
Abstract
Accurate vehicle parameters are valuable for design, modeling, and 
reporting. Estimating vehicle parameters can be a very time-
consuming process requiring tightly-controlled experimentation. This 
work describes a method to estimate vehicle parameters such as mass, 
coefficient of drag/frontal area, and rolling resistance using data 
logged during standard vehicle operation. The method uses a Monte 
Carlo method to generate parameter sets that are fed to a variant of 
the road load equation. The modeled road load is then compared to 
the measured load to evaluate the probability of the parameter set. 
Acceptance of a proposed parameter set is determined using the 
probability ratio to the current state, so that the chain history will give 
a distribution of parameter sets. Compared to a single value, a 
distribution of possible values provides information on the quality of 
estimates and the range of possible parameter values. The method is 
demonstrated by estimating dynamometer parameters. The results 
confirm the method’s ability to estimate reasonable parameter sets, 
and indicate an opportunity to increase the certainty of estimates 
through careful selection or generation of the test drive cycle.

Introduction
While consumer vehicle manufacturers publish parameters, 
commercial vehicles are a unique amalgam of well-characterized 
components that are tested very little after vehicle assembly. Vehicle 
parameters are most commonly estimated using a ”coast-down” 
procedure, such as the test outlined in SAE standard J2263 [1]. In this 
test, a vehicle is driven to a set speed, the driveline is disengaged, and 
the vehicle coasts until it comes to a stop. Parameters are estimated 
by fitting the vehicle speed trace with a second-order polynomial [2]. 
Standard J2263 outlines controls for tests such as requiring low wind 
speed and a flat track, for example. This method is rigorous and well 
tested, but time consuming. A test that can be conducted while the 
vehicle fulfills its vocation will report parameters regularly 
throughout the life of the vehicle.

The potential benefits of good estimates for vehicle parameters are 
numerous. For modeling purposes, a set of basic parameters can be 
used to predict vehicle performance over a range of operating 
conditions [3]. Parameters are benchmarks for vehicle performance. 
More frequent measurement and improved accuracy will benefit 
designers and speed the development of new technologies. For 
researchers studying vehicle power consumption, parameters 
communicate national trends and the combined efficacy of new 
technologies [4]. An algorithm which can be applied to existing 
vehicle data saves the cost of further data collection.

Anticipating the advent of autonomous vehicles, work has been done 
to estimate parameters on-board to be used as a sort of feed-forward 
control [5]. A truck can increase its following distance as its mass 
increases, for example. Vehicles, especially commercial vehicles, 
convey loads of variable mass throughout the day. Working with an 
estimate of its own mass, a vehicle may be able to tune the engine, 
brakes or hybrid control strategy in real time to improve performance.

Various regression methods have been used to estimate vehicle 
parameters, road conditions, etc. from on-road data, often in real 
time, to improve vehicle performance. A least-squares with forgetting 
method utilizes a controller which selects suitable drive cycle 
segments for regression analysis [6]. Regression with forgetting has 
made good approximations of vehicle mass and road grade 
simultaneously[7]. Kalman filters have also been used to estimate 
vehicle parameters [8, 9, 10], and have done well when sensor noise 
is Gaussian and can be accurately estimated.

So-called Bayesian inference methods have been used to identify 
model parameters using minimally-processed real-world data [11, 12, 
13]. One benefit of these methods is that their computational demand 
scales well as the number of parameters and the measured data 
increase, so they are often used with systems that have a large 
number of parameters. Also, bounds can be placed on the parameter 
search space so that non-physical parameter estimates (such as 
negative mass) are avoided.
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Algorithm
The challenge is to find a vector of parameters , such that modeled 
and observed results are equal, . The parameters space is 
searched using the Metropolis Hastings algorithm, which returns a 
posterior distribution rather than a single answer. The algorithm is 
sketched below.

Initialization
A random set of parameters, , is sampled from prior distributions. 

1.	 The system model is evaluated for the parameter set. The result, 
, is obtained 

2.	 Modeled and measured results are compared using squared 
error, χ2.

(1) 

3.	 A Gaussian probability density function centered at χ2 = 0 is 
used to express the likelihood of the parameter set:

(2) 

4.	 The current parameter vector is perturbed by some random 
increments to produce a new parameter set θ∗.

(3) 

5.	 The new parameters are used in the vehicle model to generate 
an estimate . 

6.	 The squared error of the new result is calculated:

(4) 

7.	 The likelihood of this set of parameters is given by:

(5) 

8.	 The Markov chain should visit areas of higher likelihood more 
frequently. To achieve this result, the acceptance parameter, α is 
calculated as:

(6)

so that α = 1 when ∗χ2 < iχ2 and the chain will move to regions 
of higher likelihood. 

