
Journal of Experimental Botany, Vol. 67, No. 21 pp. 6125–6138, 2016
doi:10.1093/jxb/erw375 Advance Access publication 5 October 2016
This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which  
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

RESEARCH PAPER

Robust phenotyping strategies for evaluation of stem  
non-structural carbohydrates (NSC) in rice

Diane R. Wang1, Edward J. Wolfrum2, Parminder Virk3, Abdelbagi Ismail4, Anthony J. Greenberg5,  
Susan R. McCouch1,*
1 Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853-1901, USA
2 Integrated Biorefinery Research Facility, National Renewable Energy Lab, Golden, CO 80401, USA
3 International Center for Tropical Agriculture, Km17 Recta Cali-Palmira, PO Box 6713, Cali, Colombia
4 International Rice Research Institute, Los Baños, Laguna, Philippines
5 Bayesic Research, Ithaca, NY 14850, USA

* Correspondence: srm4@cornell.edu

Received 13 May 2016; Accepted 19 September 2016

Editor: Greg Rebetzke, CSIRO Agriculture and Food

Abstract

Rice plants (Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in 
their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. 
Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobiliza-
tion, and re-accumulation that have genetic potential for optimization have not been systematically investigated. 
Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. 
We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials 
using 33 breeder-nominated lines, established an appropriate experimental design for future genetic studies using a 
Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse gen-
otypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models 
using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural 
carbohydrates. We find evidence that stem reserves are most critical for short-duration varieties and suggest that 
pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice.

Key words: Near-infrared spectroscopy, non-structural carbohydrates, Oryza sativa, partial least-squares, replication, yield 
potential.

Introduction

Stem non-structural carbohydrates (NSCs) have long elic-
ited interest from physiologists and breeders across a diver-
sity of economically important grass species. By serving as a 
temporary sink to store excess photoassimilates during veg-
etative growth, the grass stem can also fulfill the role of a 
source organ during grain-filling and maturation, providing 

carbohydrates for these in vivo processes and/or in the form of 
harvestable end product (Slewinski, 2012). In sucrose-accu-
mulating sugarcane, stems are collected principally for their 
soluble sugars to support bioenergy production and human 
consumption (Moore, 1995; Waclawovsky et al., 2010). For 
perennial forage species such as ryegrass, post-grazing stem 
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NSC reserves enable critical biomass regeneration for the next 
grazing period (Fulkerson and Donaghy, 2001). NSC reserves 
stored in the vegetative parts of perennial grasses during the 
fall are also important to winter survival of temperate species 
(Slewinski, 2012). For cereals cultivated for grain production, 
pre-anthesis stem carbohydrate stores can be remobilized to 
the grain to buffer yields against suboptimum environmen-
tal conditions that limit leaf photosynthesis. In subtropical 
climates where rice is grown as a ratoon crop, NSC reserves 
that remain in the stem after the first harvest determine the 
speed of subsequent vegetative re-growth, flowering, and 
grain-filling of the second crop (Slewinski, 2012) The evident 
diversity of roles that grass stem NSCs play across species 
suggests the potential to also optimize their capacities within 
species through breeding.

For Oryza sativa (cultivated Asian rice), knowledge about 
stem NSC’s direct link to yield performance and the genetic 
controls that underlie its dynamics are still superficial. Rice 
stems preferentially store starch and sucrose prior to head-
ing, but lose these reserves rapidly following panicle exer-
tion when grain-filling is prioritized energetically; these data 
support the idea that the stem experiences a sink-to-source 
transition at heading (Cock and Yoshida, 1972; Chen and 
Wang, 2008). There is also evidence of re-accumulation of 
stem NSCs as the panicle loses sink strength nearing grain-
filling completion (Van Dat and Peterson, 1983; Kashiwagi 
et  al., 2006). From their evaluation of two near-isogenic 
genotypes (cv. Calrose 76 and its spontaneous mutant, ED7) 
to determine yield and carbohydrate-partitioning dynamics 
throughout grain-filling, Van Dat and Peterson postulated 
that pre-anthesis stem reserves may have been critical for 
yield realization in the short-duration genotype ED7, but 
not useful for Calrose 76. Despite general acceptance of the 
temporal and spatial patterns of rice stem NSC, estimates for 
the overall contribution of these stored carbohydrates to final 
grain yield vary widely across studies. While some document 
a significant contribution of stem reserves to final yield (up 
to 40%) (Van Dat and Peterson, 1983; Samonte et al., 2001; 
Kanbe et al., 2009), others report no such association, point-
ing to sink limitation (unpublished data cited in Setter et al., 
1994). Several studies show evidence of enhanced contribu-
tion to grain-filling during suboptimum conditions (e.g. water 
deficit or heat stress) coordinated with more rapid grain-fill-
ing and leaf senescence (Yang et al., 2000, 2002; Kim et al., 
2011; Morita and Nakano, 2011). Management conditions 
that delay senescence (e.g. heavy nitrogen application) seem 
to have the opposite effect and suppress translocation of 
stem reserves, in effect decreasing their grain-filling contribu-
tion (Hirano et al., 2005; Fu et al., 2011; Pan et al., 2011). 
Contrasting with wheat research in which the agronomic role 
of stem fructans was established early and now informs wheat 
physiological breeding (Bidinger et al., 1977; Pask et al., 2012; 
Reynolds et al., 2012), studies on rice have not been able to 
clearly define aspects of stem reserves that are genetically 
tractable or capable of optimization and thereby valuable for 
varietal improvement.

The burgeoning availability of open-access genetic 
resources for rice (IRGSP, 2005; Jacquemin et  al., 2013; Li 

et al., 2014; Schatz et al., 2014; Duitama et al., 2015; McCouch 
et al., 2016) supports systematic large-scale studies to dissect 
the genetic architecture underlying stem NSC dynamics. The 
MSUv7 genome assembly (http://rice.plantbiology.msu.edu/) 
has been annotated with gene models across the 12 rice chro-
mosomes, and over 100 predicted enzyme-coding genes have 
putative catalytic involvement in starch and sucrose biosyn-
thesis, degradation, and transport (Dharmawardhana et al., 
2013). Despite these candidates and other genes involved in 
related developmental pathways (e.g. vascular bundle forma-
tion) that likely confer nuances to stem NSC, only very large 
quantitative trait loci (QTLs) that span many megabases of 
the rice genome have been discovered so far using bi-parental 
mapping populations.(Nagata et  al., 2002; Kashiwagi and 
Ishimaru, 2004; Kashiwagi et al., 2006, 2008; Kanbe et al., 
2009). No QTLs have been reported in the literature using 
genome-wide association studies (GWAS) for rice stem NSC.

