

Calcium Film Based Testing of Edge-Seal Materials for Photovoltaic Applications

Michael Kempe, Arrelaine Dameron, Matthew Reese

Polymers in Photovoltaics

Cologne, Germany

April 13, 2011

NREL/PR-5200-50838

Experimental Objectives

Many PV technologies are sensitive to moisture. Even with impermeable front- and back-sheets, moisture can penetrate from the sides. Edge seals are incorporated around the perimeter to prevent this ingress.

Here we use a Ca-based method to evaluate the moisture ingress time for edge seal materials.

Then we use this data to model the performance when deployed outdoors.

Test Sample Designed to Mimic Module Edge

$$Ca + 2 H_2 O \rightarrow Ca(OH)_2 + H_2$$

Oxidation of Ca Indicates Moisture Ingress

$$Ca + 2 H_2 O \rightarrow Ca(OH)_2 + H_2$$

Mirror-Like → Transparent

Moisture Ingress Varies Greatly in Encapsulants

Polyisobutylene Edge Seals Slow Ingress

Exposed to 85°C and 85% RH

0 h

1490 h

2780 h

4664 h

Moisture Ingress Rate Governed by Diffusion

Ingress Rates Vary Greatly (85°C)

Ingress Rates Vary Greatly (45°C)

EVA Water Permeation Parameters

Moisture Ingress Rate Governed by Diffusion

$$\frac{\partial C}{\partial t} = \nabla (D\nabla C)$$

1-D Semi-Infinite Solid

$$C(x,t) = C_{eq} \left[1 - erf \left(\frac{x}{2\sqrt{Dt}} \right) \right]$$

2-D Ingress, Infinite rectangular bar

$$\frac{C_{eq} - C(X,Y,t)}{C_{eq}} = \frac{16}{\pi^2} \sum_{m=0}^{\infty} \frac{1}{2m+1} \sin \left[\frac{(2m+1)\pi X}{l_x} \right] e^{\left[-\frac{D(2m+1)^2 \pi^2 t}{l_x^2} \right]} \sum_{n=0}^{\infty} \frac{1}{2n+1} \sin \left[\frac{(2n+1)\pi Y}{l_y} \right] e^{\left[-\frac{D(2n+1)^2 \pi^2 t}{l_y^2} \right]}$$

2-D Finite Element Analysis with Ca-H₂0 Reaction

$$C_{m,n}^{P+1} = \frac{D\Delta t}{(\Delta X)^2} \left(C_{m+1,n}^P + C_{m-1,n}^P + C_{m,n+1}^P + C_{m,n-1}^P \right) + \left[1 - 4 \frac{D\Delta t}{(\Delta X)^2} \right] C_{m,n}^P - \left(Calcium \right)$$

D and S allow for Modeling of Performance

NATIONAL RENEWABLE ENERGY LABORATORY

Edge Seal Modeling

The use of fillers, pigments, and desiccants makes the determination of modeling parameters much more difficult.

$$S_m = S_o e^{\left(-\frac{Ea_s}{kT}\right)} \frac{RH\%}{100\%}$$

Mobile phase water absorption is split between the polymer matrix and the mineral components. Assume linearity with relative humidity.

$$D_{eff} = D_o e^{\left(-\frac{Ea_D}{kT}\right)}$$

Mobile phase water diffusivity is an effective diffusivity. This accounts for a rapid equilibration between adsorbed and dissolved water.

$$R_{H_2O}$$

A non-reversible reaction with water.

Getting the Modeling Parameters

$$R_{H_2O}$$

Measured by weighing samples before humidity exposure, after humidity exposure, and after drying.

$$S_o$$
, Ea_S

In progress: Measured by exposing to controlled humidity then drying in a TGA to determine moisture loss. Currently assuming Ea_S of 16 KJ/mol.

$$D_o$$
, Ea_D

Estimate from other parameters and fit to Ca data.

Ingress Estimated Using Finite Element Analysis

Used TMY3 Data and Temperature estimates similar to King et al, and Kurtz et al.

