

Surface Radiation from GOES: A Physical Approach

Preprint

A. Habte, M. Sengupta, and S. Wilcox

To be presented at the 27th European Photovoltaic Solar Energy Conference and Exhibition Frankfurt, Germany September 24–28, 2012

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Conference Paper NREL/CP-5500-56538 September 2012

Contract No. DE-AC36-08GO28308

NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401

fax: 865.576.5728

email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847

fax: 703.605.6900

email: orders@ntis.fedworld.gov

online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

SURFACE RADIATION FROM GOES: A PHYSICAL APPROACH

Aron Habte
Manajit Sengupta
Stephen Wilcox
National Renewable Energy Laboratory
15013 Denver West Parkway, Golden, CO 80401, USA
Aron.Habte@nrel.gov
Manajit.Sengupta@nrel.gov
Stephen.Wilcox@nrel.gov

ABSTRACT: Models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) have been in development during the last three decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the Earth at the satellite and create retrievals to estimate surface radiation. Although empirical methods have been used traditionally for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Admnistration (NOAA) that computes GHI using the visible and infrared channel measurements from Geostationary Operational Environment Satellites (GOES). GSIP uses a two-stage scheme that first retrieves cloud properties, then uses those properties in a radiative transfer model to calculate surface radiation. The National Renewable Energy Laboratory (NREL), University of Wisconsin, and NOAA recently collaborated to adapt GSIP to create a 4-km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high-quality ground-based solar data from NOAA's Surface Radiation (SURFRAD) (www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory atNREL, and Sun Spot One (SS1).

Keywords: Global Solar Insolation Project; GSIP; global horizontal irradiance; GHI; uncertainity

1 Introduction

Achieving higher penetrations of concentrated solar power (CSP) and photovoltaic (PV) power on the grid and reducing integration costs requires accurate knowledge of the available solar resource. Critical to this knowledge is an understanding of the characteristics of the incoming direct normal irradiance (DNI) and global horizontal irradiance (GHI). Knowledge of the impacts of clouds, angle of incidence, spectral distribution, and intra-hour and seasonal variability is essential to accurately design utility-scale CSP and PV projects. This study analyzes the performance and accuracy of the output from the physics-based Global Solar Insolation Project (GSIP) that has been used to characterize the solar radiation resource across the United States. GSIP data sets for the United States were created using measurements from Geostationary Operational Environmental Satellites (GOES). The temporal and spatial evaluation was performed by comparing the GSIP modeled data to concurrent ground measurements. The GSIP model data computes solar irradiance at a resolution of 4 x 4 km using the visible and infrared channels of GOES [1]. High-quality ground-based solar data sets were used to verify the temporal and spatial accuracy of GSIP data. Surface measurements were obtained from the National Oceanic and Atmospheric Administration's (SURFRAD) (NOAA's) Surface Radiation (www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) (www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (www.nrel.gov/midc/srrl bms/) at the National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) (www.nrel.gov/midc/ss1/). We considered only high-quality ground-based solar data because the quality of data is important in evaluating solar models [2]. The term high-quality is used to indicate that station radiometers undergo periodic quality routine maintenance and calibrations traceable to the world radiometeric reference (with typical

unceratinity 2% to 5% for such radiometers). The GSIP model uses geostationary satellite measurements in the visible and infrared parts of the spectrum in conjunction with atmospheric profiles from the Global Forecast System weather prediction model to retrieve cloud optical characteristics. This information is then input to a fast radiative transfer model to calculate radiative fluxes [2]. Unlike empirical models based on correlations between surface radiation and satellite measurements, the GSIP model is physics-based and explicitly accounts for nonlinear interactions between clouds and solar radiation. The scarcity of ground-measurement stations and reported inaccuracies in empirical model results makes the GSIP model a possible alternative to provide accurate spatial and temporal irradiance information on a larger scale. The model was run for multiple years for surface radiation; this study is a preliminary validation of GHI retrieved using the GSIP model.