We consider two practical constraints to successful QTL 
identification for the suite of transient, dynamic traits asso-
ciated with stem NSC. The first issue is that the experimen-
tal design parameters needed to effectively evaluate NSC for 
genetic studies have not been systematically explored. Design 
features such as the number of replicates required to ade-
quately estimate the mean or dispersion have not been stud-
ied for rice stem NSC; the solution likely differs from highly 
heritable traits such as plant height or heading date, but this 
requires investigation. The second challenge is that the effort 
involved in traditional analytical chemistry techniques may be 
prohibitively laborious for larger-scale studies. Carbohydrates 
are typically assayed using a series of enzyme-mediated reac-
tions to break down polymers into monomers that can then be 
measured using a UV-VIS spectrophotometer (Trinder, 1969). 
A previous attempt was made to apply near-infrared (NIR) 
spectra models to predict stem NSC in rice (Batten et  al., 
1993), but most advances in the application of indirect meth-
ods for NSC determination have taken place in wheat (Ruuska 
et al., 2006; Wang et al., 2011; Dreccer et al., 2014).

For this study, we began by examining the role of rice 
stem NSC under optimal growing conditions in irrigated 
lowland yield trials using a breeder-nominated panel of elite 
germplasm. We next phenotyped a set of diverse germplasm 
under greenhouse conditions to generate a highly replicated 
dataset from which to extract sub-datasets to establish opti-
mal experimental design. Finally, we developed two partial 
least-squares (PLS) models to accurately predict rice stem 
constituents using NIR spectral data generated from a semi-
automated Thermo-Antaris Autosampler as a high-through-
put alternative to wet chemistry analysis. Our overall goal 
was to streamline a methodology to support evaluation of 
rice stem NSC for future genetic studies under controlled 
(greenhouse) conditions.

Materials and methods

Plant materials
Two sets of rice germplasm were evaluated in this study. The first 
was a breeder’s panel (BP), consisting of 33 elite accessions nomi-
nated by the International Rice Research Institute (IRRI) and 
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PhilRice, evaluated under field conditions in Los Baños, Philippines. 
The panel consisted primarily of indica genotypes (n=25) along with 
two tropical japonica accessions, four indica/tropical japonica deriva-
tives, and two entries that harbored introgressions from wild rela-
tives. Entries were divided into maturity groups for analyses: Early 
(<120 days, 10 entries), Medium (120–129 days, 10 entries), and Late 
(≥130 days, 13 entries).

The second set of germplasm was a small diversity panel evalu-
ated under greenhouse conditions in Ithaca, NY. This diversity set 
was comprised of 30 diverse O. sativa accessions (20 indica and 10 
tropical japonica) along with six contrasting lines (described below) 
from the breeder’s panel. Germplasm information is summarized in 
Supplementary Tables S1 and S2 at JXB online.

Selection of contrasting breeding lines for diversity study
To select multivariate contrasting genotypes out of the 33 acces-
sions evaluated in the field, we used a principal component analysis 
(PCA) based on the line means for four NSC traits (starch levels at 
flowering and maturity, and sucrose levels at flowering and maturity) 
and hierarchical clustering with two linkage methods (complete and 
average). We selected six genotypes based on membership across 
clusters in both the complete linkage and average linkage hierarchi-
cal clustering trees and wide distribution across the PC1-PC2 plane 
resulting from the PCA (see Results). The chosen subset was: PS5 
(HHZ12-DT10-SAL1-DT1; Green Super Rice), PS6 (IR60; indica 
variety with low chalkiness), PS13 (IR78049-25-2-2-2; tropical 
japonica New Plant Type), PS14 (IR78222-20-7-148-2-B; pyramided 
QTL for blast-resistance), PS22 (IRRI127; indica with tungro resist-
ance), and PS37 (Teqing 1; indica from China).

Genetic information
The six BP lines included in the diversity evaluation were genotyped 
along with 54 control varieties with known subpopulation identities 
using the genotyping-by-sequencing (GBS) platform at 96-plex with 
ApeK1 enzyme digestion as the basis for assigning subpopulation 
designations. Using PCA, the six BP genotypes were analyzed along 
with 54 control varieties using 6125 genome-wide single-nucleotide 
polymorphism (SNP) markers that had 100% call rate on the sixty 
total accessions (Supplementary Fig. S5). For studying the effect of 
experimental replication on heritability estimates, we used publicly 
available genotype information from 700 000 SNPs generated using 
the high-density rice array (McCouch et al., 2016). Publicly available 
genotypes were available for 31 of the 36 individuals in the diversity 
panel.

Evaluation and sampling under field conditions
The breeder’s panel was planted in replicated yield trials using three 
replications during the 2012 dry season (2012DS) at the International 
Rice Research Institute in Los Baños, Philippines. The beginning of 
the growing season (January–March) displayed consistent precipita-
tion and temperatures, while April at the IRRI Farm experienced 
significantly higher solar radiation and warmer maximum tempera-
tures (IRRI, 2012). Each replication plot followed replicated yield 
trial standards (6 × 2m, 10 rows × 30 plants). Seeds were sown on 
21 December 2011 and seedlings were transplanted on 10 January 
2012. Irrigated lowland growing conditions were maintained and 
fertilizer was applied on the following dates: 6 January (basal appli-
cation, 30-30-30 NPK), 31 January (topdress, urea 45 kg N ha–1), 
16 February (topdress), and 29 February (topdress). Days to head-
ing (DTH) was scored on the day that 50% of the individuals in a 
replication plot exerted panicles, and occurred from 14 February to 
28 March. Seeds were harvested as plots matured, from 3 April to 
30 April.

