
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

 

  

Utilization of Model Predictive 
Control to Balance Power 
Absorption Against Load 
Accumulation 
Preprint 
Nikhar Abbas and Nathan Tom 
National Renewable Energy Laboratory 

 

Presented at the Annual International Offshore and Polar 
Engineering Conference (ISOPE) 
San Francisco, California 
June 25–30, 2017 

Conference Paper 
NREL/CP-5000-67981 
August 2017 



 

 

NOTICE 

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC 
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US 
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of 
this contribution, or allow others to do so, for US Government purposes. 

This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Available electronically at SciTech Connect http:/www.osti.gov/scitech 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
OSTI http://www.osti.gov 
Phone:  865.576.8401 
Fax: 865.576.5728 
Email: reports@osti.gov 

Available for sale to the public, in paper, from: 

U.S. Department of Commerce 
National Technical Information Service 
5301 Shawnee Road 
Alexandria, VA 22312 
NTIS http://www.ntis.gov 
Phone:  800.553.6847 or 703.605.6000 
Fax:  703.605.6900 
Email: orders@ntis.gov 

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795. 

NREL prints on paper that contains recycled content. 

http://www.osti.gov/scitech
http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov


Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

Nikhar Abbas, Nathan Tom
National Renewable Energy Laboratory, Golden, CO, USA

ABSTRACT

Wave energy converter (WEC) control strategies have been primarily fo-
cused on maximizing power absorption. The use of model predictive
control strategies allows for a finite-horizon, multiterm objective func-
tion to be solved. This work utilizes a multiterm objective function to
maximize power absorption while minimizing the structural loads on the
WEC system. Furthermore, a Kalman filter and autoregressive model
were used to estimate and forecast the wave exciting force and predict the
future dynamics of the WEC. The WEC’s power-take-off time-averaged
power and structural loads under a perfect forecast assumption in irregu-
lar waves were compared against results obtained from the Kalman filter
and autoregressive model to evaluate model predictive control perfor-
mance.

KEY WORDS: Wave energy converter; model predictive control; au-
toregressive parameterization; wave forecast.

INTRODUCTION

Development of advanced control strategies will be important for the
successful implementation of wave energy converter (WEC) technolo-
gies. Maximizing power absorption from incident waves has been the
primary objective of most previously proposed control algorithms. This
work focuses on the development of control algorithms to maximize the
power absorption while taking the structural loads on the system into
account.

There have been a number of different control strategies investi-
gated in the development of WEC devices. Some of the initial
developments in WEC control methods include complex conjugate
control (Falnes 2002) and latching control (Babarit and Clément
2006). More complex, constrained control under motion constraints
was explored in regular wave examples by (Hals, Falnes, and Moan
2011). Additionally, control using a nonlinear objective function and
dynamic models were considered by Nguyen (2016) and Bacelli (2015),
respectively. For state-based control algorithms, having knowledge
of the incident wave is often considered necessary. One method for
attaining this knowledge is through various nonlinear observers and
state estimators, such as the extended Kalman filter (Nguyen, Sabiron,
Tona, Kramer, and Sanchez 2016; Bernuau, Glumineau, Plestan, and

Moussaoui 2015; Fusco and J. V. Ringwood 2013). Model predictive
control (MPC) has been shown to improve power production near
the theoretical maximum, though computationally demanding (Hals,
Falnes, and Moan 2011). One method of forecasting the incident wave
excitation force is by using autoregressive models, knowledge of the
previous wave history, and the assumption that the change in significant
wave height is relatively slow (Fischer, Kracht, and Perez-Becker 2012).
Through these techniques, many researchers have developed control
algorithms with the focus on maximizing power production at the power
take-off (PTO).

An oscillating surge wave energy converter (OSWEC) is under
development at the National Renewable Energy Laboratory (NREL).
In this report, we focus on maximizing power production while
considering the structural loads on the OSWEC through control of the
PTO torque. By implementing a variation of the extended Kalman
filter, autoregressive parameterization and forecasting, and MPC, a
control algorithm that calculates the PTO torque of the OSWEC that is
based on the solution to an objective function designed as a quadratic
programming problem was developed.

OSWEC AND HYDRODYNAMIC MODELING

The design of the OSWEC used in this study has been detailed in (N.
Tom, Lawson, Y.-H. Yu, and Wright 2016a; N. Tom, Lawson, Y. Yu,
and Wright 2016b) and is briefly highlighted here. The novel idea in the
development of this OSWEC is that the main body has been replaced
with identical flaps that can rotate around their horizontal center axis,
as shown in Fig. 1. The structural mass is evenly distributed, whereas
the structural mass density, ρm, is half of the fluid density, ρ. WAMIT
(WAMIT Version 7.0 User Manual 2014) was used to determine the hy-
drodynamic coefficients at a step size of 0.01 rad/s for wave frequencies
between 0 rad/s and 7.5 rad/s. As mentioned, the aim of this work is to
control the PTO torque and not the flap position. The geometric dimen-
sions of the OSWEC used in this study can be seen in Table 1, and the
hydrodynamic coefficients can be found in Fig. 2. The hydrodynamic
coefficients for other WEC geometries can be found in (N. Tom, Law-
son, Y. Yu, and Wright 2016b). A 10 meter water depth was chosen
for the hydrodynamic coefficient calculations based on previous studies
of fixed-bottom OSWEC systems (Whittaker and Folley 2012; Gomes,



Lopes, Henriques, Gato, and Falcao 2015).

