

Looking Ahead – Biofuels, H₂, & Vehicles

21st Industry Growth Forum

Dale Gardner
Associate Laboratory Director,
Renewable Fuels & Vehicle
Systems

28 October 2008

NREL/PR-4A0-44538

NREL's Renewable Fuels & Vehicle Systems S&T

Feedback

Biofuels

U.S. Fuel Capacity Goals

USA Consumption
Gasoline: 140 bgy

Diesel: 60 bgy

President's 20-in-10
 35 billion gallons of
 <u>alternative</u> transportation
 fuels by 2017

 Renewable Fuel Standard (RFS) legislation
 36 billion gallons of renewable fuels
 by 2022

• DOE 30x30 Goal
60 billion gallons of
ethanol (30% of
today's gasoline
consumption) by 2030

Renewable Fuel Standard

U.S. Current Biofuels Status

USA Consumption Gasoline: 140 bgy

Diesel: 60 bgy

Biodiesel ¹

- 176 commercial plants
- 2.6 bgy capacity (2008)
- 0.46 bg produced (2007)

Corn ethanol ²

- 178 commercial plants
- 11.6 bgy capacity (+ 2.2 bgy planned) (2008)
- 6.5 bg produced (2007)

Cellulosic ethanol (2008+)

- 13 demo plants DOE-funded
- ~.250 bgy capacity projected

bg = billion gallons; bgy = billion gallons per year

Range of Biofuels & Technology Maturity

Generation 1 (Corn Ethanol & Biodiesel)

 1st generation -- from sugar or starch crops, plant oils, or animal fats

Generation 1.5 (Additional Crops)

• 1.5 generation -- sugar, starch, and plant oils that do not compete significantly for food and feed

Cassava

Starch → Sugar → Ethanol

Jatropha Oil → Biodiesel

Generation 2 (Cellulosic Ethanol)

 2nd generation -- from lignocellulosic biomass materials, primarily producing ethanol via biochemical or thermochemical conversion

Why Follow-On Generations?

3rd & 4th Generations -- beyond ethanol

- Higher energy density
- Suitability for wide range of end use
- Better temp and cold start ability
- Infrastructure compatibility

Wide Range of Biofuel Technologies

Generation 3 (New Feedstocks & Fuels)

3rd Generation

New energy feedstocks, e.g. algae

Higher energy density
 molecules, via thermochemical conversion

Comparing Potential Oil Yields

Crop	Oil Yield Gallons/Acre	
Corn	18	
Cotton	35	
Soybean	48	
Mustard seed	61	
Sunflower	102	
Rapeseed	127	
Jatropha	202	
Oil palm	635	
Algae	1,200 – 10,000	
Today's Technology Estimate Optimistic Future Technology		

Microalgae – 3rd Generation Feedstock

- Algae have potential to produce more lipids (plant oils) per acre than other terrestrial plants -- potentially 10X to 50X
 - Lipids are the preferred starting point to make diesel or jet fuel
- Algae cultivation can utilize:

- Saline or brackish water
- Large waste CO₂ vent resources (e.g. flue gases from coal electricity plants)
- Minimal competition with food, feed, or fiber

Biofuels From Microalgae

Petroleum Refinery or Biodiesel Plant

Biodiesel

Green Diesel

Jet Fuel (Jet A or JP-8)

Generation 4 (Systems Biology Advances)

4th Generation –

Higher energy density molecules, directly from organisms

Crops engineered for self lignocellulosic destruction

Infrastructure – Feedstock & Product

 Need innovative thinking to accelerate our ability to transport large amounts of biomass and new fuels

Decentralized Biomass Liquids Scenario

John McCain & Barack Obama on Biofuels

- Will commit to pursue 2nd generation alcohol-based fuels, such as cellulosic ethanol
- Eliminate mandates, subsidies, tariffs, and price supports that focus exclusively on corn-based ethanol

- Will invest \$150B over 10 years in alternative energy sources such as . . the next generation of biofuels and fuel infrastructure . . .
- Will require 60 billion gallons of advanced biofuels to be phased into the U.S. fuel supply by 2030

Hydrogen & Fuel Cells

DOE's 2015 Hydrogen Program Goals

Production

\$2.00 - 3.00/kg (pathway independent)

Onboard Storage

300 mile range

\$30/kw & 5,000 hrs

NREL Hydrogen Technology Thrusts

Hydrogen production

Hydrogen delivery

Hydrogen storage

Hydrogen manufacturing

Fuel cells

Technology validation

Safety, codes, & standards

Analysis

EERE FY09 Hydrogen Budget Drivers

Fechnology Barriers

Hydrogen Production Cost*

(One cost-competitive pathway required for critical path.

Target: \$2 - 3 /gge — met by distributed reforming of natural gas)

Hydrogen Storage Capacity & Cost

(Targets: 2.7kWh/L, 3kWh/kg, and \$2/kWh)

Fuel Cell Cost and Durability

(Targets: \$30 per kW, 5000-hour durability)

Economic & stitutional Barriers

Safety, Codes & Standards Development

Delivery Infrastructure

Domestic Manufacturing and Supplier Base

Public Awareness & Acceptance

Critical Path
Barriers for
Fuel Cell
Vehicle
Technology
Readiness
in 2015

*Critical Path for hydrogen cost is one cost-competitive production pathway. Multiple pathways are needed for longerterm energy security and sustainability.

