

Big-Picture Issues Confronting Co-Optima

John Farrell
Sustainable Transportation Summit
Washington, D.C.

July 12, 2016

Major Co-Optima Challenges

What fuels do engines want?

Spark ignition (gasoline) – Thrust I

Advanced Compression Ignition (ACI) – Thrust II

Compression ignition (diesel) – Thrust II

Spark ignition (Thrust I) engines

Central challenge: avoiding knock

Important fuel properties:

- Octane number (RON and MON)
- Heat of vaporization
- Flame speed
- Particulate matter index
- Distillation

Engine performance merit function

Provides systematic ranking of blendstock candidates on engine efficiency when multiple fuel properties are varying simultaneously

Allows fuel economy gains to be estimated based on fuel properties

$$Merit = \frac{(RON_{mix} - 92)}{1.6} - K \frac{(S_{mix} - 10)}{1.6} + \frac{0.01[ON/kJ/kg](HoV_{mix} - 415[kJ/kg])}{1.6} + \frac{(HoV_{mix} - 415[kJ/kg])}{130} + \frac{(S_{Lmix} - 46[cm/s])}{3}$$

$$- LFV_{150} - H(PMI - 2.0)[0.67 + 0.5(PMI - 2.0)]$$
RON = research octane number to effective octane number to eff

RON = research octane number K = engine-dependent constant S = sensitivity (RON-MON) ON = effective octane number HoV = heat of vaporization $S_L = \text{flame speed}$ $LFV = \text{liquid fuel volume at } 150^\circ$ COMBOTH = Heaviside function COMBOTH = particle mass index

Thrust II engines: the Wild West

In-cylinder mixing/ kinetics needs to be optimized to control ignition timing
Requirements vary as speed/load changes

Significant engineering innovations required

Much progress already achieved with air handling, fuel injection, novel strategies

Source: Mark Musculus SNL

What fuels can we make?

Fuel selection criteria ("decision tree")

fuel required candidates

Thrust I decision tree results

Hydrocarbons

Normal paraffins

Iso-paraffins

Cycloparaffins

Aromatics

Multi-ring aromatics

Olefins

Carbonyls

Ketones

Aldehydes

Esters

Simple/volatile fatty acid esters

Fatty esters

Carboxylic Acids

Alcohols

Ethers

Cyclic/furanics

Linear

What will work in the real world?

New fuels must be sustainable, affordable, and scalable

Cost and environmental impact analyses

Fifteen key metrics identified GHG, water, economics, TRL

Evaluation of 20 Thrust I blendstocks underway

-\$0.6 -\$0.4 -\$0.2 \$0.0 \$0.2

Change to \$/gge vs Base Case

\$0.4

^{*} LCA = Life cycle analysis; TEA = techno-economic analysis; TRL = technology readiness level

Identifying/mitigating market barriers

Identify and mitigate challenges of moving new fuels/ engines to markets

Analysis of new fuel and vehicle introduction

Engage stakeholders across value chain

How do we co-optimize?

Identifying the best options, subject to many constraints

Approach

Database: fuel properties, sustainability, affordability, scalability, infrastructure, and retail attributes

"Optimizer"

ΔGHG = a

H₂O consumption = b

Viable routes > c

Feedstock cost < d

Pipeline compatibility = e

Tech Readiness Level > f

Energy density > g

Biodegradability > h

:
:
:

Scenario constraints

Engine/vehicle merit function

Optimal fuel blend formulations

Need to explicitly account for uncertainty

Current merit function development approach

Numerically optimized merit function

Identifying options: a multi-objective optimization problem

Engine Efficiency X Vehicle Fuel Economy Maximize: Number of blendstocks Other parameter Minimize: Alt scenario 2 Base scenario Alt scenario 1 High High High Constraints: Med Med Med Low Low Low **AGHG** H₂O consumption Viable routes Feedstock cost Pipeline compatibility Tech Readiness Level **Energy density Solution set A Solution set B** Solution set C

Acknowledgements

DOE Sponsors:

Alicia Lindauer and Borka Kostova (BETO) Kevin Stork, Gurpreet Singh, and Leo Breton (VTO)

Co-Optima Technical Team Leads:

Dan Gaspar (PNNL), Paul Miles (SNL), Jim Szybist (ORNL), Jennifer Dunn (ANL), Matt McNenly (LLNL), Doug Longman (ANL)

Other Co-Optima Leadership Team Members:

John Holladay (PNNL), Art Pontau (SNL), Robert Wagner (ORNL)