Table 1 Geometric Dimensions of the OSWEC
Water Depth, h, 10 m Flap Minor Axis, t f , 1/3 m

Height, H, 10 m Flap Major Axis, H f , 2 m
Thickness, t, 3/4 m Side Support Width, ws, 1/4 m

Width, w, 20 m Center of Gravity, rg, 3.97 m
Flap Width, w f , 19.5 m Moment of Inertia, I55, 904.4 kg·m2

Volume, ∀, 72 m3 Mass, m, 36 t
Resonance Period, Tres, 37 s Resonance Frequency, ωres, 0.17 rad·s−1
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ζ5 

tf 

Fig. 1 Solidworks rendering of the novel OSWEC. (Left) Per-
spective view of the fully open configuration (four flaps
open) and (right) perspective view of the fully closed con-
figuration (no flaps open) ζ5 is the angular displacement of
the OSWEC around the axis of rotation.

OSWEC Equations of Motion
To successfully implement an MPC algorithm, the equations of motion
for the OSWEC must first be defined.

Continuous Time, Nonlinear Equations of Motion

The one-degree-of-freedom time-domain pitch equation of motion is
given by,

I55ζ̈5(t) = τe5(t) + τr55(t) + τh(t) + τd(t) + τm(t) (1)

where t is time, I55 is the pitch mass moment of inertia, ζ̈5 is the pitch
angular acceleration τe5 is the wave exciting pitch torque caused by the
incident waves, τr55 is the wave radiation torque due to pitch motion, τh

is the hydrostatic restoring torque, τd is the drag torque caused by viscous
effects, and τm is the mechanical torque applied by the PTO system. With
the torque equations defined in (N. Tom, Y. Yu, Wright, and Lawson
2016c), we arrive at the final one-degree-of-freedom pitch equation of
motion,

(I55 + µ55(∞))︸           ︷︷           ︸
It

ζ̈5(t) =

∫ ∞

−∞

Ke5(t − τ)η(τ)dτ −
∫ t

−∞

Kr55(t − τ)ζ̇5(τ)dτ

− (ρ∀rb − mrg)g︸           ︷︷           ︸
C55

sin(ζ5(t)) − λvn|ζ̇5(t)|ζ̇5(t) + τm(t) (2)

where Ke5 is the wave excitation pitch kernel that is noncausal, and η is
the wave elevation. Kr55 is the pitch radiation impulse response function,

0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
0

14

28

42

56

70

P
itc

h 
H

yd
ro

dy
na

m
ic

 R
ad

ia
tio

n 
C

oe
ffi

ci
en

ts
 [ 

λ 55*
 , 

µ 55*
 ]

ω*

 

 

0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
0

0.1

0.2

0.3

0.4

0.5

S
ur

ge
 −

 P
itc

h 
H

yd
ro

dy
na

m
ic

 R
ad

ia
tio

n 
C

oe
ffi

ci
en

ts
 [ 

λ 15*
 , 

µ 15*
 ]

 

 

λ
55
*

µ
55
*

λ
15
*

µ
15
*

0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
av

e 
E

xc
ita

tio
n 

F
or

ce
 a

nd
 T

or
qu

e 
M

ag
ni

tu
de

 [ 
|X

1* | ,
 |X

5* | ]

ω*

 

 

0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
0

0.1

0.2

0.3

0.4

0.5

W
av

e 
E

xc
ita

tio
n 

F
or

ce
 a

nd
 T

or
qu

e 
P

ha
se

 [ φ
1*  , 

φ 5*  ]

 

 

|X
1
* |

|X
5
* |

φ
1
*

φ
5
*

Fig. 2 Nondimensional hydrodynamic radiation (top) and wave
excitation (bottom) coefficients. The nondimensionaliza-
tion is given by: ω∗ = ω

√
h/g, µ∗55 = µ55/I55, λ

∗
55 =

λ55/ωI55, X∗5 = X5/ρgh2w, µ∗15 = µ15/ρh3w, λ∗15 =

λ15/ωρh3w, X∗1 = X1/ρgwh, φ∗i = φi/π . X∗1 and X∗5 are the
nondimensionalized surge and pitch wave exciting force
coefficients per unit wave amplitude, respectively.

or the memory function, as it represents the wave radiation effects caused
by previous OSWEC motions. C55 is a constant related to the hydrostatic
restoring torque, ∀ is the WEC displaced volume in calm water, rb is the
radial distance from the origin to the center of buoyancy, m is the WEC
mass, rg is the radial distance from the origin to the center of gravity, and
g is the gravitational acceleration. λvn is the quadratic-drag coefficient
caused by viscous effects, ζ5 and ζ̇5 are the angular position and veloc-
ity, respectively, and µ55(∞) is the added moment of inertia at infinite
frequency.