Four categories of  traits were evaluated: phenological traits 
(days to heading, growth duration, grain-filling duration), 
resource allocation traits (biomass component dry weights, plant 

height, tiller and panicle number), physiological traits (flag leaf 
chlorophyll content at maturity, stem carbohydrates at heading 
and maturity, and senescence score at maturity), and yield com-
ponents (yield, harvest index, percent grain-filling, 1000 grain 
weight, and harvest index). See Suppementary Table S3 for com-
plete list and details on trait measurement methodologies. To sam-
ple plants for trait measurements at heading and maturity stages, 
five hills were chosen randomly from each plot per sampling point 
and pulled entirely out of  the ground, while yield was measured 
on a 4-m2 harvested area per plot (equivalent to 100 hills) and 
harvest index was measured on a 1-m2 harvested area per plot 
(equivalent to 25 hills). All grain weight values are calibrated to 
14% moisture content. For chlorophyll determination, five flag 
leaves were sampled per replication plot at maturity and pooled to 
give one value per replication plot. Leaves were freeze-dried and 
chlorophyll extracted overnight with cold 80% acetone aqueous 
solution. Absorbance was read at 663, 652, and 645 nm using a 
spectrophotometer and chlorophyll concentration in ppm (mg l–1) 
was calculated (as per Bruuinsma, 1963).

For carbohydrate sampling, all five randomly selected hills per 
plot sampled for trait evaluation on the day of flowering were com-
bined. Panicles and leaf blades were immediately removed; stems 
were chopped manually using scissors into ~1-cm long pieces and 
subsequently subsampled for 20% of the original mass and flash-
frozen in liquid nitrogen. These samples were then freeze-dried and 
finely ground using a sample mill. Subsamples of 200  mg of the 
freeze-dried, ground tissue were taken and subjected to carbohy-
drate analysis as per the Yoshida method (Cock and Yoshida, 1972). 
The proportion of total non-structural carbohydrate (TNC) remo-
bilized from heading to maturity (TNCRMB) relative to the amount 
accumulated at heading was calculated as follows:

 TNC
TNC STM TNC STM

TNC STM
RMB

hd hd mt hd

hd hd

= ×
× − ×( )

×( )100%  

where TNC is the percentage of total non-structural carbohydrates 
by dry weight at heading (hd) or maturity (mt), and STM is the dry 
weight of stems from five hills collected at heading or maturity. This 
is an indirect estimate of the TNC remobilized, as it reflects the 
net difference between heading and maturity. It therefore does not 
account for any changes that might occur between the two sampling 
points (e.g. re-accumulation of TNC at the end of grain-filling).

Evaluation and sampling under greenhouse conditions
The small diversity panel was grown under greenhouse conditions at 
the Guterman Bioclimatic Laboratory in Ithaca, NY, during spring 
2013 in a randomized complete block design with 20 replicates per 
accession (36 accessions total, see Plant Materials). Seeds were sown 
on 5 March and seedlings were transplanted into eight-inch (20-cm) 
pots set into flooded tanks 2 weeks after. Greenhouse conditions 
were managed using 11 hours light (29 °C)/13 hours dark (24 °C) at 
55% constant humidity.

Days to heading was scored when the first panicle per plant 
emerged at least 50% out of its sheath and the following additional 
traits were evaluated: tiller number (counted at maturity), senes-
cence score (according to IRRI’s Standard Evaluation System for 
rice), and stem dry weight measured on a tiller basis after removal 
of the panicle and leaf blades. Sampling for stem carbohydrates was 
done for a single sampled tiller per replicate per accession at two 
time points (heading and maturity), resulting in 20 biological repli-
cates per accession.

For carbohydrate analysis, at each stem sampling point, tillers were 
excised from individual plants, and the leaf blades and panicle were 
removed. The remaining stems (culm and leaf sheath collectively) 
were microwaved immediately post-sampling to destroy respiration 
enzymes and then dried slowly in an oven at 65 °C over the course 
of several days until constant weight was achieved. Stem samples 
were initially coarse-ground using a conventional coffee grinder and 
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then milled finely to a 0.2 mesh with an Udy Cyclone Sample Mill 
(Udy Corporation, Fort Collins, CO, USA). Subsamples of ~25 mg 
(exact weights recorded) were measured into 1.2-ml tubes in a 
96-tube format and assayed for carbohydrates: sugars were extracted 
using 80% EtOH (and sucroses broken down via invertase) and 
the remaining starches were gelatinized and digested into glucose 
using amyloglucosidase/α-amylase. All carbohydrates were assayed 
utilizing peroxidase and glucose oxidase via the Trinder reaction 
and compared against known standards of glucose and sucrose at 
490  nm using a 96-well plate-reading UV-VIS spectrophotometer 
(Trinder, 1969).

Near-infrared spectral measurements
A total of 434 samples were used in the NIRS calibration study. These 
samples were selected in two batches. The first batch (n=277) was 
chosen to span the range of measured wet chemistry values in the 
diversity panel experiment with representation across the 36 different 
genotypes and two sampling points. The second batch (n=157, also 
with wet chemistry data) were selected randomly across genotypes 
and sampling points in two experiments: 357 samples from the current 
diversity study (germplasm described above) and 77 samples from a 
separate unpublished evaluation on a set of chromosome segment 
substitution lines (germplasm described in Arbelaez et  al., 2015). 
Choosing from the diversity study allowed us to sample across geneti-
cally divergent individuals that may display different background 
spectral signatures, while selecting across experiments conducted in 
two years allowed us to sample across environmental differences that 
may impact background spectral variation. Samples were packed in 
2-dram borosilicate scintillation vials and scanned using a Thermo 
Antaris II FT-NIR Spectrometer with a 40-position autosampler car-
ousel (Thermo Fisher Scientific, Waltham, MA). Each sample was 
scanned 128 times (wave number range: 3300–12 000 cm−1).