2 Method and Result

Ground-measured and GSIP-estimated GHI data were compared from four locations. A broad filtering was carried out before the comparison analysis to remove outliers and a high zenith angle data set. Results of differences were calclated as modeled minus ground measured (negative values indicated the model was low). The four locations were NOAA's SURFRAD network's Desert Rock, Nevada, site; NOAA's ISIS Hanford, California, site; NREL; and SS1. These sites were chosen because the ground data is of high quality because the instruments are well calibrated and maintained. The surface data was averaged from 5 min to 120 min at 5-min intervals to represent the spatial extent of the satellite pixel. The 4x4-km GSIP data is available every 30 min. The previous GSIP model version had a 10x10-km grid. From the perspective of the down-looking satellite, groundbased measurements represent a relatively small area above the measurement station. The ground measurements are

commonly available at a time resolution of 1 min, which is significantly faster than that available from satellite models. The high-frequency ground measurements are very useful for numerous solar resource applications [3], such as irradiance variability over short time intervals. The GSIP data has about 60 output parameters; however, for this study, only the GHI and cloud type were used in the evaluation (Figure 2). For the analysis, the cloud type data from the satellite was used for the clear and cloudy sky classification. Figures 1–4 and Table

1 demonstrate the differences between the GSIP and ground-measured data. Clear and cloudy conditions were compared separately, with ground-measured data averaged from 5 min to 2 hours at 5-min intervals centered on the satellite measurement time (30 min). The satellite spatial resolution is 4x4 km; therefore, it should be noted that sub-pixel variability in clouds and surface radiation cannot be captured using the satellite data sets (e.g., the varying effects from passing popcorn cumulus clouds).

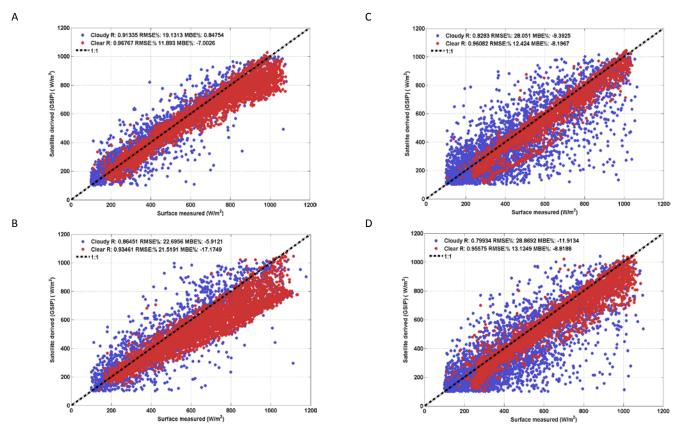
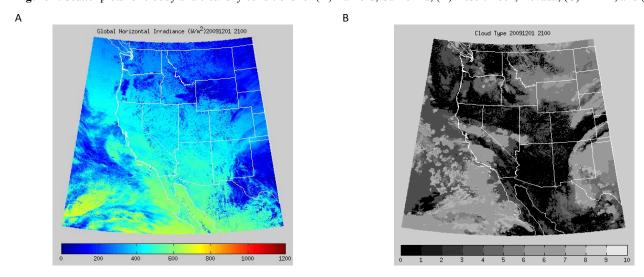



Figure 1. Scatter plots for cloudy and clear sky conditions for (A) Hanford, California; (B) Desert Rock, Nevada; (C) NREL; and (D) SS1.

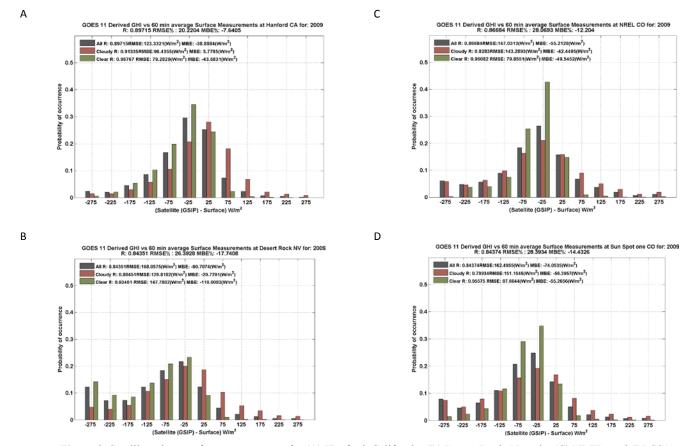
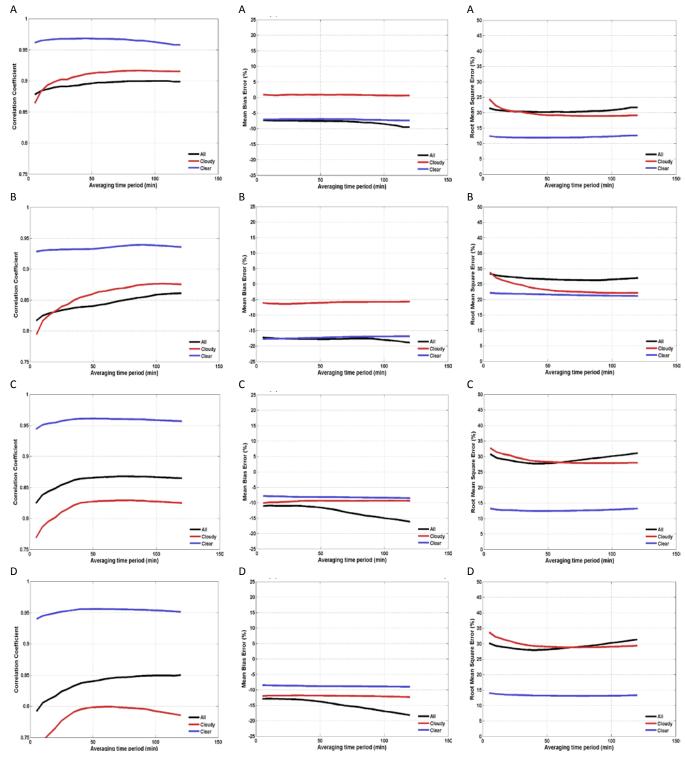