State-Space Formulation

For control application, it is convenient to have the equations of motion in
state-space form. It is common to approximate the convolution integral
for the wave radiation torque by a linear state-space approximation,

Ẋr55(t) = Ar55Xr55(t) + Br55ζ̇(t) (3)∫ t

−∞

Kr55(t − τ)ζ̇5(τ)dτ ≈ Cr55Xr55(t) + Dr55ζ̇5 (4)

where Ar55, Br55,Cr55,Dr55 are the time-invariant state, input, output, and
feed-through matrices, and X55 is the state vector describing the convolu-



tion kernel. Generally, D55 can be set to zero with minimal effect on the
dynamics. Combining (4) with (2), we can establish

ζ̈5(t) =
−Cr55Xr55(t) −C55 sin(ζ5(t)) − λvn|ζ̇5(t)|ζ̇5(t) + τe5(t) + τm(t)

It
(5)

This defines a nonlinear system described by the continuous time state-
space equations

ẋ(t) = Anl x(t) + Bnlu(t)

y(t) = Cnl x(t) + Dnlu(t)
(6)

with state matrices

Anl =


Ar55 0 Br55

0 0 1
−

Cr55
It

− 1
Itζ5(t) C55 sin(ζ5) − 1

It
λvn|ζ̇5|

 , Bnl =


0 0
0 0
1
It

1
It


Cnl =

[
0 1 0
0 0 1

]
, x(t) =

Xr55(t)
ζ5(t)
ζ̇5(t)

 , u(t) =

[
τe5(t)
τm(t)

] (7)

Linearized System

It is also convenient to have a linearized state space for MPC applica-
tions. In this study, we consider the quadratic and nonlinear viscous
drag, λvn to be zero. The small angle approximation allows us to define
sin(ζ5(t)) ≈ ζ5(t). With these definitions, (5) can be linearized to

ζ̈(t) =
1
It

[−Cr55Xr55(t) −C55ζ5(t) + τe5(t) + τm(t)] (8)

In the standard, continuous time state-space form,

ẋ(t) = Ac x(t) + Bcu(t)

y(t) = Cc x(t) + Dcu(t)
(9)

a linearized state-space is establishedẊr55(t)
ζ̇5(t)
ζ̈5(t)

 =


Ar55 0 Br55

0 0 1
−

Cr55
It

−
C55
It

0


Xr55(t)
ζ5(t)
ζ̇5(t)

 +


0 0
0 0
1
It

1
It


[
τe5(t)
τm(t)

]
[
ζ5(t)
ζ̇5(t)

]
=

[
0 1 0
0 0 1

] Xr55(t)
ζ5(t)
ζ̇5(t)


(10)

The continuous time system (9) can be discretized using a zero-order-
hold to define

x(k + 1) = Ad x(k) + Bdu(k)

y(k) = Cd x(k) + Ddu(k)
(11)

where

Ad = eAc∆t Bd = A−1
d (Ad − I)Bd if Ad nonsingular (12)

Cd = Cc Dd = Dc (13)

CONTROLLER DESIGN

A simple block diagram is shown in Fig. 3 to describe the basic con-
trol system architecture. There are three primary blocks in the control
architecture: an extended Kalman filter with unknown inputs (EKF-UI),
autoregressive (AR) model, and MPC. The extended Kalman filter is de-
signed to accept the current OSWEC angular position, ζ5(t), velocity,
ζ̇5(t), and PTO control torque, τm, to estimate the wave excitation force
in pitch, τ̂e5(t). The AR model uses the time history of τ̂e5 to define pa-
rameters that are used to forecast the incident wave excitation force in
pitch τ̃e5. The calculated τ̃e5 values are then used in the MPC algorithm
to construct an objective function that defines the PTO torque from the
current time step to n steps ahead, τ̄m. The control input calculated for the
current time, τm(k), is sent to the OSWEC, and the process is repeated.

OSWEC

EKF-UIAR ModelMPC

���(�)

�̃��(� + 	) �̂��(� − 1)

�� � , � ���(�)

�� � , � � , �(�)

��(�)

Fig. 3 Simple block diagram showing the basic structure of the
control system implemented for the OSWEC

Extended Kalman Filter with Unknown Input
The extended Kalman filter (EKF) method for state estimation requires
complete knowledge of the deterministic model inputs. However, these
inputs may not always be available. In this study, the primary inputs
to the WEC model are τe5 and τm. The extended Kalman filter with
unknown input (EKF-UI) method, derived in (Ghahremani and Kamwa
2011), presents a solution to state estimation in a nonlinear system with
unknown inputs. An overview of the EKF-UI employed in this work is
described here; with a continuous time system defined as

ẋ = fk(xk, uk, u∗k,wk) wk ∼ N(0,Q)

yk = hk(xk, vk) vk ∼ N(0,R)
(14)

Discretized to
xk+1 = fk(xk, uk, u∗k,wk) wk ∼ N(0,Q)

yk = hk(xk, vk) vk ∼ N(0,R)
(15)

where fk is a nonlinear system function, xk is a state vector, uk is the
known input, u∗k is the unknown input, and wk and vk represent input
and measurement noise, respectively. Finally, yk is the observed output
vector. The noise is assumed to be uncorrelated Gaussian white noise
with a normal distribution. The following gradients are first defined:

Fk =
δ fk

δx

∣∣∣∣∣
x̂k|k

Bk =
δ fk

δu

∣∣∣∣∣
x̂k|k

Lk =
δ fk

δw

∣∣∣∣∣
x̂k|k

Hk =
δhk

δx

∣∣∣∣∣
x̂k|k−1

Mk =
δhk

δw

∣∣∣∣∣
x̂k|k−1

(16)

After initialization, there are two primary steps to the EKF-UI. In the
measurement update, we correct for errors in the predicted values for
the system states (20) and, subsequently, the unknown input value (21).
Here we also compute the gain, Kk, and covariance, Pk, matrices of the
EKF-UI in equations (17) and (22), respectively. In the time update, the
covariance, system state vector, and system outputs are estimated for the
next time step in equations (23-25).