Statistical analysis
All statistical analyses were coded and carried out in R (https://
www.R-project.org/). Bayesian approaches were used for experi-
mental design optimization and subsampling. These methods are 
fully described in Suppementary Data S1 and S2. These analyses 
involved nine traits (DTH, days to heading; STCH_HD, starch, 
heading; SUC_HD, sucrose, heading; SEN, senescence score; 
TIL, tiller number; WT, stem weight; GLC_HV, glucose, maturity; 
SUC_HV, sucrose, maturity; STCH_HV, starch, maturity). Model 
fitting for NIR data was undertaken using functions from the fol-
lowing R packages: signal (http://r-forge.r-project.org/projects/
signal/, accessed 30 September 2016), prospectr (https://cran.r-
project.org/web/packages/prospectr/, accessed 30 September 2016), 
and pls (https://cran.r-project.org/web/packages/pls/, accessed 30 
September 2016). For calibration, resultant spectral data were first 
limited to the 4000–9000 wave-number range and subjected to math-
ematical pre-treatment using the standard-normal-variate (SNV) 
scatter correction and a first-derivative Savitzky–Golay smooth-
ing (n=25 points). Using these pre-treated spectra, the 434 samples 
were divided into a calibration set (n=300) and an external valida-
tion set (n=134) using the Kennard–Stone algorithm. Two partial 
least-square (PLS) models were developed: a PLS-1 model and a 
PLS-2 model. The PLS-1 model predicted a single response variable, 
total non-structural carbohydrate (TNC  =  starch + sucrose). The 
more generalized PLS-2 model predicted two variables, starch and 
sucrose, as a single multivariate model. Small subsets of the 300 cali-
bration samples were excluded as outliers in the final models (18 for 
the PLS-1 model and 17 for the PLS-2 model). These outliers were 
identified based on the difference between initial prediction of the 
fully cross-validated model and actual wet chemistry, and excluded 
if  they were more than two times the RMSECV value for the initial 
model. Root mean squared errors for calibration (RMSEC), for full 
cross-validation (RMSECV), and for prediction of an independent 
test set (RMSEP) were calculated using the generalized equation:

 RMSE
N

Y Yi i ref= −
1 2Σ( ),

  

where N is the number of samples in each population, Yi


 is the 
predicted value, and Yi ref,  is the measured value. Reference method 
(i.e. wet chemistry) uncertainties were estimated as twice the average 
standard deviation (as per Wolfrum et al., 2013) on an external set 
of material (n=150) using triplicated technical replicates.

Results

Correlation blocks of agronomic characteristics in 
breeder-nominated lines

During the 2012 dry season the breeder’s panel exhibited 
wide variation in growth duration, which spanned from 104 
to 141 d after sowing, and in other growth-related pheno-
types (e.g. canopy growth rate Fig. 1A). Evidence of strong 
phenological linkage was observed for biomass traits. Days 
to heading, growth duration, and grain-filling duration were 
positively correlated with dry weight measurements (panicle 
weight, stem weight, leaf weight at heading, stem weight at 
maturity, and 25-hill straw weight at maturity), while these 
same phenological measures were negatively correlated with 
‘count’ data (panicle number, tiller number at heading, and 
maturity) (see Fig. 1B for correlation blocks). Flag leaf area, 
plant height, and straw dry weight at maturity were also nega-
tively associated with these count traits. There was no rela-
tionship between phenology and yield or yield components 
except for a weak negative correlation of days to heading and 
harvest index, an indirect outcome of the positive relationship 
between phenology and straw biomass, which contributes to 
the denominator of harvest index. Of the stem NSC traits, we 
observed a highly significant association between phenologi-
cal measurements and stem sucrose at maturity, indicating 
that, in this panel, observations with a longer growing season 
either retained or re-accumulated more stem sucrose.

Out of the panel, BP30 (cv. IR60) had the lowest yield with 
an average of 3.72 ton ha–1 while BP 26 (cv. Teqing) had the 
highest yield with an average of 6.9 ton ha–1. Not including 
seed weight-related traits that are simply alternative expres-
sions of yield (e.g. harvest index and panicle weight at harvest) 
we found two traits significantly correlated with grain yield: 
stem starch at heading (potential source for grain-filling) and 
panicle weight at heading (potential sink size for grain-filling). 
Interestingly, we also observed a significant negative relation-
ship between thousand grain weight and percentage of grains 
filled, meaning entries with heavier, completely filled grains 
tended to have a smaller proportion of filled grains overall.

Linkage between stem NSC and yield performance is 
strongest for short-duration rice

At heading, the BP accumulated an average of 16.7% total 
non-structural carbohydrates (TNCs) and retained 7.7% at 
physiological maturity (Suppementary Table S1). Observed 
differences in stem NSC at heading and at maturity provided 
evidence that patterns of starch accumulation and remobi-
lization were synchronized with development and differed 
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significantly across the two sampling points (paired t-test: 
P<2.2 × 10–16). Stem soluble sugar levels, on the other hand, 
were not different between heading and maturity.

Despite the fact that all entries were adapted to tropical con-
ditions and selected for this study because they play key roles 
in irrigated lowland rice breeding, there was a surprisingly 

wide range of phenotypic variation with respect to stem NSC 
across the BP. At heading, BP 11 (cv. BR29, a Bangladeshi 
indica mega-variety) accumulated the least amount of TNC 
(8.62%) while BP 25 (cv. Teqing Acc. IRGC78727, a Chinese 
indica) accumulated the most at 24.62%. While most entries 
had lost most of their stem reserves by the end of the season, 

Fig. 1. Phenotyping of the breeder’s panel in a replicated yield trial. (A) Breeder’s panel (BP) entries exhibited a wide range of phenotypic variation for 
many traits including developmental rate, as depicted by these images of the field trial taken at the same time point in the same replicate field for three 
entries. From left to right: BP 30, BP 6, and BP 31. (B) Correlation matrix of all directly measured traits (*P<0.05; **P<0.01, ***P<0.001). Red and blue 
squares indicate positive and negative correlations, respectively.
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BP 18 (cv. NSIC212, an indica high-yielding variety released 
in the Philippines) harbored 13.11% TNC at maturity, due to 
high levels of soluble sugars.

Although per se effects of growth duration or flowering 
time were not observed for NSC traits or yield traits, we 
wondered if  relationships between NSC and yield might vary 
due to phenology, as previously suggested by Van Dat and 
Peterson (1983). We addressed this question by grouping 
entries into three maturity groups, Early, Medium, and Late 
(see Methods for definitions). To further investigate the posi-
tive relationship observed between grain yield and relative 
starch at heading, we re-expressed relative stem NSC traits 
(% w/w) in absolute terms (dry weight per five hills sampled) 
as these are more appropriate representations of the total 
carbon incorporated into non-structural components of bio-
mass. Relationships between NSC and the four yield compo-
nents studied (yield, harvest index, percent grain filling, and 
thousand-grain weight) differed significantly across matu-
rity groups. Analyzing the Early maturity group on its own 
revealed significant associations of at least one NSC compo-
nent for every yield trait, while isolating the Medium and Late 
groups uncovered no further relationships between stem NSC 
and yield components (Fig. 2). One surprising outcome, given 
that yield, harvest index, and thousand-grain weight were all 
associated with NSC traits at heading, was that grain-filling 
percentage was correlated with NSC at maturity.

