Aquatic Species Program (ASP): Lessons Learned

AFOSR Workshop Washington, D.C. February 19-21, 2008

Sponsored by Air Force Office of Science

Eric E. Jarvis, Ph.D.

National Renewable Energy Laboratory

National Bioenergy Center

The ASP Didn't Invent the Concept of Fuels from Algae...

- Algae for methane (via anaerobic digestion)
 - Meier (1955); UC Berkeley 1957-59 (Oswald and Golueke)
 - Wastewater use, recycling of CO₂ and nutrients
- Revival during Energy Crisis of 1970's
 - Uziel et al. (1975); Benemann et al. (1976-80)
 - Still focused on methane and hydrogen
 - Energy Research and Development Administration (ERDA)
 - Later DOE (SERI founded in 1977)

...But the ASP Took the Concept to the Next Level

- Supported work at SERI/NREL and through dozens of subcontracts to universities and private companies
- Focus turned to lipid oils, diesel replacements, microalgae rather than other "aquatic species"
 - Algal hydrogen research moved to different program
- Explored all aspects of the technology

The ASP Funding Rollercoaster

- ASP began in 1978
- Ended in 1996 to focus lean budgets on bioethanol
- Overall investment ~\$25M

Program Justification

- Lignocellulosic ethanol can't for substitute for energy-dense diesel (and aviation) fuels
- FAME (biodiesel) was evolving as an option
 - Renewable oil sources insufficient to meet diesel fuel demand
 - Algae offers alternative
- Energy security concerns dominated at first, later global climate change became important factor (flue gas CO₂ capture)

ASP Topic Areas

- 1. Microalgae collection and screening
- 2. Physiology, biochemistry, and genetic engineering
- 3. Process engineering
- 4. Outdoor mass culture
- 5. Analysis

Microalgae Collection and Screening

- >3000 strains of microalgae collected over 7 years
- Western, northwestern, southeastern US and Hawaii
- Most from shallow, inland saline habitats

Microalgae Collection and Screening...

- Screened for tolerance to salinity, pH, temperature
- Screened for neutral lipid production (Nile Red)
- Media optimization
 - SERI Type I and II, etc.
 - Laboratory surrogates

Microalgae Collection and Screening...

- Collection narrowed to 300 most promising strains (partly by attrition)
- Primarily greens (Chlorophyceae) and diatoms (Bacillariophyceae)

Amphora, Chaetoceros, Chlorella, Cyclotella, Monoraphidium, Nannochloris, Nannochloropsis, Navicula, Nitzschia, Phaeodactylum, Tetraselmis, Thalassiosira

- Some made axenic
- In 1996, remaining cultures transferred to the Center for Marine Microbial Ecology and Diversity (CMMED) at U. Hawaii
- About half the strains still available

Microalgae Collection and Screening:

Lessons Learned

- Many microalgae can accumulate neutral lipids
- Diatoms and greens most promising
- No perfect strain for all climates, water types
- Serial transfer less than ideal

Physiology, Biochemistry, and Genetic Engineering

- Studies on induction of lipid accumulation response
 - -N or Si depletion
- What are the biochemical and genetic underpinnings of photosynthate partitioning?
 - -The "lipid trigger"

Physiology, Biochemistry, and Genetic Engineering...

- Cyclotella cryptica primary model organism for biochemistry
- Identification of key enzymes in fatty acid and carbohydrate (chrysolaminarin) pathways
 - Acetyl CoA carboxylase
 (ACCase) activity increases upon Si depletion (Roessler 1988), enzyme characterized
 - –UDP glucose pyrophosphorylase (UGPase) and chrysolaminarin synthase activities also characterized (Roessler 1987, 1988)

Physiology, Biochemistry, and <u>Genetic</u> <u>Engineering</u>...

Genetic "toolbox" developed

- Transient and stable marker systems
- Effective methods of DNA introduction
- Achieved genetic transformation of diatoms C. cryptica and Navicula saprophila (Dunahay et al., 1995)
 - Antibiotic resistance marker under control of ACCase gene promoter & terminator
 - Cell wall penetration via "biolistics"
 - Random chromosomal integration

Physiology, Biochemistry, and <u>Genetic</u> <u>Engineering</u>...

