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Office of 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and 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of the 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the public to 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results of 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CRADA number: 07‐241 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Printed 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Films 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to 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Estimated Costs  NREL  
Shared Resources 

Year 1    $  300,000.00 

Year 2    $  00.00 

Year 3    $  00.00 

TOTALS  $  300,000.00 

 

Abstract of CRADA work: 

This CRADA helped Innovalight characterize and quantify their ink‐based selective emitter technology. 
Controlled localized doping of selective emitter structures via Innovalight Silicon Ink technology was 
demonstrated. Both secondary ion mass spectrometry and scanning capacitance microscopy revealed 
abrupt lateral dopant profiles at ink‐printed boundaries. Uniform 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and pyramidal surfaces 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contrast 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ABSTRACT 

 
Controlled localized doping of selective emitter structures 
via Innovalight Silicon Ink technology is demonstrated.  
Both secondary ion mass spectrometry and scanning ca-
pacitance microscopy reveal abrupt lateral dopant profiles 
at ink-printed boundaries.  Uniform doping of iso- and py-
ramidal surfaces is also verified using scanning electron 
microscopy dopant contrast imaging. 
 
 

INTRODUCTION 
 
A selective emitter is a front-contact solar cell configura-
tion in which surface regions under the front contacts are 
heavily doped to improve ohmic contact, while remaining 
surface regions are lightly doped to minimize charge carri-
er recombination and improve blue light response  [1-4].   

Although theoretically able to achieve high conversion 
efficiency, in practice such gains are only realized if high 
localized doping is achieved on textured surfaces without 
also damaging charge carrier generation in the bulk Si 
material.  In addition, even if technically feasible, in order 
to be commercially viable and widely implemented, the 
selective emitter manufacturing process must also be rela-
tively simple, cost-effective and easily incorporated into 
existing production lines  

In practice, selective emitter formation by conventional 
photolithography, laser-patterning, or etch-back tech-
niques often fails to meet at least one of the above-
mentioned criteria due to high cost, difficult process con-
trol, defect formation and excessive lateral dopant diffu-
sion, among other issues [5-8].   

In contrast, implementation of the Innovalight Cougar™ 
Platform with Innovalight Silicon Ink allows solar cell pro-
ducers to overcome these barriers. A portfolio of simple to 
implement technologies, the Innovalight Cougar Platform 
enables the manufacture of a selective emitter solar cell 
with a single-step non-masking diffusion. Innovalight Sili-
con Ink is a highly engineered silicon nanoparticle colloidal 
dispersion, implemented for both high volume ink-jet and 
screen printing deposition, and further optimized to be 
produced and delivered in commercial volumes.  In fact, 
demonstration of this technology using screen printing on 
monocrystalline 125 x125 mm Cz-Si wafers has resulted 
in efficiencies as high as 19% [10].  Here we present fur-

ther details on the efficacy of localized doping by Si ink 
and demonstrate uniform doping on textured surfaces. 
 

EXPERIMENTAL 
 
Lateral and depth doping profiles of the selective emitter 
were investigated by secondary ion mass spectrometry 
(SIMS) and scanning capacitance microscopy (SCM).  
Multiple SIMS measurements were performed at various 
locations spanning two fingers of a Cougar device pattern. 
A complete contacting pattern with fingers and busbars 
was printed onto a saw damage etched wafer and sub-
jected to a diffusion process.  Ink regions were stripped 
prior to measuring. The SIMS measurements were per-
formed on a Cameca IMS-5F.  The impact energy of the 
primary Cs+ ion beam, purified by a mass filter, was 
14.5 keV at an incident angle of 25° from the surface nor-
mal.  The primary current was approximately 65 nA fo-
cused into a spot approximately 40 µm in diameter.  Nega-
tive secondary ions generated from the sample were acce-
lerated normal to its surface and were detected at 4.5 keV.  
The mass spectrometer was focused for high mass resolu-
tion to separate the 31P signal from the 30Si1H mass inter-
ference.   For depth profiles, secondary ions, counted by 
electron multiplier and Faraday cup detectors, were col-
lected from a 60 µm diameter area in the center of a ras-
ter-scanned 150 µm x 150 µm region.  For imaging, sec-
ondary ions from a 250 µm x 250 µm square area were 
collected minus 10% to minimize effects from the crater 
walls. 