To explore the hypothesis that there might be a physiologi-
cal trade-off  between carbohydrate remobilization and the 
‘stay-green’ phenotype at maturity, we examined the distri-
bution of starch remobilization across senescence classes 
(see Supplementary Table S3 for scoring method). The dis-
tribution of TNC remobilized shifted upwards with increas-
ing senescence (Supplementary Fig. S2), and a significant 
difference in the means of Group  3 (the most ‘stay-green’) 
and Group 9 (the most senescent) was observed (one-tailed 
Welch’s t-test, P=0.02). This result suggests that there is a 
negative physiological linkage between carbohydrate remobi-
lization and the stay-green condition in these lines, a relevant 
finding given that both traits are targets of interest for IRRI’s 
irrigated lowland breeding program.

Multivariate classification of the breeder’s panel by 
stem NSC components

Principal component analysis (PCA) using stem NSC com-
ponents as variables revealed that PC1 and PC2 collectively 
explained ~80% of the total phenotypic variance observed in 
the 33 entries of the breeder’s panel. Mapping the trait vec-
tors onto the PC1–PC2 plane showed that PC1 was most 
aligned with stem NSC levels at maturity while PC2 was 
nearly collinear with the percentage of stem NSC at heading. 
Most entries clustered together (Fig.  3, black individuals), 
but 12 fell beyond the main group in the PC1–PC2 plane. Of 
these, seven formed a second group (blue individuals, Fig. 3) 
that was characterized by low starch levels at heading and 
low starch and sugar at maturity. At the other end of the PC2 
axis were two individuals, BP 26 and BP 29 (yellow individu-
als, Fig.  3), which also retained little NSC at maturity but 

accumulated a large amount of starch at heading. These two 
entries represent the best ‘remobilizers’ of stem carbohydrates 
in the panel due to the large net loss of NSC between heading 

Fig. 2. Phenology-dependent trait relationships. Early (squares), Medium 
(triangles), and Late (circles) entries displayed contrasting relationships of 
NSC with yield traits for four yield components: (A) yield, (B) harvest index, 
(C) grain-filling percentage, and (D) thousand-grain weight. (This figure is 
available in color at JXB online.)
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and maturity. In contrast, BP 5 and BP 18 (pink, Fig.  3) 
retained nearly the same amount of TNC at maturity as they 
had accumulated at heading, indicating either lack of remo-
bilization or a re-accumulation at maturity. Interestingly, BP 
25 (green, Fig. 3) and BP 26, which are different accessions of 
the same Teqing variety, did not cluster with each other as we 
had expected; both accumulated the same amount of starch 
at heading but BP 25 had much more sucrose at heading and 
maturity. Upon closer inspection we discovered that in our 
yield trial BP 25 took an average of 4 d longer to flower than 
BP 26 but matured in the same time, indicating a faster grain-
filling period. It was also less senescent at maturity than BP 
26. Hierarchical clustering using the average linkage method 
supported the PCA findings overall (Supplementary Fig. 
S1). There was no significant association between multivari-
ate clustering by stem NSC components and other metadata 
on the rice accessions, such as subpopulation identity (indica 
vs. tropical japonica) or line classification (breeding line vs. 
released variety).

NSC variation across diverse rice germplasm under 
greenhouse conditions

In contrast with the results of the field evaluation of the 
IRRI BP, no coordinated net starch loss was observed in the 
greenhouse trial of diverse germplasm (see Supplementary 
Table S3 for germplasm details); distributions of starch lev-
els at heading did not differ significantly from overall starch 
distribution at maturity for any of the six BP lines selected 
for greenhouse evaluation (Supplementary Fig. S3A, D; 
see Methods for selection process). This may be due to sus-
tained stem starch deposition throughout grain-filling due to 

continuous fertilization in our greenhouse management con-
ditions in conjunction with lower competition for radiation 
associated with spaced planting. Sugar level, however, was 
significantly lower at maturity than at heading in the green-
house (Supplementary Fig. S3B, E). Relative to 20 diverse 
rice accessions that were concurrently evaluated in the green-
house, the IRRI BP lines accumulated more sucrose at head-
ing but retained more starch at maturity, and the IRRI lines 
tended to cluster together at one tail of the phenotypic spec-
trum (Supplementary Fig. S4B, C).

Because rice has a deeply stratified subpopulation structure, 
we next wanted to compare trait distributions of the six BP 
entries directly against diverse germplasm that shared their 
genetic grouping. To determine the subpopulation identity of 
the six BP entries, we genotyped them using genotyping-by-
sequencing (GBS) and analyzed the accessions along with 54 
controls with known subpopulation identity (Supplementary 
Fig. S5). Out of the six BP lines, four (BP 14, BP 25, BP 29, 
BP 30) belonged to the indica subpopulation, reflecting this 
subpopulation’s importance to irrigated lowland rice breed-
ing. Of the remaining two, BP 6 was classified as an admixed 
indica + tropical japonica and BP 5 was an admixed temper-
ate japonica + tropical japonica. These results are consistent 
with pedigree information of BP 6 (indica × tropical japonica 
derived for blast resistance) and BP 5 (temperate × tropical 
japonica-derived New Plant Type). We found a significant dif-
ference between the mean performance of BP indicas and the 
more diverse indicas for levels of starch at heading, sucrose 
at heading, and starch at maturity (P<0.01 for all, Welch’s 
t-test). A significant difference was also observed in the mean 
of the BP tropical japonica and the more diverse tropical 
japonicas for levels of both starch and sucrose at heading and 
maturity (P<0.01 for all). This supports previous observa-
tions that, under greenhouse conditions, these breeding lines 
sample only a portion of the phenotypic variation found in 
an expanded panel of diverse rice germplasm, despite the 
wide range of NSC variation observed in the BP.

Effect of experimental replication on genetic 
parameters of rice stem NSC

We next carried out a greenhouse evaluation of stem NSC in 
diverse rice accessions using 20 replicates per accession. The 
highly replicated nature of this study allowed us to explore 
questions related to experimental design to understand the 
effect of replicate size (RS) on estimates of distribution and 
genetic parameters for stem NSC traits. Using these data in 
conjunction with genetic information on 700 000 genome-
wide SNPs from the high-density rice array (McCouch et al., 
2016), we took a Bayesian approach to estimate heritability 
(broad and narrow), genetic and environmental correlations, 
line mean, genomic estimated breeding value (GEBV), line 
dispersion parameters, and variance components (additive, 
non-additive, and error). Narrow-sense heritability esti-
mates for starch and sucrose at heading were 0.56 and 0.61, 
respectively, while at maturity they were slightly lower at 0.49 
(starch) and 0.58 (sucrose) (Table  1). Genetic and environ-
mental correlations of trait pairs are summarized in Table 2.

