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Figure 1  Classical time series decomposition.  The 
data set for an a-Si module (a) is shown along with 
its components of (b) trend, (c) seasonality and (d) 
remaining irregularity.   
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ANALYTICAL IMPROVEMENTS IN PV DEGRADATION RATE DETERMINATION 
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ABSTRACT 
 

As photovoltaic (PV) penetration of the power grid 
increases, it becomes vital to know how decreased power 
output may affect cost over time. In order to predict power 
delivery, the decline or degradation rates must be 
determined accurately. For non-spectrally corrected data 
several complete seasonal cycles (typically 3-5 years) are 
required to obtain reasonably accurate degradation rates.  
In a rapidly evolving industry such a time span is often 
unacceptable and the need exists to determine 
degradation rates accurately in a shorter period of time. 
Occurrence of outliers and data shifts are two examples of 
analytical problems leading to greater uncertainty and 
therefore to longer observation times.  In this paper we 
compare three methodologies of data analysis for 
robustness in the presence of outliers, data shifts and 
shorter measurement time periods. 
 

INTRODUCTION 
 
In this paper we will focus on determining degradation 
rates from continuous data. For non-spectrally corrected 
measurements, particularly using pyranometers, it is well 
known that due to seasonal changes, several complete 
cycles (typically 3-5 years) need to be completed to obtain 
reasonably accurate degradation rates [1]. The first step in 
determining degradation rates is to translate the 
parameter of interest to some reference condition. In this 
paper we have adopted the Photovoltaics for Utility Scale 
Applications (PVUSA) methodology for ease of use in 
which case the parameter of interest is the maximum 
power and the pre-determined conditions are PVUSA Test 
Conditions (PTC) [2-4]. Once the power has been 
adjusted to the same condition the data, divided into 
monthly intervals are charted in sequential order. A linear 
regression is fitted to this time series using the standard 
least square method. Considerable attention has been 
devoted to the first, the translation or normalization step 
[5-11]. The second step has received less attention and 
we will focus on it for the remainder of this paper. We will 
refer to the use of a linear fit to the adjusted data as the 
traditional method and it represents the first analytical 
methodology we investigated. The second method is 
commonly known as the classical decomposition where 
the signal is parsed into trend, seasonality and remaining 
irregular component [12].  The last method examined in 
this study is the Autoregressive Integrated Moving 
Average (ARIMA) modeling approach first introduced by 
Box and Jenkins in 1970 [13]. This approach is commonly 
utilized in econometrics to seasonally adjust econometric 
parameters [14]. ARIMA methods have been successfully 

used to model solar radiation data [15] and in grid-
connected PV power production [16,17].  
 
To test these three different analytical methods, data from 
the NREL Outdoor test facility were used, deliberately 
modified as detailed below to test them with respect to 
outliers, data shifts and reduction of observation time.   
 

MODELING AND ANALYSIS 
 

Classical decomposition, as shown in Fig. 1 separates the 
total signal into trend, seasonality and remaining irregular 
component. The trend, Fig. 1 (b) was obtained from the 
original data with a centered 12-month moving average.  
The seasonality component is obtained by subtracting the 
trend from the original data and averaging each month 
across the years of observation. This is the equivalent of 
calculating a seasonal index with the assumption that the 
index does not change across the time of observation.  
After the seasonality component is known, and using the 
trend data, the irregular remaining component can be 
calculated. Degradation rates using the classical 
decomposition are determined from the trend graph of Fig. 
1 (b) in contrast to the traditional method, which uses Fig. 
1 (a). The marked hump in the trend graph is a data shift 
caused by a maintenance event and will be addressed 
later. 

 

 
To facilitate the understanding of the ARIMA modeling it is 
helpful to consider PV degradation rates in a more 
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Figure 3  Performance of a multi-crystalline 
silicon module deployed at NREL (a) with 
deliberately introduced outliers 1-5 and (b) the 
resulting degradation rates.   
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Figure 2  Amorphous Si data set (solid 
diamonds) and ARIMA modeled data (open 
diamonds).  
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mathematical context. Degradation rates, i.e. the change 
of power with time, is proportional to the power and a 
random error term, as stated in Eqn. 1, where c is a 
constant and ε a random fluctuation term. 
 