9.	 The proposed parameters are accepted with probability α or the 
parameters remain unchanged with probability 1 - α.

(7) 

10.	 The counter is updated (i = i + 1), then the algorithm returns to 
step 2 if i < imax. Otherwise the algorithm is finished.

The above description omits the calculation of the variables σ2, . 
The variance, σ2, of the model is calculated as:

(8)

where p is the length of θ, or the number of parameters to be 
estimated. The jump vector is formed by multiplying a vector of 
random numbers by a scaling matrix , formed by first calculating 
the covariance matrix, :

(9)

then:

(10)

The Cholesky decomposition, Chol(), gives a matrix, , which is 
upper triangular with a positive diagonal as long as the matrix  is 
positive-definite[14]. The jump is a vector of random variables drawn 
from a normal distribution then scaled:

(11)

These variables were not included inside the iterative loop because 
they are not calculated at every iteration. Using  to scale jump 
values is a method taken from [11]. Although σ2 and some random 
jump are always calculated in initialization, subsequent updating of 
these variables is considered to be an adaptive refinement of the 
algorithm. Testing [15] shows that using an approximated covariance 
matrix to scale jump proposals speeds convergence, especially in 
cases where variables are highly covariant. In [16], Eydgahi et al. 
employed an approximate Hessian matrix to guide a Markov chain 
Monte Carlo algorithm. The authors note that without Hessian 
guidance, a stable estimate could not be attained for all 78 parameters 
in their model. Calculation of the covariance matrix can be 
computationally expensive, especially for large datasets. For this 
reason, the covariance matrix and variance are updated at regular 
intervals of 100 iterations and only after a set number of iterations 
called the “burn-in” or “warm-up” period. Additionally, parameter 
vectors are not saved to the posterior during the burn-in period, as 
they will include the chain segments used to walk from the random 
starting point, to the region of highest likelihood, which are not of 
interest here. Figure 1 shows the value of the burn-in period and the 
gradual convergence of independent chains.



Figure 1. Random walk generated for mass

Application
The method described above was applied to estimate the coefficients 
provided by a chassis dynamometer to test a class 8 tractor. The 
parameters to be estimated are:

(12)

where A is a friction coefficient estimating rolling resistance and 
mechanical losses, C is a drag coefficient for aerodynamic losses, and 
mass is directly measurable. The power provided by the vehicle’s 
engine is modeled as:

(13)

The dynamometer measures instantaneous power supplied by the 
vehicle, , which will be compared to the value calculated in 
Eq. 13. Measured data were only used if the vehicle output power 
was greater than 0. This was done because braking force is not 
accounted for in Eq. 13 and because the dynamometer has a drum 
only for the rear wheels and will, therefore, assist the vehicle in 
braking. For this reason, the rule  was added to Eq. 13. 
The ability to add logic to the model is an important feature of the 
Markov chain Monte Carlo method. The model is not required to be 
continuous or directly differentiable. The dynamometer in this study 
uses an electric generator to provide resistance to the vehicle, which 
is fixed so that its rear wheels are turning a large drum. The 
electronics inside the dynamometer should vary the force required to 
turn the drum so as to maintain the coefficients A, C, and m. 
However, the drum itself, along with the mechanical components that 
connect it to the generator will resist rotation as well. This means that 
the coefficients used at the generator will be lower than the 
coefficients measured in a coastdown test. Also, the resistance 
provided by various gears and axles will change as these components 
are warmed by testing. The result is that these components need to be 
tuned and checked throughout the test. The friction parameter, A, is 
known to be especially susceptible to drift, as the meshing friction of 

the gears is temperature dependent. The dynamometer operator may 
change the dynamometer parameters to compensate for changes in 
internal loss as outlined in [17].