Fig. 3. Principal component analysis (PCA) of the breeder’s panel. 
PCA was performed using mean NSC trait data, and trait loadings are 
indicated by gray arrows. Individuals (breeding lines) are colored according 
to groupings, defined by visual inspection of the PCA biplot: black text 
indicates the main cluster of individuals while blue, yellow, pink, and green 
text define minor clusters.
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To evaluate the effect of experimental replication size on 
trait parameters, we simulated at four different replicate 
sizes (RS = 2, 5, 10, 15) by subsampling from the full data-
set (see Methods). With respect to line mean, improvements 
in accuracy (correlation between subsampled data and full 
dataset) were observed between RS=2 and RS=5 for starch 
and sucrose phenotypes, while there was not much gain in 
accuracy beyond five replicates (Fig. 4A). A similar trend was 
observed for GEBV estimates, except for starch at maturity, 
which benefitted from an RS increase up to 10. In addition 
to point estimates, we were interested in the effect of RS on 
uncertainty estimates. We chose the coefficient of variation 
(CV) to describe trait dispersion and found that an RS of at 
least 10 was necessary to come within 1.5 times the full set CV 
estimate (Supplementary Data S2). For genetic correlation 

estimates, an increase from two to five replicates improved the 
median accuracy but an RS of 10 yielded a much tighter dis-
tribution of accuracies compared with an RS of five (Fig. 4B). 
Finally, we used our highly replicated data to inquire about 
the effect of replicate size on variance component estimates 
and narrow-sense heritability (Fig. 4C). Analysis of relative 
deviation of subsampled data versus full data value revealed 
that error variances were overestimated at small replicate 
sizes while narrow-sense heritabilities were underestimated 
when compared to corresponding values from the full dataset 
for starch and sucrose traits.

Utility of NIR spectral data to predict NSC in rice stem 
samples

As NIR models have proven useful for assaying wheat stem 
fructans (Wang et  al., 2011), we assessed the potential of 
using NIR predictions to determine rice stem NSC (Fig. 5). 
From 434 rice stem samples selected to represent across the 
range of variation detected in the primary analytical data, we 
divided samples into either the calibration set or the exter-
nal validation set using the Kennard–Stone algorithm. This 
resulted in 300 and 134 samples in the calibration and valida-
tion sets, respectively, which spanned the multi-dimensional 
spectral space (Supplementary Fig. S6). Two models were 
fitted for three primary NSC variables of interest: a PLS-1 
model for TNC, and a PLS-2 model for both starch and 
sucrose. Overall, the models predicted TNC and starch with 
high accuracy, resulting in validation R2 values of 0.92 and 
0.96, respectively. The PLS-2 model yielded a validation R2 
of 0.76 for sucrose, with a satisfactory RMSEP of 0.02 that is 

Table 2. Genetic and environmental correlations for full replicate dataset. In each trait–trait pairwise sector of the matrix, the middle 
number indicates the point estimate while the top and bottom values indicate, respectively, the upper and lower credible interval bounds 
resulting from Bayesian analyses with Gaussian error distributions. Estimation using Bayesian methods with Student’s t error distribution 
yielded similar results. DTH, days to heading; hd, heading; mt, maturity.

DTH Starch, hd Sucrose, hd Tiller no. Stem wt Sucrose, mt Starch, mt

DTH 1 0.792 0.745 0.706 0.631 0.718 0.849
1 0.468 0.333 0.415 0.337 0.291 0.617
1 –0.197 –0.33 –0.0241 –0.0314 –0.381 0.0719

Starch, hd 0.134 1 0.709 0.689 0.799 0.68 0.805
0.0878 1 0.191 0.222 0.469 0.0777 0.464
0.0418 1 –0.533 –0.42 –0.196 –0.586 –0.283

Sucrose, hd 0.15 0.234 1 0.752 0.695 0.732 0.684
0.0604 0.199 1 0.341 0.218 0.247 0.123

–0.0262 0.168 1 –0.37 –0.442 –0.554 –0.553
Tiller no. 0.141 0.186 0.13 1 0.516 0.665 0.567

0.0541 0.105 0.0446 1 0.0606 0.179 0.0417
–0.033 0.0173 –0.0406 1 –0.369 –0.484 –0.498

Stem wt 0.112 0.131 0.192 –0.0569 1 0.741 0.807
0.0282 0.0466 0.108 –0.111 1 0.326 0.509

–0.0567 –0.039 0.0232 –0.162 1 –0.36 –0.0605
Sucrose, mt 0.0476 0.072 0.193 0.104 0.239 1 0.667

–0.0348 –0.0131 0.115 0.0167 0.168 1 0.111
–0.124 –0.0978 0.0246 –0.0646 0.0969 1 –0.551

Starch, mt 0.203 0.116 0.217 0.00827 0.617 0.31 1
0.119 0.0317 0.136 –0.0774 0.562 0.278 1
0.0328 –0.0544 0.0527 –0.161 0.503 0.251 1

Table 1. Heritability of rice stem NSC traits. Point estimates for 
narrow-sense heritability of stem NSC traits are shown here. 
Values are calculated based on genotypic data on 700 000 SNPs 
on 31 indica and tropical japonica individuals and phenotype data 
from 20 biological replicates per accession under greenhouse 
conditions. The labels ‘hd’ and ‘mt’ indicate heading and maturity 
sampling points, respectively.

Trait h2

Starch, hd 0.56
Starch, mt 0.49
Sucrose, hd 0.61
Sucrose, mt 0.58
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comparable to the reference method uncertainty of 0.018 (see 
Methods for definitions). Final model results are summarized 
in Table 3 and Fig. 6. The average throughput for scanning on 
the Thermo-Antaris FT-NIR spectrometer using an autosa-
mpler carousel was approximately 40 samples/hour, with each 
sample being scanned 128 times. This estimate includes the 
time necessary for packing and cleaning vials and loading/
unloading the scanning carousel. Our results support the use 
of NIR prediction models to determine NSC levels in rice 
stems, conditional on a reliable primary analytical method for 
calibration.