Measurement update:

Kk = PkHT
k (HkPkHT

k + R)−1 (17)

S k = (BT
k HT

k R−1(I − HkKk))−1HkBk (18)

ek = yk − ŷk|k−1 (19)

x̂k|k = x̂k|k−1 + Kkek (20)

û∗k−1|k = S kBT
k−1HT

k R−1(I − HkKk)(ek + HkBk−1û∗k−2) (21)

Pk|k = (I − KkH)Pk|k−1 − KkH)Pk|k−1 + (I − Kk) (22)

Time update:

Pk+1|k = FkPk|kFT
k + Q (23)

x̂k+1|k = fk(xk, uk,wk) (24)

yk+1|k = hk(xk, vk) (25)



From the EKF-UI, the estimated state and unknown inputs calculated in
equations (20) and (21) are stored and passed to the AR parameterization
and MPC parts of the control algorithm.

Autoregressive Model
An autoregressive model is employed to predict the pitch wave excitation
force, τe5. Equation (26) shows the basic structure of this model

ˆ̄y(k|θ) = φT (k)θ (26)

where

ˆ̄y(k|θ) =
[
τ̃e5(k + 1) . . . τ̃e5(k + n)

]
, φT (k) =

[
τ̂e5(k) . . . τ̂e5(k − n)

]
(27)

and θ is a matrix of parameters found through a least-squares minimiza-
tion. We define τ̃e5 and τ̂e5 as the wave excitation torque in pitch fore-
casted by the autoregressive model and estimated by the EKF-UI, respec-
tively.

Model Predictive Control
MPC is used to determine the PTO torque in the OSWEC system. By
taking the predicted behavior of the OSWEC into account, the MPC al-
gorithm defines a control input based on a prescribed objective function.
In order to do this, the future behavior of the OSWEC must be estimated.

OSWEC Motion Prediction

Beginning with a discrete and linearized state-space equation of motion,

x(k + 1) = Ad x(k) + Bdu(k)

y(k) = Cd x(k) + Ddu(k)
(28)

we define the state-space realization,

A = Ad B = Bd

C = [0 0 1] D = [0 0]
(29)

with the state and input vectors, x(k) and u(k):

x(k) =
[
X55(k) ζ5(k) ζ̇5(k)

]T
, u(k) =

[
τe5(k) τm(k)

]T
(30)

We can predict the system output n steps ahead with the following system
of equations:

x(k + 1) = Ax(k) + Bu(k)

y(k + 1) = CAx(k) + CBu(k)

x(k + 2) = Ax(k + 1) + Bu(k + 1)

y(k + 2) = CA2 x(k) + CABu(k) + CBu(k + 1)

...

y(k + n) = CAn x(k) + CAn−1Bu(k) + CAn−2Bu(k + 1) + . . .

+ CA0Bu(k + n − 1)

(31)

We can put the equations from (31) into matrix form:


ζ̇5(k + 1)

...

ζ̇5(k + n)

 =


CA
...

CAn

︸︷︷︸
M1

x(k) +


CB 0 · · · 0

CAB CB · · ·
...

...
. . .

. . . 0
CAn−1B · · · CAB CB

︸                                ︷︷                                ︸
M2


u(k)
...

u(k + n − 1)


(32)

It is useful to introduce a permutation matrix P,

P =



1 0 · · · 0 0 · · · 0

0 0 · · · 1 0 · · ·
...

0 1 · · · 0 0 · · ·
...

...
...

. . . 0 1
. . .

...
...

... · · ·
...

... · · · 1


∈ <n×2n (33)

that we can postmultiply M2 by
˙̄ζ = M1 x(k) + M2Pū (34)

where

ū =
[
τ̄e5 τ̄m

]T
=

[
τ̃e5(k) . . . τ̃e5(k + n), τm(k) . . . τm(k + n)

]T
(35)

so that M2 is separated into two matrices by the permutation matrix such
that

M2P =
[
M21 M22

]
and we can arrive at:
˙̄ζ5 = M1 x(k) + M21τ̄e5 + M22τ̄m (36)

It should be noted that τ̄e5 and τ̄m consist of torque values from the current
time, to the time step (k + n) in the future.