Figure 2. GSIP model outputs for (A) GHI and (B) cloud type for the Western United States for December 1, 2009, at 2100 UTC. Cloud type specification – 0: Clear; 1: Prob_clear; 2: Fog; 3: Water; 4: Supercooled; 5: Mixed; 6: Opaque_ice; 6: Thin_ice; 7: Cirrus; 8: Overlap; 9: Overshooting; 10: Unknown


Table 1. Annual statistics (2009) of correlation (R), mean bias error (MBE%), and root mean square error (RMSE%) for the comparison between the ground measurement averaged to 30 min, 60 min, and 120 min and satellite (30 min) GHI data.

Cloud	Annual				
Type	Statistics	Hanford, CA	Desert Rock, NV	NREL, CO	SS1, CO

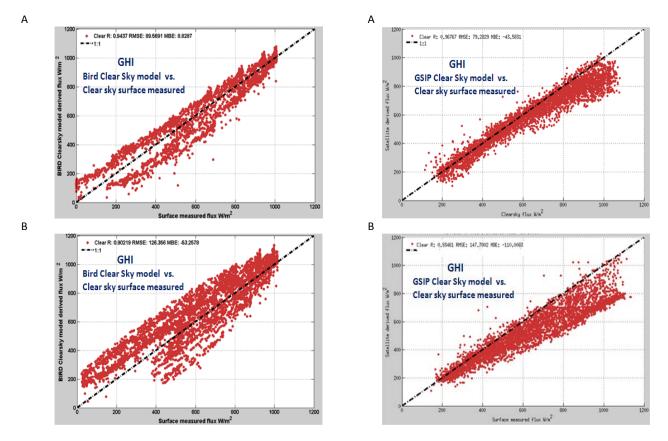

		30-Min Average	60-Min Average	120-Min Average									
All	R	0.89	0.9	0.9	0.84	0.84	0.86	0.86	0.87	0.86	0.83	0.84	0.85
	MBE%	-7.48	-7.64	-9.51	-17.66	-17.74	-18.85	-11	-12.2	-16.16	-13.07	-14.43	-18.18
	RMSE%	20.39	20.22	21.67	27.02	26.39	26.96	28.04	28.07	31.05	28.16	28.39	31.31
Cloudy	R	0.9	0.91	0.92	0.84	0.86	0.88	0.82	0.83	0.82	0.78	0.8	0.79
	MBE%	0.85	0.85	0.59	-6.35	-5.91	-5.71	-9.53	-9.39	-9.4	-11.87	-11.91	-12.33
	RMSE%	20.23	19.13	19.07	24.64	22.7	22.13	29.26	28.05	27.95	29.87	28.87	29.33
Clear	R	0.97	0.97	0.96	0.93	0.93	0.94	0.96	0.96	0.96	0.95	0.96	0.95
	MBE%	-7.01	-7	-7.41	-17.53	-17.17	-16.87	-8.11	-8.2	-8.52	-8.67	-8.82	-8.99
	RMSE%	11.89	11.89	12.58	21.8	21.52	21.14	12.51	12.42	13.18	13.37	13.12	13.29

Figure 3. Satellite minus surface measurement for (A) Hanford, California; (B) Desert Rock, Nevada; (C) NREL; and (D) SS1. Negative difference means the satellite GHI data was lower than the surface measurement.

Figure 4. Correlation, MBE%, and RMSE% values under cloudy, clear sky, and all conditions for (A) Hanford, California; (B) Desert Rock, Nevada; (C), NREL; and (D) SS1.

Figure 5. Scatter plot showing the difference between the Bird model and GSIP model under clear sky conditions for (A) Hanford, California, and (B)Desert Rock, Nevada. The units of RMSE and MBE described on the legend are in W/m².