Discussion

Heading stem NSC as a potential breeding target 
for rice

The results of our field evaluation on the breeder’s panel 
suggest that the amount of stem carbohydrates accumu-
lated by heading may be an appropriate target for rice vari-
etal improvement. Post-heading stem reserve mobilization 
appears to be primarily a function of sink strength and envi-
ronment/management (Yang et  al., 2000; Chen and Wang, 
2008; Kim et al., 2011; Morita and Nakano, 2011), while lev-
els measured at maturity can be confounded by additional 
photoassimilate re-accumulation at the end of grain-filling. 
The extent to which rice accumulates, remobilizes, and re-
accumulates stem NSC are each affected by genotype, envi-
ronment, and genotype × environment interaction; however, 
earlier traits (e.g. accumulation measured at heading stage) 

are probably the most genetically tractable, as evidenced here 
by higher narrow-sense heritabilities with heading NSC traits. 
Additional field evaluation is necessary to validate the find-
ing that performance of early-maturing rice varieties benefits 
from increased pre-heading stem carbohydrate accumulation.

In our single field study, grain yield was significantly asso-
ciated with relative starch at heading (%  w/w) across the 
panel. When evaluating Early, Medium, and Late maturity 
groups separately, we found that the linkages between stem 
NSC and yield traits (yield, harvest index, grain-filling per-
centage, and thousand-grain weight) were strongest for the 
Early maturity group while generally insignificant for the 
Medium and Late groups. These associations all involved 
NSC heading traits, except for grain-filling percentage that 
was positively correlated with stem starch at maturity. Since 
the level of stem NSC at maturity is a combination of NSC 
retained from heading and any end-of-season re-accumula-
tion, this last outcome may be due to one or both of the fol-
lowing: (1) an indirect consequence of sink limitation (e.g. 
low number of total spikelets) that prematurely resulted in a 
high percentage of grains filled and a decrease in panicle sink 
strength that led to re-accumulation of stem NSCs; and (2) 
adequate photoassimilate production from flag leaves during 
grain-filling that reduced the need for pre-anthesis stem NSC. 
In this evaluation, there was no overall association of grain-
filling percentage with grain yield, a possible demonstration 
of the diverse strategies (and therefore constraints) for yield 
formation taken by this collection of elite germplasm; some 
entries may be sink-limited in the panicle, while others may 
have experienced flag leaf source limitations. Additional trials 

Fig. 4. Effect of experimental replication on trait parameters. Effect of replicate size on (A) line mean and GEBV, (B) genetic correlation, and (C) variance 
component and narrow-sense heritability estimates (boxes from left to right within each replicate size indicate: error variance, non-additive genetic 
variance, additive genetic variance, heritability). (This figure is available in color at JXB online.)
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over seasons and environments are necessary to determine 
the consistency of these results.

In addition to finding maturity group-level differences, we 
documented a curious contrast in NSC characteristics between 
BP 25 and BP 26, two accessions of cv. Teqing within the IRRI 
gene bank. Documentation suggests these accessions were con-
tributed into the gene bank 17 years apart (IRRI International 
Rice Information System, http://irri.org/resources, accessed  
30 September 2016) and represent similar but not geneti-
cally identical versions of the named variety, cv. Teqing, from 
China. In our yield trial BP 25 and BP 26 displayed similar 
yield (6.3 and 6.29 ton ha–1, respectively), harvest index (0.46 
for both), and growth duration (130 d for both) but differed in 
phenology (flowering time and grain-filling duration) and stem 
NSC patterns. These two nearly-isogenic accessions are a valu-
able resource to help disentangle the physiological and genetic 
linkages between NSC and phenology.

Observed dependency of NSC–yield relationships on phe-
nology in our work here on tropical rice is consistent with 
prior studies on temperate-adapted near-isogenic lines and 
with the hypothesis that carbohydrates accumulated prior to 
heading may be more critical for yield formation in plants 
with a shorter lifespan (Van Dat and Peterson, 1983). We 
rationalize that short-duration varieties do not have a long 
vegetative growth period to produce lavish amounts of leaf 
biomass that may later serve as source organs to generate 
photoassimilates concurrently with grain-filling. This may 
underlie the tight relationships between pre-heading stem 
reserves and yield attributes in the BP’s Early maturity group 
and raises the possibility of tailoring phenologically depend-
ent source–sink relationships in rice breeding.

Previous studies have demonstrated physiological link-
ages within the triad of non-structural carbohydrate remo-
bilization, monocarpic senescence, and the stay-green 
condition, with the former two acting oppositely to the 
latter. Environmental factors that hasten senescence and 
enhance NSC remobilization (e.g. water limitation and tem-
perature increase) are also common climate change variables 

Fig. 5. NIR protocol for assaying rice stem NSC. Steps taken for using 
near-infrared spectroscopy for rapid determination of rice stem NSC 
components. (This figure is available in color at JXB online.)

Table 3. Summary statistics for NIR calibration partial least-
squares (PLS) models.

PLS-1 model PLS-2 model

TNC Sucrose Starch

Calibration samples 300 300 300
Independent validation samples 134 134 134
Outliers removed* 18 17 17
Principal components in model 8 10 10
R2 calibration 0.96 0.86 0.96
R2 cross validation 0.95 0.84 0.95
R2 independent validation 0.92 0.74 0.96
RMSEC 0.02 0.015 0.015
RMSECV 0.02 0.016 0.016
RMSEP validation 0.025 0.02 0.013
Reference method uncertainty 0.024 0.018 0.022

* From calibration set.
RMSE: root mean square errors for calibration (C), cross-validation 

(CV), and prediction (P).
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of concern, which highlights future potential of breeding 
for high accumulation of NSC at heading to buffer against 
increased within-season environmental variability. However, 
long-term expectations should be tempered until effects of 

other climatic parameters (e.g. rising atmospheric CO2) on 
pre-heading stem NSC are better understood, as they may 
have unexpected interaction effects (Moya et al., 1998; Baker, 
2004; Ziska et al., 2014; Wang et al., 2016).

