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Abstract—Renewable energy integration studies are 

frequently conducted to evaluate the impacts wind and solar 
power have on grid operations and planning. In the United 
States, these studies have historically been focused on wind 
energy integration. However, with the rapid deployment of 
large-scale and distributed solar power across the United 
States. and Hawaii, the interest in solar power variability and 
its impacts on the grid is increasing. To complete detailed 
integration studies, modeled power production of existing and 
future solar power deployments is necessary. This paper 
discusses some of the methods used to generate photovoltaic 
(PV) and concentrating solar power (CSP) production profiles 
for studies undertaken in the United States, evaluates the 
results, and compares the profiles with measured solar power 
production characteristics.  
 

Index Terms—numerical weather prediction, PV, solar 
integration, statistical methods, variability  

I.  INTRODUCTION 
ARIOUS policy and incentive programs, as well as 
reduced costs for photovoltaics (PV) are spurring on 

the manufacturing and deployment of PV systems across the 
United States. (Fig. 1) [1]. As a result, utilities are 
increasingly interested in understanding the variability of 
these systems, and how this could impact their transmission 
and distribution systems.  

Numerous wind integration studies conducted over the 
last decade address the impacts of high wind energy 
penetration on grid capacity and reliability [2]-[8]. There are 
also several significant solar integration studies underway, 
including: the Hawaii Solar Integration Study (HSIS), the 
Western Wind and Solar Integration Study Phase 2 
(WWSIS2), and the Western Electricity Coordinating 
Council (WECC) studies. Integration studies generally 
perform production cost simulations to model the impacts of 
various penetrations of wind and solar energy on the 
electrical grid and grid operations. Historically, studies were 
run on an hourly timeframe, but are increasingly being run 
at sub-hourly intervals to assess the reserve and regulation 
requirements in greater detail.  
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Ideally, the direct observations of power production would 
be used, or production would be estimated from observations 
of wind speed and irradiance measurements. However, to 
represent high penetration levels, the power produced from 
existing and potential future wind and solar plants are modeled 
and used as inputs into the studies. Additionally, hypothetical 
wind and solar forecasts are often generated to represent how 
the grid operator would commit and dispatch units if actual 
forecasts were available for their use. The next sections will 
discuss the approaches used to model solar production profiles 
for the Western Wind and Solar Integration Study (WWSIS), 
WWSIS2, WECC, and HSIS. 

First, the nomenclature used in this paper will be similar 
to that of Lew et al. [9], such that historical measurements 
of plant production will be called observations, modeled 
production time histories will be referred to as either 
modeled or actual profiles, and hypothetical forecasts of 
plant production will be called forecasts.  

Lew et al. [9] outline certain characteristics that the wind 
input data should have to ensure it is representative of 
observed plant production. Briefly, these characteristics 
include: appropriate variability at all timescales, intra-plant 
and plant-to-plant spatial correlation, temporal correlation, 
and capacity factor. These are all characteristics that should 
also apply to solar data inputs, for both modeled profiles 
and forecasts. This paper will focus on the techniques used 
for and results of the modeled solar production profiles. 
 

 
Fig. 1.  U.S. PV Installations from 2005-2010. [1] 

II.  METHODOLOGIES 
The aforementioned studies, WWSIS, WWSIS2, WECC, 

and HSIS, all used different methodologies to generate the 
solar actuals. The former three studies utilized variations of 
statistical techniques and gridded satellite-derived data, 
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while the latter employed numerical weather prediction 
techniques. The satellite-derived data that served as the 
basis for WWSIS, WWSIS2, and WECC solar profiles was 
generated by the State University of New York 
(SUNY)/Clean Power Research (CPR), and will hereafter be 
referred to as the SUNY data. It is available on a 10-km grid 
at an hourly resolution [10].  