Renewable Energy Paths to Hydrogen

Wind-to-Hydrogen Project (with Xcel)

Electrolysis Cost Reduction

Reduced cost of cell stack

- New materials
- New designs and manufacturing methods
- Increased current density (more hydrogen per cell)

Standardized designs

- Reduced engineering
- Efficient procurement and global sourcing
- Look for global standards, not only national
- Large centralized electrolysis plants
- Increased market -> higher volumes -> assembly line manufacturing

Hydrogen & Fuel Cells

- Market Transformation early hydrogen and fuel cell penetration
 - Dual use
 - Stationary applications
 - Niche transportation-related markets
- Manufacturability -- fuel cells, electrolyzers, and other hydrogen-unique systems
 - Will require new processes and vendors to support mass production
 - Need to get ahead now, or delay hydrogen introduction past technology readiness
 - Significant opportunity for innovation

Hydrogen & Fuel Cell Vehicle Learning Demo

>120 Hydrogen Fuel Cell Vehicles from 4 OEMs

>16 Hydrogen Stations from 5 Energy Companies

General Motors & Honda

- Project Driveway program to put the fuel cell powered Chevrolet Equinox in the hands of customers in various parts of the United States.
- Plans for production of 100+ vehicles.
- Initially be available only in the NYC, D.C., and SoCal, where greatest number of hydrogen filling stations exist.

- Limited number of FCX Clarity vehicles will be leased to Southern Californians starting this year.
- Honda plans to deliver about 200 FCX Clarity hydrogen-powered fuel cell vehicles to customers in the first three years of its fuel cell lease program.
- Conducting a customer prequalification and selection process is underway.

John McCain & Barack Obama on Hydrogen

 Mentioned hydrogen/fuel cells in speeches, but energy policy is silent on the topic

 Mentioned hydrogen/fuel cells in speeches, but energy policy is silent on the topic

Advanced Vehicle Technologies

Vehicle Efficiency Improvements

- Need continued advances in gas and diesel ICEs, e.g.
 - Engines and accessory equipment
 - Materials and light-weighting
 - Tire rolling resistance
- In anticipation of increased electric drive vehicles, need ancillary load reductions
 - Air conditioning/thermal comfort advancements
 - Motor and power electronics improvements
 - Electrical load reductions needed for increased electronics

Thermal Testing in Vehicles

Human Thermal
Physiological
Model

Human Thermal
Comfort Empirical
Model

Ethanol Intermediate Blends

- In order to absorb the ethanol capacities mandated by the RFS, probably need to move from E10 to E15/20
 - E10 max'es out at ~ 15 bgy
 - E85 infrastructure and FFVs probably not developing fast enough
 - E15 or E20 could get us to approx 23 bgy or 30 bgy, respectively
- What we need to get there:
 - Vehicle/engine testing, mods, certification for higher blends, and
 - Address SNRE issues
 - o Engine modifications, as required, or
 - o Develop an E0/10 infrastructure to service the SNREs

Electric Drive Vehicles

Energy Storage (Lithium Ion battery challenges)

- Safety: Overcharges, charging in extremely cold weather, short circuits, "thermal runaway", other abuse conditions
- Performance: Very low/very high temperature operation; deterioration at very low or very high charge levels, high energy/power densities, low volume
- Durability: Last thousands of charge/discharge cycles, deep discharge issues, achieve a 15+ year calendar life, while maintaining 80% levels

Cost: USABC has targeted \$500/system for HEV batteries \$3,400 for 40-mile PHEV systems

Power electronics

- Weight & volume
- Thermal management

EnergyCS – lithium ion battery pack in Prius PHEV conversion

Batteries

Recharging Infrastructure

- Recharging we need to address:
 - Public and work access, not just home
 - Using renewable electricity
 - "Cordless", on-the-move capability

The "Better Place" Solution

Shai Agassi, CEO

Vehicles: Renault

Batteries: AESC & A123

37

John McCain & Barack Obama on Vehicles

- Clean Car Challenge -- \$5,000 tax credit for zero-carbon cars
- \$300M prize for battery full commercial development
- Call on automakers for more rapid/complete switch to FFVs than they have proposed (50% by 2012)
- Effectively enforce existing CAFÉ standards

- Will invest \$150B over 10 years in alternative energy sources such as . . the commercialization of PHEVs . . .
- Put 1 million PHEVs on road by 2015 (> 150 mpg)
- Mandate all new vehicles to be FFVs by end of first term
- Increase fuel economy standards 4% per year

A Portfolio of Transportation Technologies

Thank You

The U.S. Department of Energy's
National Renewable Energy Laboratory
www.nrel.gov
Colden, Colorado

NREL's "Rising Stars"

Debbie Brodt-Giles

- Jason Cotrell
- Tony Markel
- Matthew Reese

