

# Impact of Policy on Fuels RD&D













Chris Gearhart
Center for Automotive Research
December Briefing

Farmington Hills, Michigan
December 5, 2013
NREL/PR-5400-60974

# **Today's Discussion**

- Fuel Policy and Regulation
- Low-Carbon and Energy-Efficient Solutions
- Current Fuel and Engine Efficiency RD&D
- Challenges

#### **Greenhouse Gas Reduction – Fuels Pathway**



Source: Transitions to Alternative Vehicles and Fuels (National Academy of Sciences)

#### **Greenhouse Gas Emissions and Fuel Economy Limits**





- EPA and NHTSA set standards to reduce greenhouse gases (GHG) and improve fuel economy for model years 2017–2025 cars and light trucks
- Average industry fleetwide level of 163 grams/mile of carbon dioxide (CO<sub>2</sub>) in model year 2025 – equivalent to average fleet fuel economy of 54.5 mpg
- GHG emission limit will be met mainly by increasing vehicle fuel economy

Source: EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-2025 Cars and Light Trucks. (U.S. Environmental Protection Agency, 2012) http://epa.gov/otaq/climate/documents/420f12051.pdf

### Renewable Fuels Standard



Source: Alternative Fuels Data Center. http://www.afdc.energy.gov/laws/RFS

#### **Advanced & Cellulosic Diesel Biofuels**

#### Biomass-Based Diesel and Advanced Biofuel

- 50% reduction in GHG emissions, EPA approved
  - Production process path + feedstock path
- Biomass-based diesel—EPA approved
  - Biodiesel: from soy, canola, animal fat, waste grease, and other
  - Hydrotreated Renewable Diesel: from same feedstocks
- Other future processes approved by EPA
- Other fuel derived from cellulosic biomass

#### Cellulosic Biofuel

- 60% reduction in GHG emissions
- Derived from cellulose, hemicellulose, or lignin





Photos by Warren Gretz, NREL

# A Market Dominated by Petroleum

# 2011 Transportation Fuel Use



# **GHG Projections by Transportation Fuel Type**



Source: Melaina, M.W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K.W. (2013). Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios. Transportation Energy Futures Series. Source: Melaina, M.W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K.W. (2013). Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios. Transportation Energy Futures Series.

#### **Solution Part 1: Advanced Biofuels**

- Cellulosic ethanol
- Renewable diesel
- Advanced biofuels







Photos by Dennis Schroeder, NREL

# **Displacement Potential**



Source: Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C; Inman, D.; Simpkins, T.; Argo, A. (2013). Projected Biomass Utilization for Fuels and Power in a Mature Market. Transportation Energy Futures Series..

# **Potential of Ethanol for Meeting RFS Targets**

#### Ethanol is currently limited to a 10% blend

15% in 2001 and newer cars

#### Options

- Dramatic expansion of availability and use of "flex fuel" (E85)
  - Requires rapid increase in number of flex fuel vehicles (FFVs) and refueling pumps
- High-level ethanol blends for high compression ratio, high-efficiency engines
  - State and federal regulatory hurdles
  - ASTM standards
  - Not backward compatible (new class of vehicles)

#### **Potential of Biomass-Based Diesel**

- Current production from fats, oils, greases resource limited to roughly 2.5 billion gallons
- Future production from biomass by pyrolysis, sugar dehydration/oligomerization, and fermentation is not yet economical at large scale







# **Biomass-Based Diesel Options**



# **Solution Part 2: More Efficient Engines**



- SI and CI engine efficiency
- Emissions control technologies
- Advanced fuels
- Blending components







Top photo by Dennis Schroeder, NREL Bottom photo courtesy of Cummins Illustration and figure: NREL

#### **Internal Combustion Engine (ICE) Vehicles Have Room for Improvement**

A large fraction of energy is lost to friction, unrecoverable heat losses, and vehicle inefficiencies:

- 63.4% engine losses
- 17.2% standby-idle losses
- 3.5% driveline losses
- 2.9% accessories losses

# Approaches to Increasing SI Engine Efficiency

#### Engine downsizing

- Smaller engines operating at low speed and higher load are more efficient
- Optimized with 6- to 9-speed transmission

#### Turbocharging

- Recovering energy from the engine exhaust
- Required for engine downsizing

#### Direct injection

- Fuel evaporates in the combustion cylinder, cooling the airfuel mixture
- Also required for engine downsizing

#### Increased compression ratio

Greater thermodynamic efficiency

# **Limiting Factor: Engine Knock**

- All of the approaches to increasing engine efficiency require a fuel with higher knock resistance
- Knock occurs when unburned gas auto-ignites ahead of the flame front
- The unburned gas temperature and pressure become too high for the knock resistance of the fuel

### **Ethanol Has High RON and Heat of Vaporization**

- Ethanol research octane number (RON) is higher than that of today's hydrocarbon gasoline
- For direct injection engines, fuel evaporation occurs in the cylinder
   cooling the charge and reducing knock tendency
- Alcohols have significantly higher heat of vaporization (HoV) leading to a higher "effective RON"

# **Challenges in Introducing New Fuels**

- Many steps and years to introduce a new fuel
  - Higher ethanol level like E30
  - New oxygenate
- Impact on
  - Vehicle performance and durability
  - Emissions and emission control system durability
  - Infrastructure compatibility
  - Fuel quality standards
  - Fire codes and safety regulations
  - Consumer protection laws
  - RFS pathway
  - Federal, state, and local regulations/laws





#### **Conclusions**

- Current government policies are driving R&D on more efficient vehicles and low carbon fuels
  - Cellulosic ethanol: limited by blend wall
  - Drop-in hydrocarbon biofuels
- Unique knock-resistant properties of ethanol may enable higher efficiency
  - Combined high RON and high heat of vaporization
  - High GHG emission reduction of cellulosic ethanol (>60% relative to petroleum)
- Challenges to introduction of ≈E30 blend
  - Regulatory compliance under Clean Air Act
  - Infrastructure compatibility
  - Introduction of a new vehicle class



# Learn more at www.nrel.gov/vehiclesandfuels

NREL/PR-5400-60974

December 2013

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.