A.  WWSIS 
The WWSIS was the first large regional study to 

investigate significant amounts of solar penetration, up to 
5% by energy, and was performed using 2004-2006 as 
reference years [7]. The majority of the solar modeled was 
Concentrating Solar Power (CSP) with thermal energy 
storage (TES). One-hundred MW blocks of rooftop PV 
were also modeled, but no large-scale PV plants were 
modeled due to a lack of information at the time of the 
study. Up to 15 GW of PV and 200 GW of CSP were 
modeled in the study. The CSP actuals were generated by 
using hourly SUNY data and the System Advisor Model 
(SAM) was utilized to convert irradiance to power. The 1-
hour  CSP power data was then reduced by interpolation to 
get 10-minute production profiles.  

The PV actuals were generated by using the hourly 
SUNY data combined with temperature and wind speed data 
from available weather stations in the western U.S. The 
irradiance to power conversion was performed using 
PVWatts with 11 different configurations of orientation and 
tracking capability, and was then aggregated to achieve 
representative distributed PV power production at the 
substation level. The hourly profiles were then downscaled 
using variability characteristics observed from available 
sub-hourly data and PV output from the Arizona Public 
Service’s Solar Test and Research (STAR) facility, and 
other small PV systems.  

B.  WECC 
The WECC Transmission Expansion Planning Policy 

Committee (TEPPC) undergoes a regular process to 
evaluate the anticipated transmission needs for the region 10 
years in the future. As part of the development of their latest 
Regional Transmission Plan, they investigated how 
transmission expansion could be affected by large-scale 
solar deployments within their operating territory, and 
recently submitted the plan to the WECC board for review. 
In parallel, the Variable Generation Subcommittee (VGS) is 
conducting a study to investigate the potential operating cost 
savings due to balancing area cooperation, impacts of 
congestion, and the benefits of sub-hourly scheduling for 
high penetrations of variable generation. For both of these 
studies, solar actuals were needed as inputs into their 
models, and used 2006 as the reference year.  

Sites were selected based on the Western Renewable 
Energy Zones [11] collocated with SUNY grid cells. For each 
selected grid cell, power production was generated for the 
following technologies: 50-MW PV fixed axis with latitude tilt 
and 25˚ tilt, 50-MW PV with single axis tracking and latitude 
tilt, and CSP with and without 6 hours of TES. This gave 

WECC flexibility in selecting deployment scenarios that were 
most appropriate for the respective studies.  

Hourly solar actuals were generated for the TEPPC study 
using the SUNY data and SAM for the power conversion. 
Sub-hourly (1-minute and 10-minute) profiles were needed 
for the VGS study. A new statistical model was developed 
to generate the sub-hourly PV profiles, while the CSP 
profiles were interpolated from the hourly actuals generated 
for the TEPPC study.  

The sub-hourly PV model consists of the following 
general process: SUNY data is used for cloud regime 
classification  1-minute irradiance ground observations 
are used to build ramp distributions for each cloud regime 
 1-minute irradiance data are synthesized for each 
selected grid cell  a filter function is used to represent the 
spatial smoothing of a 50 MW sized plant  irradiance is 
converted to power using PVWatts.  

The cloud regime was determined by examining the clearness 
index (defined as the actual global horizontal irradiance divided 
by the expected clear sky global horizontal irradiance) mean and 
standard deviation at a particular grid cell over a 3-hour period 
and surrounding grid cells (Fig. 2). This approach was done to 
preserve the temporal and spatial correlation of the clearness 
index across a broad geographical area. Hour 9 in the Fig. 2 is a 
good example of how the surrounding cloud cover can deviate 
significantly from the site of interest. An exponential decay 
function was used to weight the contribution of the surrounding 
sites to the probability that there would be a cloud event at the 
site of interest within that hour. This probability distribution was 
then used to inform which algorithms and distributions to use for 
the 1-minute data synthesis.  
 

 
Fig. 2.  Clearness index of SUNY data for hours 7-12. The green box is the 
grid cell of interest with associated mean (μ) and standard deviation (σ) for 
each hour.  
 

The filter function was derived empirically by analyzing 
the measured 1-second irradiance from a network of 18 
sensors spaced over a 0.75 km2 area on the island of Oahu. 
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A 50-MW plant would span an area of roughly 1 km2 
assuming an array density of 50 W/m2. It was determined 
that a 3-minute moving average would correspond with an 
appropriate level of spatial smoothing for a 50-MW PV 
plant with the aforementioned array density. This filter 
function was applied to the 1-minute synthesized irradiance, 
and then the data was converted to power using PVWatts. 
The 10-minute data was sampled directly from the 1-minute 
actual. 