Fig. 6. Results from NIR partial least-squares (PLS) calibration models. Predicted vs. measured values for training, cross validation, and external 
validation sets of the PLS-1 TNC model (A–C), PLS-2 model for starch (E–G), and PLS-2 model for sucrose (I–K). Root mean square error prediction 
(RMSEP) values as a function of model component number for PLS-1 TNC (D), PLS-2 starch (H), and PLS-2 sucrose (L). Black arrows in the RMSEP 
panels indicate the number of components included in the final calibration models. (This figure is available in color at JXB online.)
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Evaluating the genetic control of rice stem NSC

From the results of our greenhouse evaluation, over half  
of the phenotypic variation found in rice stem NSC due to 
genetic factors was contributed by additive genetic variance. 
This suggests that direct selection for rice stem NSC is possi-
ble. Other strategies to optimize stem carbohydrate dynamics 
may include indirect selection via correlated traits or indices. 
These approaches require that target traits are not merely 
phenotypically correlated with stem NSC, but strongly genet-
ically correlated. Genetic correlation arises due to pleiotropy 
or gametic phase disequilibrium, and this metric is often over-
looked in crop physiology studies that focus on phenotypic 
correlation. Here, we found that stem starch and sucrose have 
positive genetic correlation, suggesting that it would be possi-
ble to select simultaneously for increased starch and sucrose. 
This may reflect the fact that starch synthesis in the rice stem 
depends on glucoses that result from sucrose breakdown, so 
a greater sucrose influx represents greater potential for starch 
accumulation. Using genetic correlations, we also found evi-
dence that genotypes with few but heavy tillers tend to accu-
mulate greater proportions of stem starch by the time they 
flower, suggesting that tiller number and weight have poten-
tial as indirect indicators of stem starch levels at heading.

Our simulation study indicates that five replicates are ade-
quate for estimating line mean, GEBV, and variance compo-
nents for rice stem NSC traits under greenhouse conditions. 
The mobile nature of stem NSC reserves, expressed as sea-
sonal fluctuations in response to internal or external cues, 
gives rise to the idea that uncertainty measures of these traits 
are biologically relevant and may have a tractable genetic basis. 
Here, we show that twice as many experimental replicates are 
required to estimate uncertainty measures (e.g. line CV) as 
are sufficient to estimate line mean and GEBV. Despite this 
greater replication requirement (10 replicates), studying the 
genetic basis of line CV is still possible under conditions simi-
lar to those in which this experiment was carried out. Here, we 
assessed 36 genotypes replicated 20 times. Assuming the same 
planting constraints (pot size, spacing, etc), evaluating the 10 
replicates necessary for line CV estimation would allow us to 
consider 72 genotypes, equivalent to a small or medium-sized 
bi-parental mapping population in rice.

While we were able to demonstrate here that stem NSC 
traits in rice are genetically tractable under controlled con-
ditions, these results must be validated under multiple field 
environments if  NSC-related traits are to prove applicable 
for selection purposes. Previous work on wheat has docu-
mented discrepancies between evaluation conditions, espe-
cially between field and controlled environments (Rebetzke 
et al., 2013), and the importance of replication and valida-
tion cannot be stressed enough for breeding purposes. While 
direct selection cannot be performed under greenhouse 
environments, undertaking genetic studies under controlled 
conditions is a logical precursor to assess whether similar 
evaluations should be replicated under field conditions. In 
other words, if  heritability is zero under controlled condi-
tions, one can hardly hope for better results under much more 
heterogeneous field conditions.

Applicability of NIRS for large-scale prediction of 
stem NSC

Given the time and labor-saving attributes of NIRS predic-
tion for grass biomass constituents relative to traditional 
analytical chemistry, the reason underlying the apparent lag 
of NIRS application for predicting rice stem NSC is unclear. 
One explanation may be that multidisciplinary expertise is 
needed for optimal model development. Lack of domain 
knowledge in either NIR spectroscopy or in the application 
area may pose limitations on the long-term success of using 
NIRS models for prediction. Here, we show that NIRS cali-
bration models can accurately predict rice stem NSC constit-
uents across genetically and experimentally diverse samples. 
To our knowledge, only one study has been published that 
has assessed the utility of NIRS for rice stem NSC predic-
tion, using 61 rice stem samples for starch only (Batten et al., 
1993). An R2 of 0.98 and a standard error of performance of 
1.5 (% starch) were reported; however, it appears that these 
values are likely results from cross-validation. Prediction 
of an unknown set of samples is critically dependent upon 
adequate representation of the calibration set across the 
spectral space of the prediction samples. To that end, for our 
calibration we made sure to select samples as diverse as pos-
sible, choosing across wet chemistry values, sampling points 
(heading versus maturity), genetic identity, and experimental 
conditions (two experiments across two years). With that, we 
expect we can predict rice stem NSC composition in future 
experiments under similar greenhouse conditions for large-
scale genetic studies. Research avenues to further increase effi-
ciency of rice stem NSC phenotyping may include improving 
NIR prediction by tailoring calibration sets to specific pre-
diction samples using local models (as in Godin et al., 2015) 
or implementing non-destructive, in-field methods of NSC 
determination such as hyperspectral reflectance, as demon-
strated in wheat (Dreccer et al., 2014).

The possibility of optimizing stem NSC dynamics for rice 
varietal improvement, an idea whose roots go back several 
decades, grows more relevant with rising concerns about the 
impacts of climate variability. As has been demonstrated 
previously (Yang et al., 2002; Kim et al., 2011; Morita and 
Nakano, 2011), post-heading temperature and water avail-
ability stresses shift rice dependencies heavily towards pre-
heading carbohydrate reserves. Understanding the genetic 
architecture underlying stem NSC accumulation, remobi-
lization, and re-accumulation may be key to its utility, not 
only for rice but also for other economically important grass 
species.

Supplementary data

Supplementary data are available at JXB online.
Table S1. Phenotype and germplasm information for the 

breeder’s panel.
Table S2. Germplasm information for the diversity panel.
Table S3. Trait measurement methodology in the 

breeder’s panel.
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Figure S1. Hierarchichal clustering of the breeder’s panel 
using NSC traits.

Figure S2. NSC distribution by senescence class.
Figure S3. Distribution of NSC traits by sampling point 

for six selected BP entries in the IRRI field trial and the 
greenhouse diversity screen.

Figure S4. Accession-specific distributions of NSC traits 
ordered by decreasing line mean.

Figure S5. Genotyping results of six selected breeding lines, 
including genome distribution of 6125 SNPs and results from 
principal components analysis.

Figure S6. Comparison of calibration and validation sets 
for NIR calibration.

Dataset S1. Full description of Bayesian analyses for the 
experimental design study.

Dataset S2. Zip file containing scripts and related files for 
the Bayesian analyses.
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