Objective Function for Power Maximization

To define our objective function, we start with the equation for PTO
power,

P(t) = −τm(t)ζ̇5(t) (37)

The power maximization at a discrete time step can be presented as

max
τm(k)

P(k) = max
τm(k)
−τm(k)ζ̇5(k) = min

τm(k)
τm(k)ζ̇5(k) (38)

Equation 38 presents an interesting problem as the power output of the
PTO is a function of both the PTO torque, τm(k), and OSWEC angular
velocity, ζ̇5(k), at a fixed point in time; however, ζ̇5(k) is a direct result
of τm(k − 1). To maximize time-averaged power, we define an initial
objective function (39) for the control algorithm.

min
τm(tk)

Jp, Jp =

n∑
k=1

τm(k)ζ̇(k + 1) = τ̄T
m

˙̄ζ5 (39)

We make the assumption that, with a small enough time step, any errors
caused by the difference of time steps in the product used to define the
objective function (39) and the product used to calculate the PTO power
(37) will be insignificant. Using MATLAB’s built-in function, quadprog,
(MATLAB 2016) finding the solution to a quadratic programming prob-
lem is fairly straightforward. For this reason, we modify (39) to (44),

Jp = τ̄T
m

˙̄ζ (40)

JT
p = x(t)T MT

1 τ̄m + τ̄T
e5 MT

21τ̄m + τ̄T
m MT

22τ̄m, JT = J (41)

Jp = [M1 x(k) + M21τ̄e5]T τ̄m + τ̄T
m MT

22τ̄m (42)

with

fp = M1 x(k) + M21τ̄e5, Qp = 2M22 = (M22 + MT
22) (43)

such that

Jp =
1
2
τ̄T

mQpτ̄m + f T
p τ̄m (44)

where (44) is the standard form necessary to run MATLAB’s quadprog
function, and provides an objective function for cumulative absorbed
power.



Motion Constraints

It is important to consider constraints on the motion of the OSWEC to
keep the control behavior practical and realistic. To do this, we first
modify the C matrix from (29) to be

C =
[
0 1 0

]
(45)

By applying the same methodology that was used to arrive at (44), we
establish a second equation for the predicted angular positions of the
OSWEC:

ζ̄5 = M1,mc x̄ + M21,mcτ̄e5 + M22,mcτ̄m, (46)

Setting the motion constraint |ζ̄5| ≤ ξ(max), where ξmax is the angular
limit of motion in radians, we can create two equations,

M1,mc x̄ + M21,mcτ̄e5 + M22,mcτ̄m ≤ ξmax

M1,mc x̄ + M21,mcτ̄e5 + M22,mcτ̄m ≥ − ξmax
(47)

These can be modified to

M22,mcτ̄m ≤ ξmax − [M1,mc x̄ + M21,mcτ̄e5]

−M22,mcτ̄m ≤ ξmax + [M1,mc x̄ + M21,mcτ̄e5]
(48)

which is of the form Ax ≤ b where

A =

[
M22,mc

−M22,mc

]
, b =

[
ξmax − [M1,mc x̄ + M21,mcτ̄e5]
ξmax + [M1,mc x̄ + M21,mcτ̄e5]

]
(49)

with x = τ̄m

Torque Penalty

With the initial objective function (44), we can now include an additional
term to add a penalty to the amount of torque used by the PTO. This is
the simplest way of reducing loads on the system. If we define another
objective function,

Jτ = ατ̄T
mτ̄m (50)

where α is a weighting term on the torque penalty.

Foundation Force Reduction

The most direct way of minimizing the loads on the system is to explicitly
consider the foundation force in the objective function. Note that this
does include the necessity for a prediction of the wave excitation force
in surge, fe1. We establish fe1 to have a linear relationship to τe5 that is
dependent on the sea state, as the two signals are both in phase (Fig. 2).
This assumption provided simulation results similar to those performed
with a perfect prediction of fe1. Considering the one-degree-of-freedom
surge equation of motion,

0 = fe1(t) + fr1(t) + fr15(t) (51)

where fe1 is the wave exciting surge force, fr1 is the force required by the
foundation to keep the OSWEC stationary, and fr15 is the wave radiation
force. Equation (51) can be modified to

fr1(t) = − fe1(t) − fr15(t) (52)

fr1(t) = − fe1(t) + µ15(∞)ζ̈5(t) +

∫ t

−∞

Kr15(t − τ)ζ̇5(τ)dτ (53)

The second two terms in (53), representing fr15 (µ15 and convolution in-
tegral), can be linearized in a state-space approximation, and the one-
degree-of-freedom pitch equation of motion can be put in the discrete

state-space form

Asys =


Ar15 0 0 Br15

0 Ar55 0 Br55

0 0 0 1
0 −

Cr55
It

−
C55
It

0

 Bsys =


0 0
0 0
0 0
1
It

1
It


Csys =

[
C15 −µ15

Cr55
It

−µ15
C55
It

0
]

Dsys =
[
µ15
It

µ15
It

] (54)

where

Xsys =
[
Xr15 Xr55 ζ5(k) ζ̇5(k)

]T
, u(k) =

[
τe5(k) τm(k)

]T
(55)

such that the surge foundation force can now be calculated as

fr1(k + 1) = − fe1(k) −CsysXsys(k) + Dsysu(k) (56)

By applying a similar method that was used to derive (36), we can arrive
at an equation for the predicted foundation forces, f̄r1. Starting with the
same method of n step ahead prediction, we can again put the equations
in the matrix form

fr1(k + 1)
...

fr1(k + n)

 =


CA
...

