using "Already Developed" Technology

(Syngas fermentations not considered)

Catalytic Step 1	Catalytic Step 2	Catalytic Step 3	+	-
Syngas to DME + MEOH in one step over Cu-Zn-Al combined w/ dehydration cat	DME + MEOH to mixed C2-C4 Olefins over ZSM-5 MTO* catalyst	Olefins hydration to mixed C2-C4 alcohols over H2PO4 catalyst	DME defeats MeOH equilibrium limit, DME+MeOH is ideal feed for MTO	3 steps (but all are highly efficient)
Syngas to MeOH over std. Cu-Zn-Al	MeOH +CO to Acetic acid, w/homogeneous Rh, Ir & Ru	Acetic acid hydrogenation to ethanol	All steps highly efficient, only EtOH produced	3 steps (possibly can combine #2 & #3 with development)
Syngas to DME + MEOH in one step over Cu-Zn-Al combined w/ dehydration cat	DME + MEOH to gasoline hydrocarbons over a ZSM-5 MTG* catalyst	none	All steps Claimed highly efficient, gasoline produced	No Ethanol, possibly some olefin coproduct, high aromaticity

^{*}MTO = Methanol to Olefins MTG = Methanol to Gasoline, Catalysts are variants of modified ZSM-5

From DOE GTL Bioenergy Roadmap

Systems Biology to Overcome Barriers to Cellulosic Ethanol

2030 Target for a Large Cellulosic Biorefinery to Integrate BC & TC Paths

L National Renewable Energy Laboratory

