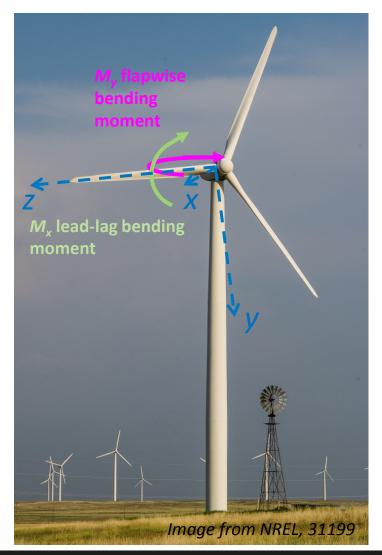


Improving Bending Moment Measurements on Wind Turbine Blades

2016 Wind Energy Research Workshop

Dr. Nathan L. Post


Lowell, Massachusetts March 15, 2016

NREL/PR-5000-65996

Outline

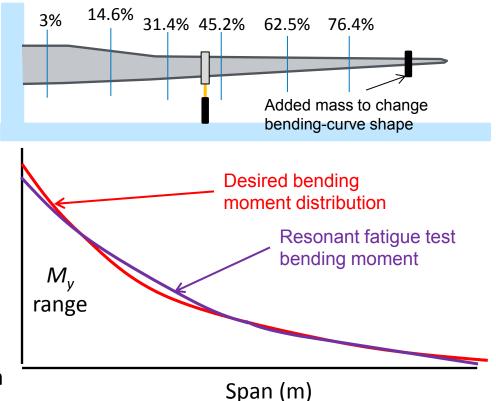

- Measure dynamic loads for model verification, nondestructive evaluation, and accelerated structural testing.
 - International Electrotechnical Commission (IEC) 61400-13 (2015): Measurement of Mechanical Loads
 - IEC 61400-23 (2014): Full-Scale Structural Testing of Rotor Blades
- Test resonance fatigue testing.
 - Single axis
 - Biaxial
- Measure mathematical approaches to bending moment using strain gauges.
 - Traditional single axis
 - o Cross-talk matrix IEC 61400-13
- Demonstrate and evaluate errors.
- Expand cross-talk matrix to include torsion.

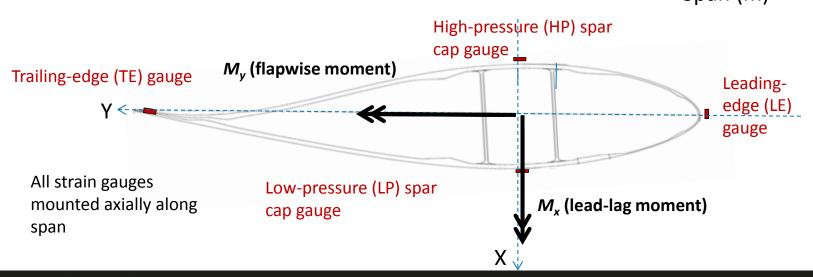
IEC 61400-13 blade coordinates: Coordinates are fixed to blade root.

Resonance Fatigue Testing

- Goal: Constant amplitude fatigue test
- Excite blade at first flap or first lead-lag mode shape.
 - Excite using moving mass (shaker) on blade.
 - Excite using hydraulic actuator where force is 90 degrees out of phase with displacement.
 - Adjust mode shape (bending moment distribution) by adding masses as required.
- Force (energy) input is related to damping; not the applied bending moment.
- Must measure applied load independently using strain gauges.

Flap fatigue test at Wind Technology Testing Center, Boston, MA

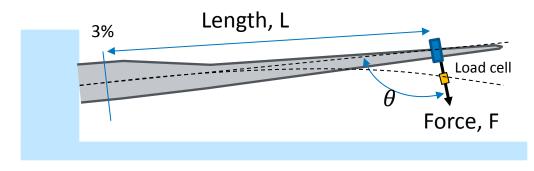



Inertial mass flap fatigue test at National Wind Technology Center, Boulder, CO

Instrumentation

Traditional instrumentation for bending moment measurement

- Four strain gauges each at selected span locations
 - May be configured as half bridges (in-service turbines)
- Root is typically round, then transitions to airfoil
- In-service measurements near root (2–3% span) and at about 30% span



Calibration

In laboratory:

 Apply force at known angle (typically perpendicular to pitch axis).

Moment:
$$M = FL \cos \theta$$

Sensitivity: $A = \frac{\varepsilon_1 - \varepsilon_0}{M_1 - M_0}$

On turbine:

 \circ Use self-weight in low wind.

Moment: $M = mgL \cos \theta$

With blade horizontal pitch at 0, 90,

180, 270 deg.

Sensitivity:

$$A_{FLAP} = \frac{\varepsilon_{90} - \varepsilon_{270}}{2 \, mgL}$$

$$A_{LEAD-LAG} = \frac{\varepsilon_{0} - \varepsilon_{180}}{2 \, mgL}$$

 Or calculate from curve-fitting data as load is applied or blade is rotated.