ε++= Pc
dt
dP                         (1) 

 
However, the power change is not observed in 
infinitesimally small intervals but very large time intervals, 
as shown in Fig. 1. Therefore, the stochastic differential 
equation (1) becomes a stochastic difference equation.  It 
can be shown in some simple algebraic steps that Eqn. 2 
follows, where δ is a constant, φ a (fixed) coefficients and ε 
the random fluctuation at point t. 
 

ttt PP εδφ ++⋅= −1                         (2) 

 
Equation 2 is called an autoregressive equation since the 
power at point t is regressed onto its lagged self. This 

autoregressive model is a subset of a much larger class of 
ARIMA models. An ARIMA model predicts the current 
value in a time series as a linear combination of past 
values (the autoregressive part) and past random 
fluctuations (the moving average part). These models 
require stationarity of the time series, i.e. the data fluctuate 
around a constant mean. If a trend is visible, stationarity of 
a time series can be achieved by taking the difference of 
subsequent points which is the integrated part of the 
ARIMA notation. Figure 2 shows an example of an 
amorphous-Si data set overlaid with an ARIMA model.  
The actual algebraic representation for the ARIMA model 
is given in the simple but somewhat cumbersome Eqn. 3, 
where φ and θ are the autoregressive and moving average 
coefficient, respectively. An abbreviation for Eqn. 3 is 
given by ARIMA (100)(011) with seasonality period of 12 
month. In this notation, the first numeral indicates the 

autoregressive, the middle numeral indicates the 
integrated, and the last numeral is the moving average 
part. Non-seasonal components are specified by the 
former, seasonal components by the latter bracket.  
 
 
 

OUTLIERS 
 

To test the sensitivity of the different methodologies to 
outliers, a “clean” data set, was selected.  As shown in 
Fig. 3, one to five outliers were deliberately and 
subsequently introduced and the degradation rate 
calculated for each method. Figure 3 (b) shows the result 
and the impact of the outliers on the degradation rates for 
the three different methodologies. The uncertainties 
displayed are statistical uncertainties only, which may 
differ from the error of the true degradation rate, but allow 

direct model-to-model comparison. For the traditional way, 
the statistical uncertainties, the Type A uncertainty 
according to the ISO guide to the Expression of 
Uncertainty [18], can be calculated directly from the 
standard errors of the regression. The uncertainty of the 

1213112 −−−− ⋅−+=⋅+⋅−− tttttt PPPP εθεδφφ (3) 
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Figure 5  Amorphous Si data from Fig. 1 with 
shift-corrected trend component.  The trend was 
obtained with a centered 12-month moving 
average. 

Figure 4 (a) Data shift deliberately introduced in a 
data set, (b) minimization of residual error to 
determine best scaling factor, (c) comparison of 
original with shift-corrected data. 
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classical decomposition is composed of two components.  
The first is similar to the traditional way and can be 
calculated from the standard errors of the regression.  
Since each data point represents the 12-month average 
each individual data point contains a second uncertainty 
component. The variances of the two components are 
added to obtain the total Type A uncertainty. In ARIMA 

modeling the main uncertainty originates from the model 
identification phase where model components are chosen 
based on a multitude of different mathematical criteria.  
Therefore, three different models based on the more 
robust mean absolute deviation were selected to 
determine the uncertainty. Subsequently, the median rate 
and standard deviation were calculated. Without any 
outliers, all three methodologies converge to the same 
degradation rate within one standard deviation. Using the 
traditional method, it can be seen that even the 
occurrence of one outlier shifts the degradation rate and 
increases the uncertainty significantly. Traditionally, those 
points most likely would have been discarded to determine 
the proper degradation rate. Using the classical 
decomposition, one outlier does not alter the degradation 
rate but the occurrence of two does. The ARIMA approach 
is even more robust. At three outliers, the median 
degradation rate is slightly too high but still within the 
uncertainty bar. Four or more outliers result in an incorrect 
degradation rate even with the ARIMA modeling. 
 