The frequency distribution of the differences between the ground measurement and the GSIP GHI data appeared to fall between $\pm 100~\text{W/m}^2$ for the Hanford location and -150 to 50 W/m² for the Desert Rock, NREL, and SS1 stations (Figure 3).

For cloudy conditions, as might be expected, the differences showed a higher scatter and a lower correlation coefficient between measured and satellite estimated irradiance data (Figure 1). The correlation was 0.91, 0.86, 0.83, and 0.80 for Hanford, Desert Rock, NREL, and SS1, repsectively, under cloudy conditions, versus 0.97, 0.93, 0.96 and 0.96, respectively, under clear sky conditions. The Desert Rock station (a clearer site) appeared to have lower correlation than the Hanford station. The GSIP model reported lower GHI for clear sky events, especially around solar noon, when the irradiance values were the highest. The four locations had a lower RMSE%, and Desert Rock and Hanford had higher MBE% for the clear sky conditions than the cloudy periods. The higher bias during clear sky events could be related to model misspecification or miscalculation of aerosol optical depth and ground albedo.

Overall, the results of the bias from this study were similar to the study done by [4], which compared empirical models to ground measurement. As shown in Figure 1, the GSIP model data appeared to lie below the 1:1 line, particularly under clear sky conditions, which indicates ground measurement is often higher than the GSIP model. To understand this situation, the GSIP model was also compared to the Bird clear sky model [5] under clear sky conditions. The results showed that the GSIP model underperforms under clear sky conditions

for GHI (figure 5). Therefore, the model requires refinement in addressing these situations, and areas for further investigation could include greater accuracy in clear sky ground albedo, aerosol estimates, water vapor estimates, and clear sky optical properties.

A satellite pixel represents a nominal 4-km square area; whereas a ground measurement is only a point on the ground. Therefore, we took various time averages of the ground measurement (abscissa of Figure 4) to investigate which time average periods best matched the time interval centered on the GSIP measurement time.

Figure 4 (middle plots) shows that the systematic (bias) differences were relatively constant for all averaging periods. In most cases, the random or root mean square differences decreased as the averaging period increased, probably because of the cancellation of some of the random differences over longer periods of time. The 60-min time average appeared to be a reasonable averaging period for comparing the ground GHI measurement data to the GSIP GHI data; however, it should be noted that for Desert Rock cloudy conditions, the correlation between ground and satellite improved beyond the 60-min averaging time period.

The differences (MBE%, RMSE%, and R) on a monthly average basis were also analyzed (Figure 6), and the results were consistent, as mentioned above. In most cases, the percent MBE was lower during summer months than during the rest of the year. Zenith angle effects in both modeled and measured data in the winter months may have contributed to higher MBE in those months. RMSE was lower in almost all

months under clear sky conditions than cloudy conditions. Further, the magnitude of RMSE difference between clear sky and cloudy conditions for each month was smaller for the

desert environment, such as the Desert Rock station, than the relatively cloudier stations, such as NREL and SS1; however, MBE difference had the opposite effect.

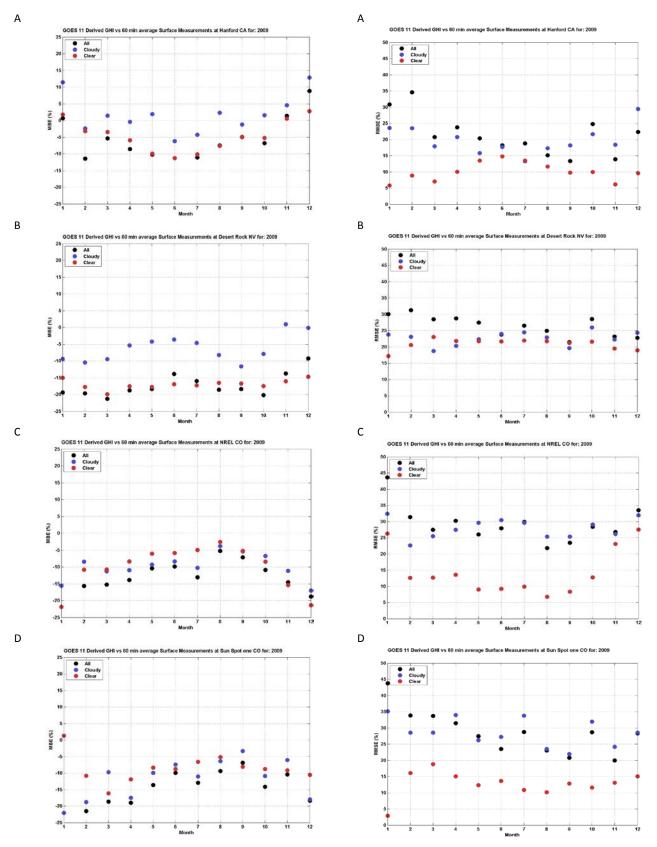


Figure 6. Monthly MBE% and RMSE% for (A) Hanford, California; (B) Desert Rock, Nevada; (C) NREL; and (D) SS1.