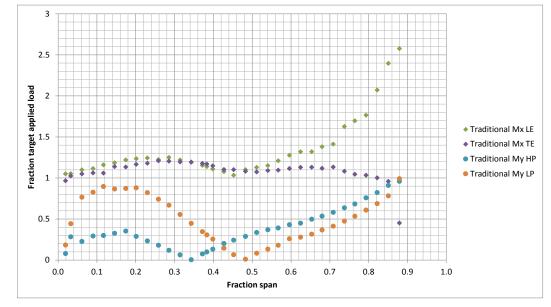
Cross-Talk Matrix Approach

- Based on method in IEC 61400-13
- Relate moments to strains at a section with a cross-talk matrix under the assumption that the measured strain is due to the linear response to each moment superimposed:

$${ \varepsilon_1 \brace \varepsilon_2 } = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = { M_x \brace M_y }$$

- ε_1 and ε_2 are two strain measurements, ideally primarily sensitive to M_x and M_y , respectively.
- Common method for determining components of A:
 - Apply pure M_x load and fit $\varepsilon_1 = A_{11} M_x$ for A_{11} and $\varepsilon_2 = A_{21} M_x$ for A_{21} .
 - Apply pure M_y load and find slope linear fit of ε_1 = A_{12} M_y for A_{12} and ε_2 = A_{22} M_y for A_{22} .
- Invert A matrix to calculate moments during fatigue or turbine operation.

$${M_x \brace M_y} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} {\{\varepsilon_1 \rbrace}$$


Traditional Approach: Neglect Cross-Talk

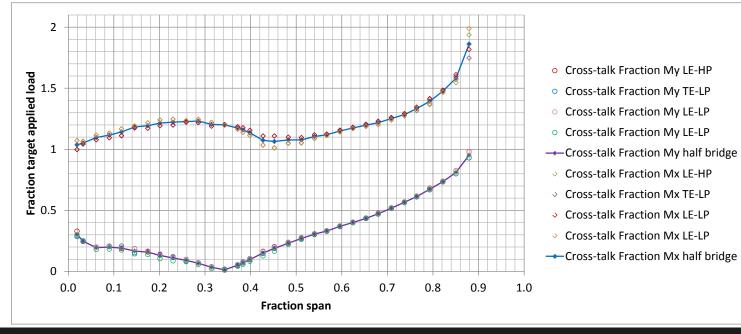
 The applied moment range during single-axis (flap or lead-lag) resonance fatigue tests has traditionally been measured using only the gauges that are most sensitive to that loading, neglecting cross-talk terms.

• Thus:
$$\begin{cases} \varepsilon_1 \\ \varepsilon_2 \end{cases} = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} = \begin{cases} M_{\chi} \\ M_{\chi} \end{cases}$$

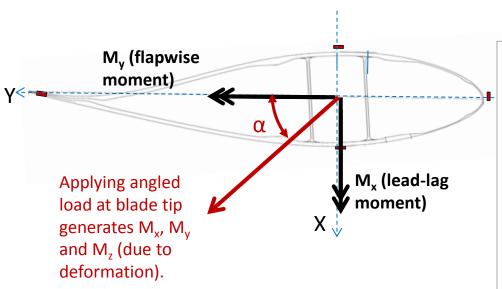
- Typically:
 - Only a single calibration direction is required in the loading direction to obtain the sensitivity.
 - For a lead-lag test, use the LE or TE gauges separately.
 - For a flap test, the HP or LP gauges are used.
- However, in most cases, the perpendicular moment is not zero. And the cross-talk sensitivity A_{12} and A_{21} terms are not zero.

Example bending moment distribution measured during lead-lag fatigue test

Applying Cross-Talk: ¼ vs. ½ Bridge


- ε_1 and ε_2 can be single-strain gauges read using a ¼ bridge.

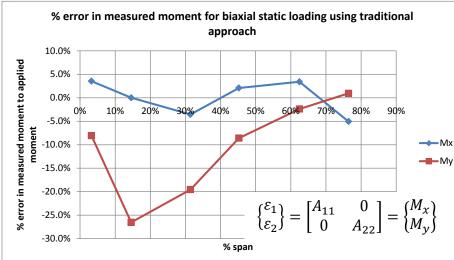
 - o Four separate calculations of moment are achieved.
 - Experimentally, each pair results in slightly different answers (sometimes by several percentage points) for the moment due to the nonlinearity and random variation of the physical system.
 - o Advantage: if one strain gauge fails, the remaining two pairs still offer functional measurement.
- Alternatively, use half bridges for calibration and subsequent calculation such that:

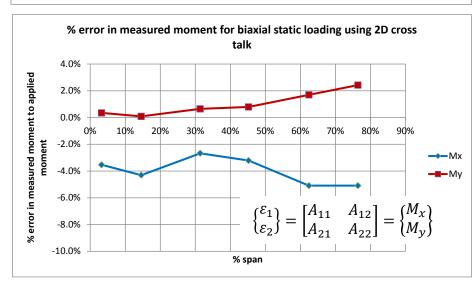

$$\varepsilon_1 = \varepsilon_{LE} - \varepsilon_{TE}$$
 and $\varepsilon_2 = \varepsilon_{HP} - \varepsilon_{LP}$

- o This results in a single calculation of moment for a given cross-section incorporating all strain data.
- o It typically falls in the middle of scatter from ¼-bridge strains.