The tests were conducted for three separate cycles: the U.S. EPA 
Highway Fuel Efficiency Cycle (HWFET), The SAE j1376 
Commuter Cycle (COMMUT), and the CARB Heavy Heavy-Duty 
Diesel Truck cycle less the low speed creep section (HHDDTNC). 
The combination of these cycles is meant to replicate the daily 
operation of the class 8 truck being tested. For each drive cycle, the 
Markov chain was initialized at three unique, random, locations. Each 
chain was run for 104 iterations, with a burn-in period of 5 × 103 
iterations. Figure 1 shows the random walks generated for mass over 
all iterations of the estimator. Once the burn-in time has been 
reached, variance in the walks drops dramatically. At this point, it is 
also assumed that the walks are truly random, and independent of 
their starting condition. The “multi-chain” approach has been used to 
provide estimates for convergence [18], but was used in this case to 
choose a suitable number for total iterations and burn-in. If the chains 
do not converge to the same approximate region(s), the algorithm 
isn’t working properly or has not run for enough iterations. The 
deviation in estimates between individual chains was less than 1% on 
average for the selected iteration and burn-in numbers.

Results
Parameter estimates obtained by the Markov-chain Monte Carlo 
Method and listed in table 1 are in the vicinity of the nominal 
parameters supplied to the dynamometer operator. When comparing 
estimates to the nominal parameters, however, it is worthwhile to 
note Figure 2, which shows modeled power traces match the 
measured trace more closely when the estimated, rather than nominal 
parameters where used in Eq. 13. To reproduce the trace, the 
combination of A,C, and m which provided the lowest squared error 
were used. The plots show that the vehicle power output can be more 
closely matched by estimated parameters than by the nominal 
parameters. Reproducing the measured power trace is a good metric 
for the quality of the estimate because the dynamometer is using the 
same model as the estimator to apply a resistive torque to the drum.

Table 1. Summary of estimated dynamometer parameters for each cycle. 
Mean and standard deviation are shown.



Figure 2. Power trace for the three drive cycle

Each drive cycle was tested eight to ten times. The best estimate for 
each run is shown in Tables 2, 4, and 3.

Table 2. Estimated dynamometer parameters A, C, mass, and root mean 
squared error for the power trace Drive Cycle:HWFET

Table 3. Estimated dynamometer parameters A, C, mass, and root mean 
squared error for the power trace Drive Cycle:COMMUT

In examining average values, it seems that parameters were estimated 
adequately using the COMMUT drive cycle. However, standard 
deviation for the parameter estimates are an order of magnitude larger 
than those for the HWFET and HHDDTNC cycles. Levene’s test 
reveals [19] that the COMMUT cycle test runs display unequal 
variance compared to HWFET and HHDDTNC. One possible cause 
of deviation is operator error, meaning that the dynamometer 
parameters were altered significantly between runs. Another possible 
cause is that the COMMUT cycle is ill-suited for parameter 
estimation using the current vehicle power model.

Model Evaluation
The model in Eq. 13 was evaluated by performing an eigen-
decomposition on the covariance matrix (Eq. 9) associated with the 
best estimate for each cycle. such that:

(14)

An ideal model for parameter estimation is one in which the 
covariance matrix has no off-diagonal terms, meaning that each 
parameter is associated with a unique contribution and the 
eigenvectors are Euclidean basis vectors:

Table 4. Estimated dynamometer parameters A, C, mass, and root mean 
squared error for the power trace Drive Cycle:HHDDTNC

. For each eigenvector:

(15)



The angle of rotation is equal for the A and C parameters, while it is 
roughly zero for m. This relationship indicates that the measured data 
most directly conveys information about the mass and some linear 
combination of A and C.

Table 5. Eigen-decomposition metrics from dynamometer tests

The probability densities in the appendix 1 show every credible 
parameter set for every run. These point clouds indicate strong 
coupling between the A and C parameters. Uncorrelated parameters 
would produce elliptical point clouds with the major and minor axes 
parallel to the A and C axes. Sivia [20] shows that a point cloud will 
slope downward when the system is identifiable in the dimension A + 
C, but not A - C, which is sensible for two parameters that both 
dissipate more power at higher vehicle speed. The point clouds also 
reveal higher uncertainty in estimates made from the COMMUT 
cycle. For a smaller deviation, σ2, point clouds will encompass a 
smaller area, reflecting greater certainty in the estimates. Gearhart and 
Wang [21] propose that a good model has low rms, fewer parameters, 
and less covariance (or estimate scattering). Estimates for the 
COMMUT cycle show high rms error, and would have encompassed 
an even larger area, if not for the bounds placed on the estimates:

(16)

which demonstrates another valuable feature of Markov chain Monte 
Carlo, which is the ability to constrain the search space using any a 
priori knowledge (such as nominal parameters) to obtain reasonable 
estimates even in cases of high uncertainty.