Key genes isolated from C. cryptica

- ACCase gene cloned (Roessler and Ohlrogge, 1993)
 - First from photosynthetic organism
- UGPase gene cloned (Jarvis and Roessler, 1999)
 - Chimera with phosphoglucomutase (previous step in pathway)

Attempts at gene modulation

- Successful ACCase overexpression (2-3x)
- Successful UGPase overexpression, but not turndown
- No effects seen on lipid accumulation in these early experiments

Physiology, Biochemistry, and Genetic Engineering: Lessons Learned

- Choosing right starting species is critical
- Lipid induction upon nutrient stress doesn't help productivity
- Key enzymes change activity upon induction, but no obvious "lipid trigger"
- We have only begun to scratch the surface
 - Need to understand pathways, regulation, devise genetic strategies

Process Engineering

- Explored methodologies for <u>dewatering</u> algal suspensions and solvent <u>extraction</u> of oil
- Tested <u>transesterification</u> of lipids to fuel (no other methods, scale-up, fuel characterization, or engine testing of algal fuels)
- Laboratory-scale experimentation, but not major focus of project

Process Engineering: Lessons Learned

- The scale, energy input, and cost challenges make dewatering and extraction significant hurdles
- Flocculation/bioflocculation may be most promising route for dewatering
- Solvent extraction of oil through the cell wall is feasible
- Transesterification is straightforward, but many challenges in making a quality fuel
- There's much more work to be done!

Outdoor Mass Culture

Hawaii experiments (1980-87)

- Patented "Algae Raceway Production System" (ARPS)
- 60 cm deep, 48 m²raceway with cover

California experiments (1981-86)

- "High Rate Pond" (HRP) system (developed at UC Berkeley)
- Four 200 m², three 100 m² open raceways, paddlewheel mixed
- 15-30 cm deep
- Many species tested, Amphora and Cyclotella did well

Israeli experiments (1984-86)

Multiple investigators, configurations, species, harvesting methods

Outdoor Mass Culture...

Roswell, NM facility (late 1980's)

- Subcontract to Microbial Products, Inc. (Weissman et al., 1989)
- Based on the HRP design
- Two 1,000 m² raceway ponds, 15-25 cm deep
- Cyclotella, Monoraphidium, Amphora, Tetraselmis, etc.

Outdoor Mass Culture: Lessons Learned

- Important successes
 - -Typical productivities 15-25 g/m²/day biomass over productive months
 - -Roswell gave occasional productivities approaching 50 g/m²/day (but closer to 10 g/m²/day overall)
 - -NOTE: But not 50% lipid!
 - -Long-term, stable cultivation achieved
 - -CO₂ utilization >90% with proper sump and pH control
 - -Mixing energy low in paddlewheel systems

Outdoor Mass Culture: Lessons Learned...

Issues identified

- -Temperature affects productivity, culture collapse, invasion, grazers, nighttime respiration, O₂ inhibition
- -Invasion by native microalgae species
- –Lab conditions ≠ outdoor culture conditions
- –Productivity ≠ persistence
- −O₂ levels problematic
- Hydraulics critical
- –Water loss (evaporation and percolation)
- –Low lipid contents

Analysis

Resource assessments

- Land suitability
 - Insolation
 - -Slope
 - -Land use
 - -etc.
- Water (saline aquifers)
- CO₂ sources
- Focus on US desert southwest

Analysis...

Life Cycle Analysis (LCA)

- Small amount of LCA done
- Focus on co-combustion of algae
- Needs to be revisited

Analysis...

Technoeconomics

- Several different analyses over the course of the program (Benemann and others)
- Many assumptions and unknowns, differing conclusions
- Most optimistic of analyses not competitive with 1996 petroleum costs
 - Most recent analysis (Kadam 1995) estimated cost of unextracted lipid from \$186/bbl ("current" case) to \$59/bbl (optimistic "improved" case) with no CO₂ credit
 - –Petroleum at <\$20/bbl in 1996 and "DOE expects petroleum costs to remain relatively flat over the next 20 years."</p>

Analysis: Lessons Learned

- Ample land, water, CO₂ resources available in Southwest for "several Quads" (30+ billion gallons?) of fuel per year
- Economics are challenging
 - -Biological productivity largest influence on fuel cost
 - Capital costs huge factor
 - -Unlined, open ponds only option
 - Land costs minor
 - -CO₂ cost and transport distance significant
 - Need to get value from residual biomass
 - Water, nutrient recycle
- Significant R&D still required to reduce costs!

What's Changed Since 1996?

- Oil prices didn't stay flat
- Increasing concern about CO₂
- New photobioreactor designs, advances in material science
- Explosion in biotechnology
 - Advances in metabolic engineering
 - Genomics, proteomics, metabolomics, bioinformatics, etc.

DOE Joint Genome Institute

Accessing the Legacy of the ASP

- Close-out report (Sheehan, et al. 1998)
 - http://govdocs.aquake.org/cgi/re print/2004/915/9150010.pdf
- Electronic documents
 - Ongoing effort at NREL to scan old ASP reports and make publicly available
 - >100 electronic documents now posted on the NREL Publications website
 - http://www.nrel.gov/publications/
 - Search "microalgae"

Conclusions

- The ASP has provided a solid foundation for fuels-from-algae research
- Sheehan et al. presaged the current revival in this field:

... this report should be seen not as an ending, but as a beginning. When the time is right, we fully expect to see renewed interest in algae as a source of fuels and other chemicals. The highlights presented here should serve as a foundation for these future efforts.