3 Summary

The GSIP physical model has a higher spatial (4 km) and temporal (30 min) resolution than some other empirical-based models, such as the hourly and 10-km resolution State University of New York Perez model [6] and the European METEOSAT-based Heliostat model [7]. Greater spatial resolution will be beneficial to more accurate solar resource data for CSP and PV projects in areas of high spatial variability [2], [8]. The GSIP averages of clear GHI data demonstrated better correlation to ground-measured clear sky data than averages from the cloudy periods, but clear sky averages had a higher bias, generally negative. Moreover, the ground-measurement data performed better than the GSIP model in capturing the short-term variability of irradiance for a narrow integrated time interval for a specific point on the Earth's surface. However, satellite-based surface radiation data sets are primarily useful for long-term solar resource assessment applications, and in that area the model should be competent once bias issues are addressed. The model requires refinement in addressing clear sky ground albedo, aerosol estimates, water vapor estimates, and clear sky optical properties. Aerosols are external data sets that can be provided to the model. The surface albedo becomes an issue in the current GSIP radiative transfer model [9]. This surface albedo is calculated from the visible satellite channel when a clear sky point is detected. Elevated albedo's show up under certain sun satellite geometries, and those situations result in lower GHI than actual in the current radiative transfer scheme.

Future investigation of the GSIP model will be performed by comparing the model to other empirical models and more extensive comparison with high-quality ground-based measurements. Further, incorporating a larger number of parameters from the GSIP model output in such evaluations could help identify sources of discrepancies between the model's performance and ground-based measurements. The work continues on producing estimated DNI and diffuse from the model, and a future report will evaluate performance for those parameters. Further, future work will also include addressing the use of better aersol data and albedo estimates and applying them to a better clear sky radiative transfer model that properly accounts for the parameters.

4 Acknowledgements and Disclaimer

The Alliance for Sustainable Energy, LLC, is the manager and operator of the National Renewable Energy Laboratory (NREL). Employees of the Alliance, under Contract No. DE-

AC36-08GO28308 with the U.S. Dept. of Energy, have authored this work. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

5 References

- [1] Sengupta, M.; Heidinger, A.; Miller, S. "Validating an Operational Physical Method to Compute Surface Radiation From Geostationary Satellites." *SPIE Conference Proceedings*; August 1–5, 2010, San Diego, California.
 [2] Wilcox, S.; Myers, D. "Joint Solar Power Industry and Department of Energy Solar Resource and Meteorological Assessment Project [SOLRMAP]." *Optical Modeling and Measurements for Solar Energy Systems III, Proceedings of SPIE, Volume 7410*; 2009.
- [3] Vignola, F. "Variability of Solar Radiation Data Over Short Time Intervals." *Proceedings of Solar 2001, American Solar Energy Society Conference*; Washington, D.C. [4] Myers, D.R.; Wilcox, S.; Marion, W.; George, R.; Anderberg, M. "Broadband Model Performance for an Updated National Solar Radiation Database in the United States of America." Proceedings of Solar World Congress, International Energy Society; 2005.
- [5] Bird, R.E.; Hulstrom, R.L. Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces. SERI/TR-642-761. Golden, CO: Solar Energy Research Institute, 1981.
- [6] Perez, R.; Ineichen, P.; Moore, K; Kmiecik, M.; Chain, C.; George, R.; Vignola, F. "A New Operational Satellite-to-Irradiance Model: Description and Validation." *Solar Energy* (73:5) 2002; pp. 307–317.
- [7] Rigollier, C.; Lefèvre, M.; Wald, L. "The Method Heliostat-2 for Deriving Shortwave Solar Radiation From Satellite Images." *Solar Energy* (77:2) 2004; pp. 159–169. [8] Gueymard, C.; Wilcox, S. "Assessment of Spatial and Temporal Variability in the U.S. Solar Resource From Radiometric Measurements and Predictions From Models Using Ground-Based or Satellite Data." *Solar Energy* (85) 2011; pp. 1068–1084.
- [9] Pinker, R. T.; Laszlo, I. "Modeling of Surface Solar Irradiance for Satellite Applications on a Global Scale." Journal of Applied Meteorology and Climatology (31) 1992; 194–211.