CAn

︸︷︷︸
N1

x(k)+


CB + D 0 · · · 0

CAB CB + D · · ·
...

...
. . .

. . . 0
CAn−1B · · · CAB CB + D

︸                                             ︷︷                                             ︸
N2


u(k)
...

u(k + n − 1)

 (57)

By using the permutation matrix (33) and defining ū = [τ̄e5 τ̄m]T as in
(35), we can reduce this to the following equation describing the pre-
dicted foundation force to be reduced,

f̄r1 = N1 x(k) + N21τ̄e5 + N22τ̄m − f̄e1 (58)

where f̄e1 is a vector of predicted wave excitation surge forces. To main-
tain a convex solution space and ensure optimization of the magnitude of
the force, we consider the addition of a penalty term, J f , to the objective
function, J, such that

J = Jp + Jτ + J f (59)

where

J f = γ f̄ T
r1 f̄r1 (60)

and γ is a penalty term on the foundation force terms. We can expand
this based on our derivation of f̄r1,

JF = γ[N1 x(k) + N21τ̄e5 + N22 − f̄e1]T [N1 x(k) + N21τ̄e5 + N22 − f̄e1]

= γ[xT (k)NT
1 + τ̄T

e5NT
21 + τ̄T

mNT
22 − f̄ T

e1][N1 x(k) + N21 ¯τe5 + N22 − f̄e1]

= γ[xT (k)NT
1 N1 x + + f̄ T

e1 f̄e1 + τ̄T
e5NT

21N21τ̄e5+

2(xT (k)NT
1 N21τ̄e − f̄ T

e1N1 x(k) − f̄e1N21τ̄e5)+

τ̄T
mNT

22N22τ̄m + 2(xT (k)NT
1 N22 + τ̄T

e5NT
21N22 − f̄ T

e1N22)τ̄m]
(61)

and drop the terms that are independent of τ̄m because they are not de-
pendent on the solution to the quadratic problem. So we define

Q f = γ2NT
22N22

f f = γ[2(xT NT
1 N22 + τT

e5NT
21N22 − f T

e1N22)]T (62)

and arrive at a third objective function with a weighting term, γ

J f =
1
2
τ̄T

m(γQ f )τ̄m + γ f f )T τ̄m (63)



Objective Function Nondimensionalization

The functions (44), (50), and 50) are three quantities with different units.
Because of this, we use the nondimensionalization for Jp, Jτ, and J f pre-
sented in (N. M. Tom, Y.-H. Yu, Wright, and Lawson 2017), and rewrite
(59) as

J =
Jp

wPw︸︷︷︸
Cw

+α
∣∣∣∣ τ̄m

1
6ρgh2Ha/2︸        ︷︷        ︸

τ̄∗m

∣∣∣∣2 + γ
∣∣∣∣ f̄r1

1
2ρgwhHa/2︸         ︷︷         ︸

f̄ ∗r1

∣∣∣∣2 (64)

where Cw is defined as the capture width of the OSWEC. The respective
width and height of the OSWEC are w and h, Pw is the time-averaged
wave power, and Ha is the average wave amplitude. Equation (64) is the
final objective function used in this work.

METHODOLOGY AND RESULTS

The control algorithm has been tested in regular waves to verify con-
troller design, and in irregular waves to evaluate controller performance
in a more realistic wave environment.

Regular Wave Analysis
Regular wave analysis is convenient for testing the algorithm to ensure
that the desired performance is achieved. We are able to compare the
performance of the three aspects of the control architecture in the time
domain. It is simple to evaluate any errors in the tracking of τe5 by the
EKF-UI (Fig. 4). The autoregressive model forecast should also be ac-
curate in regular waves, as the model needs to define a sine function
without any higher order harmonics (Fig. 5). The implementation of
the penalty terms, γ and α, to the objective function can be analyzed by
looking at the magnitudes of τm and fr1(Fig. 7), and the power extraction
using MPC can be compared to the theoretical maximums found using a
tuned spring-damper control loop (Fig. 6). Considering the relation of
the power to the load is important as the overarching goal is to extract as
much possible power while minimizing loads. For this purpose, we use
the definition for Ptl, described in (N. M. Tom, Y.-H. Yu, Wright, and
Lawson 2017)

PtL = Cw

(
Cw

f ∗r1 + τ∗m

) (
PO

σO

)
(65)

where Cw, f ∗r1, and τ∗m are the nondimensional terms defined in (64), PO

is the time-averaged power absorbed, and σO is the standard deviation of
this power. In (65), the first term represents the PTO-absorbed power of
the OSWEC, the second considers this power with respect to large struc-
ture loading, and the third term considers large PTO peak instantaneous
power spikes.