 

C.  WWSIS2 
WWSIS2 is the second phase of WWSIS, and is 

focusing on the impacts of solar penetrations up to 30% by 
energy on grid operation and reliability. In this second 
phase, large-scale PV systems are included, and the solar 
generation mix is more balanced between CSP and PV.  

The method used in WWSIS2 builds upon that 
developed for the WECC studies. The cloud classification 
criteria, cloud regime algorithms, and filter function were all 
improved based on additional analyses and feedback from 
the WECC studies. The new cloud classification criteria are 
outlined in Fig. 3.  

 

 
Fig. 3.  Cloud classification criteria used for WWSIS2. Example time 
histories of each class are also included.  
 

The filter function was adapted from that suggested in 
Marcos et al. [12], such that: 

Afc 0204.0=          (1) 
where A is the plant area in hectacres, and fc is the cut off 

frequency where the spectra will begin to be affected by the 
spatial smoothing. A bilinear transform was then used to 
generate a digital filter, which was then applied to the time 
series data. 

D.  HSIS 
The HSIS is investigating the impacts large penetrations 

of distributed and centralized PV will have on the Oahu and 
Maui grids. These systems do not have the advantage of 
using balancing area cooperation or geographic diversity to 
manage generation variability, so understanding the extent 
of the variability is critical to maintaining system reliability. 

The data for this study was generated by AWS 
Truepower using the Mesoscale Atmospheric Simulations 
System (MASS) model [reference?]. MASS is a 3D, full-
physics numerical weather prediction model that simulates 
and predicts the atmosphere as it evolves over time and 
space. For this study, it was run at a 1-km, 10-minute 
resolution in a nested grid over the islands of Oahu and 
Maui for 2007 and 2008. A model output statistics (MOS) 
technique is then used to correct any biases to better 
represent measured data. A power conversion is then 
applied to obtain the modeled PV production profiles.  

III.  RESULTS 
 The results described here will focus on the WWSIS2 and 
HSIS, since these studies are still underway, the modeled 
solar profiles have yet to be documented, and the forecasts 
are not yet available.  

A.  Ramp Distributions 
One of the most effective ways to evaluate the variability 

of the solar profiles is to characterize the ramp distributions. 
To do this, the point-to-point deltas were determined for 
various time intervals. These intervals include 10, 20, 30, 
40, 50, and 60 minutes. Please note that the datasets are not 
averages, but rather they represent instantaneous snapshots. 
Therefore, for a 10-minute dataset, the 30-minute deltas are 
determined by finding the difference between every third 
data point. The data was normalized to show the relative 
ramps.  

 Fig. 4 shows the ramp distributions for a subset of the 
modeled PV plants on Oahu for HSIS. Additionally, data 
measured at a large PV plant in the southwest United States 
is included for comparison. The modeled and observed ramp 
distributions match very well for shorter ramp intervals, but 
not as well for longer intervals. This result may be due in 
part to the shorter period of observed data used (only one 
month) and therefore the smaller sample size of ramps for 
longer intervals.  

The WWSIS2 data was also examined, and the results 
were similar to that found for HSIS. Fig. 5 shows an 
example of the production from a modeled plant located 
near an existing PV plant.  
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Fig.4.  Ramp distributions for 18 modeled PV plants on Oahu (thin lines) and observed power production from a large PV plant (bold line) in the 
southwestern United States. 

Fig.5.  Ramp distributions for a modeled PV plant from WWSIS2 (thin line) that was located near an existing large PV plant (bold line) in the southwestern 
United States. 
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B.  Correlations 
As clouds or weather systems pass over an area, one or 

more plants could be affected. Cross correlations between 
plants provide an indication of the geographic diversity and 
independence of the plant production, particularly for the 
coincidence of ramp events. The ramps generated for the 
analysis in the previous section were also used here for the 
cross correlations.  

