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User-Preference-Driven Model Predictive Control of Residential
Building Loads and Battery Storage for Demand Response

Xin Jin, Kyri Baker, Steven Isley and Dane Christensen

Abstract— This paper presents a user-preference-driven
home energy management system (HEMS) for demand response
(DR) with residential building loads and battery storage. The
HEMS is based on a multi-objective model predictive control
algorithm, where the objectives include energy cost, thermal
comfort, and carbon emission. A multi-criterion decision mak-
ing method originating from social science is used to quickly de-
termine user preferences based on a brief survey and derive the
weights of different objectives used in the optimization process.
Besides the residential appliances used in the traditional DR
programs, a home battery system is integrated into the HEMS
to improve the flexibility and reliability of the DR resources.
Simulation studies have been performed on field data from
a residential building stock data set. Appliance models and
usage patterns were learned from the data to predict the DR
resource availability. Results indicate the HEMS was able to
provide a significant amount of load reduction with less than
20% prediction error in both heating and cooling cases.

I. INTRODUCTION

Residential buildings account for 37.6% of the total elec-
tricity consumption in the United States in 2015, higher than
all other sectors including commercial buildings, industrial
buildings, and transportation [1]. Within the residential build-
ing sector, spacing heating, spacing cooling, water heating,
and wet cleaning are among the top end-use types and
account for about half of the total electricity consumption.
These loads are flexible and could be curtailed or shifted at
the request of the grid. Residential building loads represent
a largely untapped resource for providing grid services such
as demand response (DR).

DR programs engage users by reducing or shifting the
electricity usage during peak periods to balance the demand
and the supply in the electric grid. DR programs include,
for example, time-based pricing and direct load control. In
direct load control programs, the utility companies or the
aggregators cycle home appliances such as air conditioners
and water heaters on and off during peak demand periods in
exchange for a financial incentive and lower electric bills for
the consumer.

Existing DR programs have many limitations. On one
hand, utility companies tend to request full control of the
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appliances to secure their investment and maximize the DR
capabilities, which often causes discomfort. Although the
grid control may be overridden occasionally, the users could
lose financial incentives if they opt out too often. On the other
hand, some users are more tolerable to discomfort and their
homes are able to provide load reduction more aggressively.
The lack of understanding in user preferences hinders the
full utilization of the DR potential in residential buildings.
Battery storage is becoming an attractive DR tool due to
rapidly decreasing battery costs. With a home battery system,
the loads could be easily shifted to avoid the peak demand as
well as improve the self-consumption of photovoltaic (PV)
generation. Due to the higher availability and reliability of
the DR resources enabled by a home battery system, utility
companies are likely to provide higher incentives to offset
the initial capital cost of the battery.

Prior research focused on residential DR using building
loads [2], battery storage [3], or both [4], [5]. To the best
of our knowledge, user preferences have not been explicitly
considered in most of the existing work except [6], where
DR scheduling was formulated as a multi-objective mixed
integer programming problem. However, appliance models
were simplified to combinations of average runtime and
energy consumption, and no battery storage was considered.
In addition, mixed integer programming problems are com-
putationally intensive to solve and may not be suitable for
embedded platforms, such as those needed for cost-effective
home energy management system (HEMS) products.

We present a HEMS to address the issues in the existing
DR programs and integrate building loads with battery stor-
age to provide more effective DR services with consideration
of user preferences. Main contributions of this paper include:

• Introduction of a multi-criterion decision making ap-
proach to quickly determine the user preferences on
different criteria that are pertinent to user engagement
in DR programs;

• Categorization of residential building loads and qualita-
tive analysis of their potential for DR;

• Formulation of residential DR as a multi-objective
quadratic programming problem for ease of implemen-
tation on embedded or resource-constrained platforms;

• Demonstration of improved flexibility and reliability of
residential DR resources with the coordinated control
of battery storage and building loads.

The paper is organized into five sections. Section 2 pro-
vides an overview of the control architecture as well as the
details of the individual components. Section 3 formulates
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the problem as a multi-objective optimization problem and
discusses the details of the appliance models. A load shed
case study, based on field data from a residential building
stock data set, is discussed in Section 4. Section 5 concludes
the paper and recommends topics for future research.