Regular Wave Results
Regular wave analysis was done for a wave with a period of 8 seconds
and amplitude of 1m. Figure 4 shows good tracking of τe by the EKF-UI,
after an initialization time of about 40 seconds for both the EKF-UI
and the wave train. The error, defined as

√
(τe5 − τ̂e5)2, is insignificant

after the EKF-UI initialization. With this information, we are then able
to use the AR model to define τ̃e5. As expected, the forecast is nearly
perfect, as the signal is oscillating at a fixed amplitude and frequency
(Fig. 5). The forecast was done for one period in advance. With accurate
implementation of the EKF-UI and forecasting using an AR model, the
MPC algorithm is implemented to maximize the PTO-absorbed power
of the OSWEC. To validate this, we compare the MPC algorithm to
an optimized spring damper control loop that provides the theoretical
maximum absorbed power under sinusoidal motion (Falnes 2002).
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Fig. 4 Actual and estimated wave excitation forces using the
EKF-UI in regular waves
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Fig. 5 Actual and forecast wave excitation forces using the AR
model. τ̃e5 is shown periodically in the interest of clarity,
but is calculated at every time step.

Figure 6 shows the results of PTO power of the WEC device.

Noticeably, the magnitude of the power fluctuations are less using the
MPC algorithm. However, the time-averaged power output using MPC
is 4% more than that using the spring-damper control system, before
introducing γ and α in the objective function. This increase is most
likely because the MPC algorithm does not constrain the OSWEC
to sinusoidal motion and is thus able to absorb slightly more power.
Associated with the increase of power absorption, the standard deviation
of the foundation forces ( fr1) and PTO torque (τm) are increased by
approximately 9% with the implementation of MPC. The nonsinusoidal
motion of the OSWEC introduces greater foundation loading and PTO
actuation at the peaks of the OSWEC’s motion. When implementing γ
and α, it is useful to use contour plots to see the penalty term’s effect on
PO, στm , σ fr1 , and Ptl (Fig. 7).

As expected, as the penalty term grows, the power output decreases, but
so does the actuation effort and loads on the system. In this case, by
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Fig. 7 Contour plots at varied γ and α penalty terms in the MPC objective function (64) with H = 1 and T = 8. Here, the superscript n signifies a
term normalized by the results using the spring-damper control system.
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Fig. 6 PTO power for the MPC (Pmpc) and spring-damper (PS D)
control systems

the definition of Ptl in (65), the last contour in Figure 7 suggests that
higher α and γ values result in better Ptl performance for the range of
α and γ values tested. This does not, however, mean that there is not
an optimal weighting to maximize Ptl if larger α and γ are considered.
In irregular waves of varying significant wave heights and frequencies,
this relationship can change to differ from the trend seen in Figure 7
and suggests optimal weighting values to maximize Ptl within the tested

range.

Irregular Wave Analysis
After confirming that this control algorithm is achieving the desired per-
formance in regular waves, we can implement MPC in an irregular wave
sea state. For this work, a Bretschneider wave spectrum as defined by ??
was used, where omega, ωm, and Hs are the frequency, modal frequency,
and significant wave height, respectively.

S (ω) =
5
16

ω4
m

ω5 H2
s e−5ω4

m/4ω
4

(66)

It is important to first understand the accuracy of the wave excitation
force estimation, (τ̂e5), AR model, and associated forecast of τe5 in ir-
regular waves (Figs. 8, 10). Contour plots that show the power output,
standard deviations, σn

τm
and σn

fr1
, and Pn

tl at a range of γ and α weight-
ings to evaluate the performance of the MPC algorithm and objective
function are shown in Fig. 11 for one sea state. The superscript n signi-
fies a term normalized by the maximum value using a perfect prediction
and no weighting.

Irregular Wave Results
To successfully forecast the incident wave excitation force, the past
forces must be accurately estimated. For this, we use the EKF-UI. Figure
8 shows a sample time history, τe5 and τ̂e5, along with the error between
the two signals. The EKF-UI takes about 40 seconds to converge to ac-
curately estimate τe. After this, the greatest errors seen are < 1% of
the actual wave forces. With the successful estimation of τe5, we then
define an AR model to forecast the incident wave excitation force, τ̃e5.
Figure 10 shows the wave forecasting performance for a sample time



period. Although the wave excitation force forecast is not perfect, the
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Fig. 8 Actual and estimated wave excitation forces for Hs = 1m
and T p = 8s for the first 100 s of operation

MPC algorithm works well when the AR model to provide a forecast
with sufficient accuracy. Figure 9 shows this, especially for shorter peak
periods. Interestingly, the mean power output using the AR model to
forecast τe5 is greater than that with a perfect forecast for Tp = 8. The
authors acknowledge that all of the power available may not be absorbed
with a perfect forecast of only one peak period ahead. It is possible, in
this circumstance, that the AR model forecast is doing a better job of set-
ting up the OSWEC for future wave excitation forces. Careful tuning of
the autoregressive order and forecasting horizon may increase the fore-
cast accuracy for longer peak periods. Alternatively, the use of a bank
of Kalman filters as suggested in (Nguyen, Sabiron, Tona, Kramer, and
Sanchez 2016) may be advantageous. For this work, the forecast hori-
zon time was defined as equal to Tp and the model order was defined as
1.25 Tp

dt , where dt is the length of the discrete time step. A longer forecast
horizon or higher model order did not provide better MPC performance.
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Fig. 9 Normalized power out at varied peak periods (Tp), with
Hs = 1m and α = γ = 0. Par, and Pp as the average power
output, with τ̃e5 calculated using an autoregressive model
or assumed to be perfect, respectively.