The correlation coefficients for 25 randomly selected PV 
plants from the WWSIS2 dataset reveals little to no 
correlation between adjacent plants (Fig. 6). Note that 25 
plants are much less than a recommended sample size of 
291, and are used for clarity in the plot. However, the 
sample sites selected do represent the characteristics of the 
total population. The lack of correlation between adjacent 
plants is especially true for plants >50 km apart. These 
results compare well with the observations of clearness 
indices documented by Mills et al. [13], who showed 
correlation coefficients of <0.2 for measurement sites >100 
km apart. There also appears to be little differentiation in 
correlation coefficient between ramp interval lengths, 
particularly for distances >400 km.   

The 10-min solar actuals generated for HSIS reveal the 
variability characteristics over a smaller region. Fig. 7 
shows the cross correlation coefficients of ramps for a 
subset of the PV plants modeled on Oahu. Overall, the 
ramps are somewhat more correlated here regardless of the 
ramp interval due to the relatively close proximity of the 
plants, the majority of which are within 15 km of one 
another. There is also greater differentiation in correlation 
between ramp intervals, with greater correlations for longer 
ramps. This differentiation does, however, decrease with 
increasing distance.  

 
Fig. 6.  Cross correlation coefficients for 25 randomly selected modeled PV 
plants in WWSIS2.  
 

C.  Power Spectral Density 
The power spectral density (PSD) provides a mechanism to 
look at the variability of signal in the frequency domain. 
The  PSD is estimated using Welch’s method [14]. The time 
series is segmented into 8 equal length segments, a 
Hamming window is applied without overlapping segments, 
and then the resulting 8 spectra are averaged to obtain an 
estimated PSD. 

 
Fig. 7.  Cross correlation coefficients for 18 modeled PV plants in HSIS. 
 

Fig. 8 shows the estimated normalized PSDs for one 
modeled PV plant each from HSIS and WWSIS2, along with 
that of an existing PV plant. The PSDs are very similar, with 
spikes at expected diurnal and sub-diurnal periods. Observe 
that that there is some smoothing of the spectra for frequencies 
greater than ~10-3 Hz. This smoothing is due to the spatial 
smoothing that occurs from the areal coverage of the plant and 
resultant reduction in high frequency variability. At lower 
frequencies, the spectra follow a slope of f  -1.5, where f is the 
frequency in (Hz). This slope is similar to the f  -1.3 observed in 
Curtright and Apt [15], but is somewhat different than the f  -0.7 
observed by Marcos et al. [12].   
 

 
Fig. 8.  The normalized PSD of modeled and observed PV plant power 
production. The sampling rate of the observed data is 1-second, WWSIS2 is 
1-minute, and HSIS data is 10-minute. 

IV.  CONCLUSION 
Renewable energy integration studies are useful to help 

inform grid operators about the potential system impacts and 
benefits of large penetrations of variable energy resources. 
Accurately modeling the power production is critical to the 
success of the studies. Two studies in progress, the WWSIS2 
and the HSIS, are both evaluating significant penetrations of 
solar power. There are several methods that can be used to 
model solar power production, a few of which have been 
described here, including satellite-derived statistical 
approaches and numerical weather prediction techniques.  
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Preliminary results reveal that the ramp distributions of 
modeled solar data profiles for the WWSIS2 and HSIS 
studies compare reasonably well with those of measured 
ramps. Ramp events produced by the HSIS modeled PV 
plants were much more correlated than the WWSIS2 plants 
due to the closer proximity of plants in an island setting; 
therefore, suggesting that grid operators on Oahu and Maui 
will not be able to take advantage of geographic diversity, 
as operators in the WECC region have the benefit of doing. 

The PSDs of the modeled and observed PV power 
production were estimated, and they were very similar. The 
WWSIS2 and observed data exhibited some smoothing 
(reduction in variability) at higher frequencies, while the 
HSIS did not due to the 10-minute sampling frequency. The 
curves also exhibited a slope (f  -1.5) similar that observed by 
one study [15], but dissimilar to that of another [12].   

Further analysis and validation of these input datasets are 
planned over the coming months. Additionally, the forecast 
data will soon become available, and will be examined.  
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