II. SYSTEM ARCHITECTURE FOR RESIDENTIAL DR

Residential equipment comprises a variety of devices that
have distinct characteristics. Control plays a critical role to
maximize the DR potential of the residential resources. In
this section, we first define the overall control architecture of
the proposed HEMS and then discuss the details of individual
components in this architecture.

A. Control Architecture

A multi-objective optimization problem is formulated to
incorporate user preferences of different criteria and co-
ordinate the building loads with battery storage. Figure 1
provides an overview of the system architecture of the
proposed HEMS. The workflow for deploying the HEMS
in a new home is explained below.

1) Survey: The deployment starts with a brief survey that
is generated to elicit the user’s preferences over a set of
criteria or attributes such as energy cost, thermal comfort,
carbon emission, etc. A set of weights of these attributes is
derived from the survey and sent to the optimization solver to
construct the objective function for the optimization problem.

2) Learning: During the initial period of the deployment,
the HEMS collects data about the operating status and
power consumption of the appliances and then performs
self-learning, which consists of system identification and
statistical learning. System identification generates models
of the controllable loads for the optimization process. Statis-
tical learning extracts the information that cannot be easily
represented as dynamic models, such as the usage patterns
of the uncontrollable loads and the water draw patterns.

3) Control: The optimization solver generates optimal
solutions for individual devices using the user-preference-
driven objective function, a set of appliance models from
system identification, usage patterns from statistical learning,
and weather forecast from weather services. Data are col-
lected from the appliances to update the variables in the next
optimization step. When a DR signal is received hours before
the event starting time, the HEMS generates an estimate
of the available DR resources during the DR period and
sends the forecast to the utility or aggregator. The HEMS
could either pre-cool or pre-heat the building depending on
the season and pre-charge the battery to maximize the load
reduction. When the HEMS is not providing DR, it could
operate in other modes such as energy-efficient mode or low-
carbon mode based on the user’s preferences.

B. Residential Appliances

Many of the end-use types are suitable for residential DR,
such as space heating, space cooling, water heating, wet
cleaning, etc. These loads are considered controllable loads
and make up about 50% of the total electricity consumption

Fig. 1. Control architecture of the HEMS

in the U.S. residential building sector [1]. Other loads such as
lighting, refrigeration, cooking, electronics, computers, and
miscellaneous loads are either unsuitable or too small for
DR. These loads are considered uncontrollable loads since
they are not directly controlled by the HEMS.

Among the controllable loads, thermostatically controlled
loads such as heating, ventilating, and air conditioning
(HVAC) and water heaters are thermal storage devices and
can provide large load reduction if pre-cooling or pre-heating
is implemented to shift the loads. User-initiated loads such
as dishwashers and clothes dryers can be used for DR if
delaying the start of these cycles does not adversely affect
the user’s convenience.

Inverter-controlled power sources such as PV and home
battery systems have emerged in the residential building
sector. The penetration rate of residential PV has significantly
increased over the past few years. Building loads are not
always coincidental with the PV generation. With the net
metering policy, the excessive PV can backfeed to the grid;
otherwise it has to be either curtailed or stored in batteries.
Home battery systems can significantly increase the self-
consumption of the PV-generated electricity.

C. User Preference

Future HEMS are expected to satisfy users by acting
on their behalf through personalized adaptation to their
preferences. It is important to understand how the preferences
of individuals vary within a probability distribution, what
occupants consider ideal, and how they value tradeoffs
between the costs and benefits of home services. User
preferences vary across the population and change over time.
Some occupants value a hot shower above all else, others
may be willing to reduce their hot water temperature or
shorten a shower occasionally to save money. Acting on
behalf of occupants in out-of-sample situations requires a
preference-based behavioral model, which is necessary for
mass-market acceptance of proposed HEMS. Very little prior
research exists on this topic, particularly with regards to
multi-criterion decision making problems.

