Innovation for Our Energy Future

FCV Learning Demonstration: Project Midpoint Status and First-Generation Vehicle Results

Keith Wipke, Sam Sprik, Jennifer Kurtz, Holly Thomas¹ John Garbak²

> ZERO REGIO, Montecatini Terme, Italy November 6, 2007

> > ¹NREL, ²US Dept. of Energy

This presentation does not contain any proprietary or confidential information

Outline

- Objectives and Partners
- Methodology and Data Analysis
- How to Access Full Results
- Highlighted Results
 - Fuel Cell Efficiency and Power Points
 - FC Voltage Degradation and Factors Affecting it
 - Driving and Refueling Behaviors

Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets

Objectives

- Validate H₂ FC Vehicles and Infrastructure in Parallel
- Identify Current Status and Evolution of the Technology
 - Assess Progress Toward Technology Readiness
 - Provide Feedback to H₂ Research and Development

Key Targets

Performance Measure	2009*	2015**
Fuel Cell Stack Durability	2000 hours	5000 hours
Vehicle Range	250+ miles	300+ miles
Hydrogen Cost at Station	\$3/gge	\$2-3/gge
*T '5		

^{*} To verify progress toward 2015 targets

^{**} Subsequent projects to validate 2015 targets

Vehicle Status: All of First Generation Vehicles Deployed, 2nd Generation Initial Introduction in Fall 2007

~2/3 of the Project's Infrastructure to Refuel Vehicles Has Been Installed – 4 Types (examples)

Hydrogen and Gasoline Station Washington, DC

4 stations added in last six months

Refueling Stations from All Four Teams Test Vehicle/Infrastructure Performance in Various Climates

Nine Quarters of Data Analyzed Included in Fall 2007 Composite Data Products

NREL Web Site Provides Direct Access to All Composite Data Products (41) & Reports

On-Road FC Operating Power Points: Dyno Tests Validated High Efficiency at 1/4 Power Point – Key to Overall Efficiency

Dynamometer and On-Road Fuel Economy from Learning Demonstration Vehicles

- (1) One data point for each make/model. Combined City/Hwy fuel economy per DRAFT SAE J2572.
- (2) Adjusted combined City/Hwy fuel economy (0.78 x Hwy, 0.9 x City).
- (3) Excludes trips < 1 mile. One data point for on-road fleet average of each make/model.

Created: Aug-23-07 2:48 PM

(4) Calculated from on-road fuel cell stack current or mass flow readings.

Method for Projecting Time to 10% Fuel Cell Stack Voltage Degradation

Note: 10% is an R&D metric for FC stack degradation. It does not necessarily indicate an end-of-life condition. OEMs may use other values or indicators.

Technique makes performance projection based on all available FC data; Includes reporting confidence in results

As More Gen 1 Data Is Accumulated, Some Teams Are Demonstrating Long FC Durability

- (1) Range bars created using one data point for each OEM.
- (2) Range (highest and lowest) of the maximum operating hours accumulated to-date of any OEM's individual stack in "real-world" operation.
- (3) Range (highest and lowest) of the average operating hours accumulated to-date of all stacks in each OEM's fleet.
- (4) Projection using on-road data -- degradation calculated at high stack current. This criterion is used for assessing progress against DOE targets, may differ from OEM's end-of-life criterion, and does not address "catastrophic" failure modes, such as membrane failure.
- (5) Using one nominal projection per OEM: "Max Projection" = highest nominal projection, "Avg Projection" = average nominal projection.

 The shaded green bar represents an engineering judgment of the uncertainty due to data and methodology limitations. Projections will change as additional data are accumulated.

Created: Aug-23-07 10:42 AM

Learning Demo FCVs Tend to Take Many More Trips <2 Miles Than Compared to National Average

Preliminary Analysis of Dominant Factors Affecting Degradation: Each Team's Stacks Have Different Sensitivity to These Factors

- 1. Results are from partial least squares (PLS) regression analysis of each team's fleet of vehicles individually
- 2. First two collections of factors cover ~61%-76% of decay rate variance

Actual Vehicle Refueling Times and Amounts from >6,300 Events: Measured by Stations or by Vehicles

Actual Vehicle Refueling <u>Rates</u> from >6,300 Events: Measured by Stations or by Vehicles

Comm. Fills

Communication H2 Fills Achieving Higher Fill Rate than Non-Communication, But Not Uniformly

Large Spread in H2 Tank Level at Refueling Peak at ~1/4 Full, Median at ~3/8 Full

- 1. Some refueling events not recorded/detected due to data noise or incompleteness.
- 2. The outer arc is set at 20% total refuelings.
- 3. If tank level at fill was not available, a complete fill up was assumed.

Created: Sep-10-07 3:14 PM

Refueling by Time of Day; Relative Uniform Refueling Infrastructure Demand Between 8-4

Driving Trip Start Time – Day; Roughly Matches National Statistics Except for 5-6 PM

Gen 1 Learning Demo FCV Travel Has Been Primarily Weekday Driving; Doesn't Match NHTS

Summary

- More than half of project completed
 - 77 vehicles and 14 stations deployed
 - 800,000 miles traveled, 30,000 kg H₂ produced or dispensed
 - 168,000 individual vehicle trips analyzed
 - Project to continue through 2009
- Examination of Factors Affecting FC Degradation Initiated
 - More difficult to identify trends across all 4 teams than for each team individually
 - NREL will collaborate with each team to investigate further
- Total of 41 composite data products published to date
 - This presentation only covered some of the new/updated results
 - Web site allows direct web access to all CDPs
- Roll-out of 2nd generation vehicles is beginning now
 - First public 700 bar station opened in U.S. Irvine
 - Additional 700 bar refueling being installed in next year

Questions and Discussion

Project Contact: Keith Wipke, National Renewable Energy Lab 303.275.4451 keith_wipke@nrel.gov

All public Learning Demo papers and presentations are available online at http://www.nrel.gov/hydrogen/proj_tech_validation.html