Localized doping was further verified by performing SCM 
measurements directly at the edges of Silicon Ink printed 
regions. Silicon Ink fingers were printed onto a polished 
wafer and subjected to a drive-in step. SCM measure-
ments were performed on a Veeco Dimension 3100 mi-
croscope with Nanoscope IIIa electronics and Pt/Ir-
covered Si tips.  The specimen surface was not polished 
in order to preserve the surface doping profile.  Instead, 
the positions of the ink lines after printing were marked 
with a focused ion beam, the ink was stripped, and front 
and back metal contacts were deposited.   The sample 
was then heated to 300 C for 20 minutes in air, with UV 
exposure during the last minute, to form a uniform surface 
oxide.  Measurements were taken at the boundary of the 
ink-printed regions away from the FIB marks to determine 
the extent of lateral dopant diffusion. 



The doping uniformity on textured surfaces was evaluated 
by scanning electron microscopy (SEM) dopant contrast 
imaging, which overcomes the limitations such structures 
present to conventional doping analysis techniques such 
as SIMS and spreading resistance. Silicon Ink fingers 
were printed onto both random pyramid textured and iso-
textured wafers and subjected to a diffusion process. Ink 
layers were stripped prior to imaging. Measurements were 
taken on an FEI NanoSEM 600 with a 2 keV electron 
beam and a current of 50-100 pA.  The contrast between p 
and n-type regions was enhanced by turning off the ex-
traction field on the through-the-lens detector.  

 
 

RESULTS AND DISCUSSION 
 
The highly localized doping achieved using Silicon Ink 
technology is attributed in part to its high print fidelity. 
Screen printed Silicon Ink fingers maintain print fidelity 
after selective emitter formation as shown in the optical 
microscope images of Fig. 1. No line bleeding is observed 
after drive-in. The localized doping suggested by the opti-
cal microscopy results are verified in greater detail using 
SIMS and SCM measurements.  

 

 
Figure 1: Optical microscope images of a Silicon Ink fin-
ger on a random pyramid textured wafer (a) after screen 
printing and (b) after selective emitter formation. 
 
Depth profiles of 31P in a saw damage etched wafer were 
measured by SIMS both on and off heavily doped ink-
printed contact regions (indicated by the points in Fig. 2a) 
and are displayed in Fig. 2b.  Consistently high surface 
doping is achieved within the contact regions, while the 
31P concentration at various locations, both close to and 
far away from the ink-printed regions, does not deviate. 

The SIMS 31P image, shown in Fig. 2c, demonstrates the 
transition in the doping concentration between the heavily 
and lightly doped regions.  The lateral resolution of this 
measurement is limited by the beam spot size diameter 
(estimated to be 40 µm).   

 
The lateral spread of ink-printed dopants after diffusion 
was further investigated by SCM, which is capable of sub-
micron 2D carrier concentration profiling [11].  Figure 3 
displays a differential capacitance image of the ink-printed 
line edge as well as a linescan of the signal across the 
boundary.  The region of low signal (far left) indicates a 
high electron concentration coincident with the heavily 
doped contact region, while the higher negative signal 
corresponds to the lower doping level of the wafer in the 
“non-ink” region.  Although SCM does not yield quantita-
tive values for the doping concentration in each region, 
such an abrupt increase in the magnitude of the signal 

suggests that the P concentration decreases to that of the 
wafer over a lateral distance of only a few microns.  Thus, 
on the merit of lateral dopant confinement, printed Silicon 
Ink appears to be far superior to other dopant pastes, 
where the dimensions of the doped region can increase by 
several hundred microns after drive-in [8]. 
 

 
Figure 2: Phosphorous SIMS profiles of ink-printed 
(heavily doped) and non-ink (lightly doped emitter) regions 
shown in (a).  (b) depth profiles and (c) 31P ion image. 
 



 
 
Figure 3:  (a) SCM dC/dV scan of edge of ink-printed re-
gion (far left) on top of a lightly doped wafer and (b) dC/dV 
linescan at the position indicated in (a). 
 
Finally, homogeneous doping via Silicon Ink is demon-
strated on iso-textured and random pyramid textured wa-
fers by cross-sectional SEM dopant contrast imaging, 
shown in Fig. 4.  The Silicon Ink formulation has been 
optimized to allow uniform, conformal coverage of textured 
features like random pyramids thus enabling homogene-
ous doping. Here, the contrast between p and n-type ma-
terial is driven by differences in the Columbic attraction 
and repulsion of secondary electrons with surface charge, 
resulting in a disparity in the efficiency of their collection 
[12].  In both instances, the dopant coverage and depth 
are uniform across the surface. 
 
 

CONCLUSIONS 
 

Innovalight Silicon Ink presents an industrially viable 
pathway for highly localized selective emitter formation.  
High doping is achieved while maintaining a sharp inter-
face between printed and non-printed regions.  This tech-
nology also allows for effective doping of textured surfac-
es. 
 
 

 
 
Figure 4: SEM dopant contrast micrographs of (a) pyra-
mid and (b) iso-textured wafers showing high uniform dop-
ing from the Silicon Ink printing process 
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