In this paper, we used the Simple Multi-Attribute Rating
Technique Exploiting Ranks (SMARTER) method [7] to
elicit occupant preferences, where incommensurate multi-
criterion decisions are required. SMARTER has been shown
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Fig. 2. A temperature profile question from SMARTER survey

to yield superior performance in preference elicitation than
other methods such as analytic hierarchy process and discrete
choice modeling [8]. SMARTER quickly creates a decision
model and avoids other methods’ most cognitively difficult
task of weighting attributes relative to each other. Rather than
ask users enough questions to quantify how much attribute
A is preferred to B, users simply rank the attributes, and
weights are inferred. For example, users are first asked
if being too cold or too hot was worse, then are guided
to define their own personal temperature sensitivity curve
as shown in Figure 2. Other variables are explored in a
similar manner. Finally, the users rank the disparate home
services such as home air temperature, shower temperature
and length, status of laundry and dishes, as well as financial
and environmental costs, to indicate relative preferences.
The HEMS then converts the subjective ranking to a set of
numerical weighting factors in the objective function.

D. System Identification

To accurately predict the behavior of controllable loads
with a given control command, it is critical to obtain a
model to represent the dynamics of an appliance. The house
envelope model and the associated HVAC model are of
particular interest not only because space cooling and heating
are the largest loads in the residential building sector, but
also because each home is highly customized and no default
model can accurately predict the HVAC power and indoor
temperature without performing model calibration in the
actual home. Many system identification techniques have
been developed for buildings applications; a review of the
techniques can be found in [9].

In this paper an equivalent circuit model of one resistor-
capacitor pair is used to represent a single-zone house model
and the coefficients can be obtained using multivariate linear
regression. We use the learned house model to update the
indoor temperature and power consumption based on the out-
door temperature, solar irradiance, and thermostat setpoint.
The indoor temperature is measured at or near the thermostat.
The outdoor temperature and solar irradiance forecast are
available from most weather service companies.

Quadratic programming is used to solve the optimization
problem, which means the optimal solutions for the HVAC

and water heater are duty cycle commands in fractional form
instead of binary variables. The appliances convert the duty
cycle commands to on-off control signals using time slot
techniques with consideration of minimum on and off time.

User-initiated loads such as the dishwasher and the dryer
are also important for predictions in the optimization process.
Simplified models are learned from the data to represent the
appliances using average runtime and power consumption.

E. Statistical Learning

Statistical learning is used to learn the patterns in uncon-
trollable load and hot water draws, both of which are impor-
tant for the HEMS to make accurate prediction of future load
and plan the DR resources accordingly. Statistical methods
such as a simple averaging method or more sophisticated
machine learning methods such as Expectation Maximization
of Gaussian Mixture Models [10] can be used to learn the
usage patterns. As an initial attempt, a simple averaging
method was used to represent the load patterns at 30-minute
intervals. The daily load patterns are represented by 48 bins,
and the value of each bin is the average of the training data
at the corresponding 30-minute interval.

Uncontrollable loads are small compared to other major
loads, but still consume a significant amount of energy. Hot
water draws are the driving force of water heater energy
consumption and are critical to the accurate prediction of
water heating loads.

F. Resource Forecast

A unique capability of the proposed HEMS is that it is able
to provide DR resource forecast for the upcoming DR event.
Upon receipt of the DR notification, the HEMS performs
look-ahead prediction and computes the loads during the
DR period. The prediction is then sent to the utilities or
the aggregators, who will be able to make adjustment to
the remaining DR calls as well as the generation side. A
transactive market can also be created to enable transactions
of DR resources among the participating homes.

III. PROBLEM FORMULATION

Management of residential loads and the battery storage
is formulated as a multi-objective model predictive control
problem. The cost function formed over the considered
prediction horizon H ,

min
x

H−1∑
h=0

fh(x(h),U(h)), (1)

is the sum of the objective function at each time in the
horizon h, which includes penalties on thermal discomfort
due to air and water temperature violations, curtailing PV,
and cost of electricity, dictated by the results from the user-
preference survey.