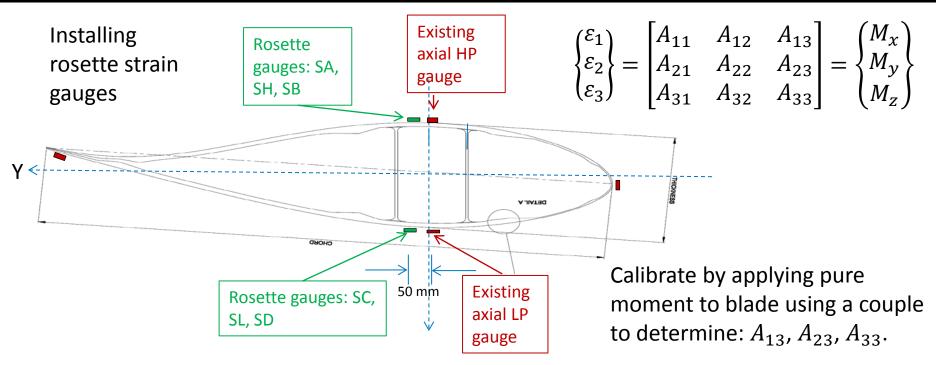
Example
bending
moment
distribution
measured
during lead-lag
fatigue test

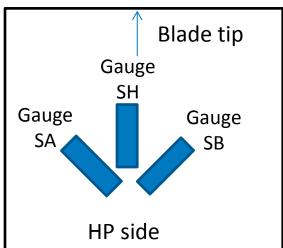
Biaxial Verification Loading Results

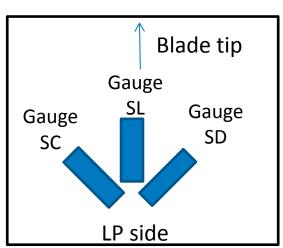



• Calculate resulting applied M_{χ} and M_{χ} :

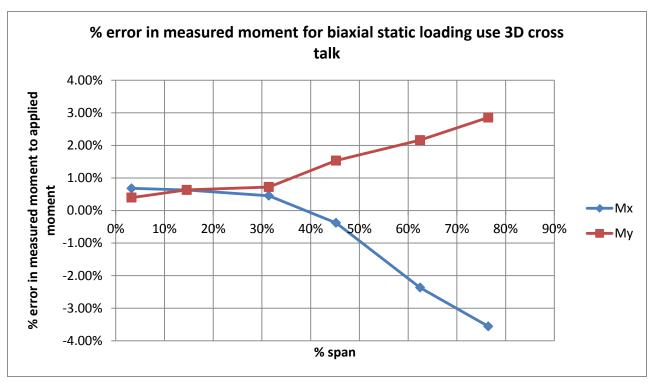
$$M_{x} = F L \cos \alpha$$
$$M_{y} = F L \sin \alpha$$


- Compare to moment results from measured strain:
 - Significant errors occur when not accounting for cross-sensitivity.
 - o Two-dimensional cross-talk approach still gives 4% error in M_x at blade root.


Using half-bridge signals


Extending Cross-Talk to Include Torsion (M_Z)

Full-bridge torque strain


 $\varepsilon_3 = \varepsilon_{SA} - \varepsilon_{SB} + \varepsilon_{SC} - \varepsilon_{SD}$ Compensates for most bending, axial, and thermal strains.

Biaxial Verification with Torsion

- Including torsion reduces errors near blade root to <1%.
- Outboard errors are likely due to not accounting for large deformations and torsion increasing the actual local flap moment and decreasing the local edge moment.

$$\begin{cases} \mathcal{E}_1 \\ \mathcal{E}_2 \\ \mathcal{E}_3 \end{cases} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{cases} M_{\chi} \\ M_{y} \\ M_{z} \end{cases}$$

Future Work and Conclusions

Future work

- Account for large deformation
 - For calibration
 - For calculating reference moment.
- Optimize methodology.
- Calculate total uncertainty for measurement process.

Demonstrated significant improvement in moment measurement possible with inclusion of cross-talk and further improvement when including torsion as a third degree of freedom.

Thank you!

Contact:

Nathan Post nathan.post@nrel.gov