Identifiability
Identifiability is a measure of each parameter’s proclivity to 
estimation. There are two ways that a parameter can be 
unidentifiable. First, it may be that the covariance matrix(Eq. 9) is 
rank-deficient. Usually, this failure indicates a poor selection of 
model. In this case, it can be shown that the covariance matrix will 
not be rank deficient so long as:

(17)

in which case the matrix would have linearly dependent rows, and

(18)

inn which case the matrix would have a row of zeros (linearly 
dependent again). For parameter estimation, accuracy decreases as 
the covariance matrix approaches singularity. The second issue is 
practical identifiability, which suffers from noise present in measured 
signals. To test practical identifiability, a dummy case was used. The 
drive cycles were obtained from NREL’s on-line database [22]. Using 
the speed traces, engine power was calculated as in Eq. 13, but with 
dummy coefficients:

(19)

Adding noise:

(20)

Noise is represented by , where  is a vector of 
random values sampled from a normal distribution and Ω is noise 
magnitude. Engine power and the exact speed trace were used to 
estimate the coefficients in 19. Using the dummy case, drive cycle 
variety, measurement error, and cycle length will be tested to 
characterize their effect on the accuracy of parameter estimation.

To evaluate the variety in each drive cycle, the data were binned by 
unique speed and acceleration combinations. The number of bins 
with one or more data points were counted and divided by the total 
number of possible bins to give a coverage fraction:

Figure 3. Coverage by COMMUT and HWFET cycles

Figure 3 shows the coverage attained by the COMMUT and HWFET 
cycles. As expected, the HWFET cycle shows more coverage. In 
figure 4, the coverage is plotted against the estimation error, 
calculated as:

(22)

Coverage has a significant impact on estimate accuracy. In this case, 
the curve fit was roughly logarithmic, predicting diminished returns 
for higher coverage, but also very high error for cycles with the 
sparsest coverage. The curve predicts that the COMMUT cycle will 
provide worse estimates than HWFET and HHDDTNC.



Figure 4. Impact of state variety on estimate deviation

(21)

Noise is another possible cause of mis-estimation. To test this effect, 
the dummy case was used again, with the noise magnitude, Ω, being 
gradually increased. Figure 5 shows the impact of noise on the 
accuracy of the parameter estimates. The RMS error increased 
proportional the square of Ω, along with the estimate error. Figure 5 
shows the impact of noise on estimate accuracy. The results indicate 
that parameters A and C will be the first estimates affected by noise, 
and that these parameters can be mis-estimated without as much 
impact on the rms error.

Figure 5. Effect of noise on estimated parameters

Figure 6. Effect of cycle duration on estimated parameters

Figure 6 shows the effect of cycle duration on accuracy. A fixed noise 
magnitude, Ω = 5, was used for this test, and the HHDDTNC cycle 
was cloned to add duration, but not variety. The result is a nearly 
constant rms error, and little variation in parameter estimates. 
Although noise varied between cloned drive cycles, the result 
indicates that the cloned cycles were not much more valuable than 
duplicate data.

CONCLUSION
A Markov chain Monte Carlo method was used to estimate vehicle 
parameters for a dynamometer test case. Although the accuracy of the 
estimate is difficult to verify, parameters agree reasonably well with 
nominal parameter values. The benefits to this method are scalability 
and the ability to use any driving case for estimation. The method was 
shown to make better estimates when given a larger dataset, and when 
the data were measured with less noise. These findings will inform 
future use of the technology in on-road vehicle testing. Opportunities 
abound for improved implementation of the Metropolis-Hastings 
algorithm. Methods have been developed for the detection of outliers 
and for hierarchical combinations of data. As the accuracy of estimates 
improve, applications will be pursued more actively.
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DEFINITIONS/ABBREVIATIONS
i - iteration counter

imax - maximum number of iterations

j - parameter index

χ2 - squared error

tf - drive cycle length

ŷ - measured data

y - modeled data

 - parameter set

 - proposed parameter set

P(θ) - likelihood probability of θ

σ2 - variance of the posterior

 - jump vector

α - Bayes factor

 - sample from normal distribution centered at µ w/
deviation σ2.

 - estimated covariance matrix

 - inverse estimated covariance matrix

Chol() - Cholesky decomposition

A - dynamometer friction parameter

C - dynamometer drag parameter

m - dynamometer mass parameter

 - eigenvector associated with parameter j

λj - eigenvalue associated with parameter j

 - basis vector associated with parameter j

ψj - angle between 

rms - root mean squared 
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Appendix 1. Joint posteriors pictured in the center, probability densities at the boundaries. Dashed lines show nominal parameter values
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