The vector x is a set of time-dependent variables rep-
resenting the equipment status such as the indoor air tem-
perature, hot water temperature, net load of the home,
and available solar power. At each prediction step, x is
updated by the control actions U, which are the optimization
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variables, including the duty cycles of the HVAC and water
heater, battery charging and discharging power, and the PV
curtailment. The constraints on the optimization problem can
be broken down as:

1) Battery Dynamics
2) Single-Zone House Model Heat Balance
3) Water Heater Dynamics
4) Limits on PV Generation and Curtailment
5) Overall Home Energy Balance

During a DR event, to disincentivize using grid power
and to incentivize pre-charging the battery or pre-cooling
the building before the event, a multiplier is placed to
penalize the power drawn from the grid. Figure 1 shows the
framework of the optimization problem and the relationship
between different modules. Constraints 1) - 5) are explained
in greater detail as follows.

A. Battery Dynamics

The state of charge B and power charged/discharged from
storage Pb are related as follows:

B(h+ 1) = B(h) + ηchb ∆tP chb (h) +
∆tP disb (h)

ηdisb
(2)

Bmin ≤ B(h+ 1) ≤ Bmax, (3)
−P disb,max ≤ P disb (h) ≤ 0 (4)

0 ≤ P chb (h) ≤ P chb,max (5)

where ηdisb and ηchb are the discharging and charging effi-
ciency of the battery system, P disb and P chb are the discharg-
ing and charging power of the battery system, ∆t is the
simulation time step, Bmin and Bmax are the minimum and
maximum state-of-charge (SOC) of the battery in kilowatt-
hours. P disb,max and P chb,min are the maximum discharging and
charging power.

B. House Model

The indoor temperature in the house is updated as follows:

Tin(h+ 1) = Tin(h) + β1(Tout(h)− Tin(h))

+β2(IH(h)PH − IC(h)PC) + β3Prad(h) (6)

where Tout is the outdoor temperature, Prad is the solar
irradiance, and β1, β2, andβ3 are the coefficients learned
from system identification and represent building envelope,
heating or cooling gain, and solar gain, respectively. IC ∈
[0, 1] and IH ∈ [0, 1] are the cooling and heating control
signals in duty cycle forms. It is assumed that if the HVAC
system is in heating mode, then IC(h) = 0; likewise, if
the system is currently in cooling mode, IH(h) = 0. PH
and PC are the delivered heating and cooling power of the
HVAC system.

C. Water Heater Model

A two-node electric resistance water heater model was
chosen for this study based on the authors’ previous

work [11]. A state space model of the tank dynamics in
the water heater is defined as follows:

x(h+ 1) =Ad(h)x(h) +Bd(h)u(h) (7)
y(h) =Cdx(h) (8)

where x = [T 1
WH , T

2
WH ]T is the water temperature

at the lower node and upper node of the tank, u =
[IT1, IT2, Tin, Tmains]

T represents the inputs to the tank
including control signals of the lower and upper nodes,
indoor temperature and mains water temperature, yd is the
outlet water temperature, the state matrix is

Ad =

[
−UA1+ṁCp

C1
0

ṁCp

C1
−UA2+ṁCp

C2

]
, the input matrix is

Bd =

[
ηcPWH

C1
0 UA1

C1

ṁCp

C1

0 ηcPWH

C2

UA2

C2
0

]
, and the output

matrix is Cd =
[

0 1
]
, UAi is the heat loss coefficient-

area product, ṁ is the flow rate of hot water draws, Cp is
the heat capacity of water, Ci is the thermal capacitance of
tank nodes, and ηc is the efficiency of the resistive element.

D. PV Constraints
The PV array was assumed to be 20 m2 with an efficiency

of 20% and tilt of 36 degrees. The curtailment parameter
Ucurt ∈ [0, 1] denotes the amount of real power curtailed,
with 0 denoting no curtailment and 1 denoting a curtailment
of 100%. Thus, the PV power consumed by the house can
be written as a function of the curtailment parameter and the
available solar power, Psol:

Ppv = (1− Ucurt)Psol (9)

E. Overall Power Balance
The total load in a home can be denoted as:

Pload = ICPC + IHPH + IT1PWH + IT2PWH

+ IdwPdw + IcdPcd + Pmisc (10)

where variable Pmisc denotes the estimate of uncontrollable,
miscellaneous home loads (lighting, television, plug loads,
etc.). Clothes dryers and dishwashers are user-initiated, and
if initiated during a DR event, are deferred until after the DR
event ends. Icd and Idw are binary variables indicating if the
cycles are delayed at each prediction time step, and Pcd and
Pdw are the power consumption of these devices.