DATA SHIFT 
 

Data shifts, typically associated with hardware changes 
present an especially difficult problem due to the question 
of alignment of the individual data blocks. ARIMA 
methodology excels at modeling weak trends but is 
seriously limited when sudden changes occur. In this 
section we demonstrate how data shifts can be corrected 
without discarding any data and eliminating a stringent 
limitation of ARIMA modeling.  In Fig. 4 (a) the same data 

from a multi-crystalline Si module, as in the previous 
section was selected with a shift for a 2-year period 
deliberately introduced. The shifted data are multiplied 
then by a scaling factor that, depending on its value, can 
shift the 2-year window below or above the rest of the data 
set.  For all three approaches the residual sum of squares 
was plotted as a function of scaling factor similarly to Fig. 
4 (b). When the residual sum of squares is minimized the 
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Figure 6 Degradation rates with changing 
observation time (a) for a multi-crystalline Si, (b) 
amorphous Si, and (c) thin-film module. 
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best fit of the shifted data to the rest of the data is 
determined. Figure 4 (c) shows that all three approaches 
lead to the determination of the degradation rate without 
any shift. This correction methodology was applied to the 
data set of Fig. 1 with the results shown in Fig. 5. It can be 
seen that the correction procedure removes the hump in 

the middle of the data set which was caused by an out-of-
calibration temperature sensor. The same methodology 
can also be used when there is not an abrupt shift but a 
gradual continuous deviation such as caused by sensor 
drift. Instead of a single correction factor a correction 
function can be applied to the original data with residual 
minimization as described above.  
 

SHORTER OBSERVATION TIME 
 

A natural extension of the above observation that the 
ARIMA models seem more accurate than the traditional 
method is to investigate whether degradation rates can be 
determined in shorter time. For this purpose, in Figure 6 
(a) a multi-crystalline Si module, (b) an amorphous Si 
module, and (c) a thin-film module were chosen.  Both the 
amorphous Si and the thin-film module were exposed in 
the field prior to the data shown here, thus degradation 
rates were determined after modules had stabilized. 
Degradation rates were calculated for each method 
starting with the first 2 years, 3 years, etc. until all data 
were used. For simplicity sake we assume a constant 
degradation rate for the moment. As the number of years 
of measured data increases all three methodologies 
converge to the same rate; at shorter time periods, 
however, differences start to occur. The multi-crystalline Si 
module, Fig. 6 (a), shows increasing bias at shorter time 
periods for the traditional and classical decomposition. At 
two years even the ARIMA shows some bias but it is 
closer to the long-term degradation rate with smaller 
uncertainty than the other two methods. More remarkable 
are the results for the amorphous Si module. The ARIMA 
approach determines the long-term degradation even in 
two years while both traditional and classical 
decomposition show some bias although within the 
uncertainty bar. Similarly, results for the thin-film module 
are shown after stabilization in the field. Again the ARIMA 
approach is close to the long-term degradation rate even 
at two years whereas the other two methods start to show 
systematic bias.   
 
An important assumption so far has been that the 
degradation rate is constant over time and that conditions 
remain the same across the observation time. However, it 
has been observed and is well-known that degradation 
rates, especially in the initial phase, are non-linear [19,20].  
The ARIMA modeling approach can still be used but is 
then composed of two parts, a transfer function that 
relates the input series (time) to the output series (power) 
and a model for the residual noise. Since the identification 
and complexity increases significantly for these models 
[21] we discuss it in a separate study.   
 
It appears that the ARIMA modeling is a powerful 
approach to determine degradation rates more efficiently.  
The efficiency of the ARIMA modeling is based on the 
number of data points, or number of degrees of freedom, 
available to construct a model. To obtain degradation 
rates in shorter time but at the same time retaining a large 
number of degrees of freedom the only choice is to 
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Figure 7 (a) PVUSA regression of a multi-
crystalline module in weekly intervals and (b) 
degradation rates with changing observation 
time. 
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decrease the sampling interval, from monthly to weekly, 
for instance. Figure 7 shows the results for the multi-
crystalline data set in weekly intervals in contrast to 
monthly intervals of Figs. 3 (a) and 6 (a).  A lot more 
outliers are now present than with the monthly series, 
however we have shown that the ARIMA is more robust 
against outliers and does determine the ultimate 
degradation rate in as short of a time period as 1.5 years, 
Fig. 7 (b) 

 
 
 
 

CONCLUSION 
 

In summary, we have introduced two alternative analytical 
ways to determine degradation rates from continuous 
data, the classical decomposition and ARIMA method.  
We have shown that these analytical methods have 
smaller uncertainties than linear fits using standard least 
squares.  Especially the ARIMA method appears to be a 
robust methodology to a common analytical problem such 
as outliers. Furthermore, we introduced a method to 
statistically correct data shifts that are commonly linked to 

hardware issues. Additionally, we have applied these 
methods to determine degradation rates more quickly.  
The ARIMA transfer function approach is ideal to model 
non-linear behavior and will be the subject of an additional 
study.  
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