

Gaps in the Design Process

Paul Veers

Chief Engineer

NREL's National Wind Technology Center

Business Network for Offshore Wind 2016 International Offshore Wind Partnering Forum Newport, Rhode Island

October 4, 2016

NREL/PR-5000-67279

High-Level View—Where are the Needs (Gaps)?

Knowledge of design conditions

Design standards and site characterization

Ability to convert a design environment into demand on the structure

Models of physical processes and computer-aided engineering tools

Design has desired structural reliability

Target reliability and safety factors

Knowledge of Design Conditions

- In traditional wind turbine design there are two stages to definition of design conditions
 - Design class for product line specification
 - Site assessment for selection of the appropriate product

IEC 61400-1 Ed. 3

Table 1 - Basic parameters for wind turbine classes²

Wind turbine class		- 1	Ш	III	s
$V_{\rm ref}$	(m/s)	50	42,5	37,5	Values
Α	I _{ref} (-)		specified		
В	$I_{\rm ref}$ (-)		by the		
С	$I_{\rm ref}$ (-)		0,12		designer

In Table 1, the parameter values apply at hub height and

 $V_{\rm ref}$ is the reference wind speed average over 10 min,

A designates the category for higher turbulence characteristics,

B designates the category for medium turbulence characteristics,

C designates the category for lower turbulence characteristics and

I_{ref} is the expected value of the turbulence intensity³ at 15 m/s.

Courtesy Lance Manuel, UT

Standard Conditions are Intended to *Envelop* Actual Conditions

Various Site Conditions

Site Suitability Assessment Defines Actual Conditions

One Site Condition May Exceed the Class Definition

Knowledge of Design Conditions

- Site-specific design conditions
 - Geotechnical conditions
 - Combination of wind and wave
 - Storm frequency and intensity
- As you move along the U.S. East Coast, the severity and frequency of storms varies continuously, as do soil conditions
- Traditional offshore foundation design often goes straight to the site conditions
- The gap between how turbines are designed and how foundations are designed will need to be narrowed
- Much depends on the size of the installation (5 or 100 turbines)

50 & 100-Year Extreme Wind Speeds

Note:

1. U.S. Offshore Extreme Wind Analysis (Susan W. Stewart, Penn State Applied Research Laboratory)

Class		I	П	Ш	Т	S	
V _{ref} [m/s]		50	42.5	37.5	57,50 OP	Sal Values	
I _{ref}	а		specified by designer				
	b	12.10					
	6	16/11					
	Н						

Convert a Design Environment into Demand

Illustration by Al Hicks, NREL

- Coupled aero-hydro-servoelastic interaction
- Wind inflow
 - Discrete events
 - -Turbulence
- Waves
 - -Regular
 - -Irregular
- Aerodynamics
 - -Induction
 - -Rotational augmentation
 - -Skewed wake
 - -Dynamic stall
- Hydrodynamics
 - -Diffraction
 - -Radiation
 - -Hydrostatics
- Structural dynamics
 - -Gravity/inertia
 - -Elasticity
 - -Foundations/moorings
- Control system
 - -Yaw, torque, pitch

Modeling Gaps Identified

- BOEM held a workshop in April to ask a similar question about capabilities and gaps.
- There is a report summarizing the outcomes.

Design has Desired Structural Reliability

- The turbine design standard (IEC 61400-1) draws a target reliability of 5x10⁻⁴ failures per year
 - Safety factors throughout the standard are calibrated to achieve the target reliability
 - [K6] John Dalsgaard Sørensen and Henrik Stensgaard Toft, Safety Factors IEC 61400-1 ed. 4 background document DTU Wind Energy-E-Report-0066(EN) (ISBN 978-87-93278-08-0)
 November 2014.

A target value for the nominal failure probability for structural design for extreme and fatigue failure modes for a reference period of 1 year is

$$P_F^t = 5 \cdot 10^{-4} \tag{K.2}$$

The corresponding target value for the reliability index is β^t = 3,3. Application of this target value assumes that the risk of human lives is negligible in case of failure of a structural element, see [K6]. The target reliability level is assumed to correspond to component class 2.

IEC 61400-1, Edition 4, Draft CDV

Check Against Desired Structural Reliability

- Design load cases are defined
- Characteristic loads are defined (return period)
- Appropriate safety factors are applied
- Result is intended to meet a target reliability

Agreement on a target reliability is a significant gap

- There has never been an economic analysis that establishes the trade-off between the high capital cost of low probability of failure and the cost of failure
- There is also a noneconomic factor in the consequences of an early failure on industry reputation

Illustration by Al Hicks, NREL

Thank You!

paul.veers@nrel.gov