Implementation of the penalty terms, γ and α, in the MPC optimization
function is displayed in Figure 11 for a significant wave height (Hs) of
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Fig. 10 Forecasted wave excitation force and the actual wave ex-
citation forces for Hs = 1m and Tp = 8s. τ̃e5 is shown
periodically in the interest of clarity, but is calculated at
every time step.

1 meter and peak period (Tp) of 8 seconds. The addition of weighting
terms also contributes to a reduction in Pn

O, σn
τm

, and σn
fr1

, as defined
in Figure 11, and is mostly consistent with the results observed in
regular waves. When considering peak periods ranging from 6 to 14
seconds, the power output at higher peak periods drops along with στm

and σ fr1 , and is consistent with the results in Fig. 9. Additionally, the
trends seen in Fig. 11 (a) - (c) are seen in all of the tested wave peak
periods. Figure 11(d) suggests that there is are optimal γ and α values to
maximize Ptl. A shift of the OSWEC’s near peak Pn

tl in varied sea states
is shown in Fig. 12. Similar areas representing the near peak values
of the Pn

tl contours for a variety of peak periods suggest a shift towards
a larger weighting term for longer periods. This shift is likely because
the OSWEC may be closer to resonance in longer waves and there is
less PTO actuation for power production, so a higher emphasis on the
penalty terms is necessary to mitigate loads.

Table 2 Power, torque, and load along near maximum Ptl contour
PO,avg PO,σ στm,avg στm,σ σ f r1,avg σ f r1,σ

Tp = 6 44.96 kW 8.5% 1.46 Nm 11.3% 0.80 N 11.1%
Tp = 8 72.09 kW 9.4% 1.88 Nm 12.2% 1.08 N 12.2%

Tp = 10 68.93 kW 8.8% 1.68 Nm 11.1% 0.98 N 11.1%
Tp = 12 60.44 kW 6.1% 1.46 Nm 7.5% 0.88 N 7.6%
Tp = 14 50.22 kW 4.8% 1.26 Nm 6.0% 0.78 N 5.9%

It should be noted that for any specific peak period, there is a
wide range of α and γ values that result in similar Ptl performance. Table
2 shows the changes of P, στm , and σ fr1 along the contours shown in
Figure 12. This table does not show the relation of a specific weighting
to another, but rather a percent change in the metric from the minimum
to maximum value along the Ptl contour. This change suggests that for
any specific Ptl value, a focus can still be put on power maximization or
load minimization in the choice of α and γ, and that weighting function
optimization for the OSWEC based on Ptl is not absolute. These results
do, however, suggest that there is merit in adding a penalty term to the
MPC objective function to reduce loads on the system.
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Fig. 11 Contours showing α and γ implementation in irregular waves with Tp = 8s and Hs = 8m. The superscript n signifies a normalized term, in
this case by the related simulation output using a perfect prediction without any weighting.
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within each contour, but with a difference from the line
displayed.

CONCLUSION

This work has presented a control algorithm for a novel OSWEC that
offers the ability to balance the power absorption against the structural
loads on the system. An extended Kalman filter with unknown inputs

was used to estimate the wave excitation forces on the OSWEC. Using
the time history of the estimated wave excitation forces, an AR model
was defined and used to forecast the incident wave. The wave forecast
was then used in a MPC algorithm to define the torque at the PTO of the
OSWEC. The MPC algorithm uses an objective function that includes
penalty terms on the control actuation and the foundation forces of the
OSWEC. Analysis was done in regular and irregular waves to validate
the performance of this work’s proposed control system architecture.

The EKF-UI was first tested in regular waves to ensure accurate
tracking of the wave excitation force (τe5). It was found that, after an
initialization period, the errors between τ̂e5 as estimated by the EKF-UI
and τe5 were near zero (Fig. 4). By applying the estimated wave force,
the incident wave forecast was accurate using an AR model (Fig. 5).
This response was expected, as the signal to forecast was simply a
sine wave. Finally, the performance of the MPC algorithm with and
without penalty weights, γ and α, was evaluated in regular waves.
Near theoretical maximums were attained using the MPC without any
penalty weights. Expected behavior was observed by looking at the
contour plots created at different γ and α values. As the weightings
were increased, power, torque, and foundation loads decreased. Using
this work’s definition of Ptl (Eq. 65), we found that an increase in
penalty weighting was associated with an increase of Ptl in regular waves.

The EKF-UI’s performance in irregular waves was similar to its
performance in regular waves. With accurate tracking of τe5, the AR
model provided adequate forecasting of the incident wave. Although
this forecast was imperfect, the controller performance was minimally
effected in shorter wave periods wherein the AR model was well defined.



It is possible that more accurate tuning of the AR model in longer
wave periods would provide power output values closer to those using
a perfect forecast. Consistent results were seen as the weighting terms
were increased in the MPC objective function. As with the regular
wave results, power, PTO torque, and foundation loads decreased as the
weighting terms were increased. The Ptl contours (Fig. 12) suggest that
it may be beneficial to include a weighting term on the MPC objective
function. In doing so, greater power is produced in comparison to
the loading of the OSWEC, possibly increasing the life or reducing
maintenance costs of the device.
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