Square Root Relation Works to Longer Times

Used TMY3 Data and Temperature estimates similar to King et al, and Kurtz et al.

Preliminary Results for Different Climates

$D_o(cm^2/s)=$		9.22			1	
				20	20 !	20 !
Ea _D (kJ/mol)=		56		20 y required	20 yr equivalent	20 yr equivalent
$S_o (g/cm^3)=$		7.77	K	width	at 85°C/85% RH	at 45°C/85% RH
Ea _s (kJ/mol)=		16				
Reactive Ca absorption (g/cm ³)=		0.0327	(cm/h ^{1/2})	(cm)	(h)	(years)
	Oper	n Rack, Glass/Polymer	0.00076	0.32	316	0.7
DENVER/CENTENNIAL [GOLDEN - NREL]		Open Rack, glass/glass	0.00078	0.33	330	0.8
		ose Roof, Glass/Glass	0.00087	0.36	408	0.9
	Insulated Back, Glass/Polymer		0.00092	0.38	454	1.0
MUNICH	Oper	n Rack, Glass/Polymer	0.00081	0.34	353	0.8
	C	pen Rack, glass/glass	0.00082	0.34	364	0.8
	Cl	ose Roof, Glass/Glass	0.00089	0.37	432	1.0
	Insulated	Back, Glass/Polymer	0.00093	0.39	471	1.1
RIYADH	Oper	n Rack, Glass/Polymer	0.00099	0.41	525	1.2
		pen Rack, glass/glass	0.00101	0.42	551	1.3
	Cl	ose Roof, Glass/Glass	0.00114	0.48	705	1.6
	Insulated	Back, Glass/Polymer	0.00121	0.51	795	1.8
PHOENIX SKY HARBOR INTL AP	Oper	n Rack, Glass/Polymer	0.00119	0.50	767	1.8
	C	Open Rack, glass/glass	0.00122	0.51	805	1.9
	Cl	ose Roof, Glass/Glass	0.00138	0.58	1,029	2.4
	Insulated	Back, Glass/Polymer	0.00146	0.61	1,161	2.7
MIAMI INTL AP	Oper	n Rack, Glass/Polymer	0.00168	0.70	1,520	3.5
		pen Rack, glass/glass	0.00171	0.72	1,580	3.7
		ose Roof, Glass/Glass	0.00187	0.78	1,889	4.4
	Insulated	d Back, Glass/Polymer	0.00195	0.82	2,062	4.8
BANGKOK	Oper	n Rack, Glass/Polymer	0.00198	0.83	2,115	4.9
		pen Rack, glass/glass	0.00201	0.84	2,192	5.1
	Cl	ose Roof, Glass/Glass	0.00220	0.92	2,625	6.1
	Insulated	d Back, Glass/Polymer	0.00230	0.96	2,867	6.6

A sensitivity analysis gave about 15% on K and Width, and 30% on 20 yr equivalent time.

What edge seal parameters are important?

- 1. Adhesion is the most important parameter.
 - a) Must be maintained after environmental exposure.
 - b) Residual stress in glass may affect adhesion.
 - c) Material may expand as it absorbs water.
 - d) Good surface preparation is necessary.
- 2. Breakthrough time is the next most important.
 - a) The 12 mm edge delete perimeter should be wide enough to keep moisture out.
- 3. Module mounting configuration is not important.
 - a) Hotter installations tend to dry out the module partially countering the effects of increased diffusivity.
- 4. The steady state transmission is less important.
 - a) The amount of permeate is very low.
 - b) Ideally one will not reach steady state.

Conclusions:

- 1. An edge seal width of 1 cm can be capable of keeping moisture out for 20 years in almost any climate.
- 2. The mounting configuration is not a significant factor for determining the diffusion based lifetime of an edge seal.
- 3. The climate a module is deployed in very significantly impacts edge seal performance.
- 4. Exposure to between 500 h and 3000 h of 85C and 85% RH will equate to about 20 years of moisture ingress through an edge seal.