Then, the overall power balance of the home is as follows:

−Pgrid + Pload + P chb + P disb − (1− Ucurt)Psol = 0 (11)

for each time step in the horizon (time indices omitted).

F. Objective Function
The considered objective function seeks to minimize the

following at each time step in the horizon:

fh(x,U) = bt[Tin − Tmaxair ]2+ + btn[Tminair − Tin]2+

+bB1[T 1
WH − TmaxWH ]2+ + bT1[TminWH − T 1

WH ]2+

+bB2[T 2
WH − TmaxWH ]2+ + bT2[TminWH − T 2

WH ]2+

+cebmPgrid + bcUcurtPsol (12)
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where [·]+ indicates max(0,·), ce is the cost of electricity,
Tmaxair and Tminair are the upper and lower limits on the air
temperature deadband, and TmaxWH and TminWH are the upper
and lower limits of the water temperature deadband. Each
weight b is derived from individual user preferences.

The objective function fh is a function of the equipment
status variables x and the decision variables U where

x = [Tin, T
1
WH , T

2
WH , Pgrid, Psol] (13)

U = [P chb , P disb , IC , IH , IT1, IT2, Ucurt] (14)

IV. CASE STUDY: LOAD SHED

A case study was performed on field data to demonstrate
the effectiveness of the proposed HEMS for DR. The Res-
idential Building Stock Assessment (RBSA) data set [12]
was chosen for this study. RBSA was performed by the
Northwest Energy Efficiency Alliance to inform future en-
ergy planning efforts and energy efficiency utility programs
and rebates. Field surveys were conducted on more than
1,850 sites, including 100 submetered single family homes.
In the submetered homes, temperature readings and energy
metering were recorded every 15 minutes except for the
indoor temperature, which was recorded at 1-hour intervals.

A number of homes across the entire Pacific Northwest
region were selected from the submetered data set for the
demonstration. The results presented in this section were
from a home located in Eugene, Oregon. This home is
equipped with a heat pump for spacing heating and cooling,
an electric resistive water heater, a clothes dryer, a dish-
washer, and other typical appliances.

DR events are likely to occur on cold winter mornings
and hot summer afternoons. The coldest days in the RBSA
data set were selected to simulate winter morning DR events.
Similarly, the hottest days were selected to simulate summer
afternoon DR events. These days were selected to test the
performance of the HEMS in the extreme cases. Two weeks’
worth of data prior to the DR days were used to learn the
house model and the usage patterns. Table I shows the results
of system identification and statistical learning. The house
model was learned from the two-week training data and
used to predict the indoor temperature. The R2 values of the
indoor temperature in both heating and cooling cases were
very close to 1, indicating the accuracy of the learned house
model. Statistical learning methods were used to predict
uncontrollable loads and hot water draws. Root mean square
errors (RMSEs) of the two variables were also pretty small.
Note that the RBSA data set does not have water draw data,
so water draw profiles from a different data set were used to
bridge the gap. The same draw profile was used in the heating
and cooling cases, resulting in the same RMSE value in the
last row of the table.

A 12-kWh battery pack was modeled with the SOC
constrained to 15% - 85% to preserve battery lifetime. It
was assumed the battery pack has little degradation when
operating in this SOC range. More sophisticated battery
lifetime models [13] can be incorporated in future research.
The power limit of the battery inverter was 5 kW and its

TABLE I
RESULTS OF SYSTEM IDENTIFICATION AND STATISTICAL LEARNING IN

THE RBSA HOME IN EUGENE, OR

Methods Variables Metrics Heating Cooling
System ID Indoor Temp R2 0.89 0.85
Statistical
Learning

Unctrl Loads RMSE 0.52 kW 0.40 kW
Water Draw RMSE 4.43 gal 4.43 gal

efficiency was 95%. The battery charge/discharge efficiency
was 99%.

To solve the quadratic programming problem described in
Section III, we used a tool called CVX that is designed for
specifying and solving convex programs [14]. The prediction
time step was 30 minutes and prediction horizon was set
to long enough to cover the entire DR event. The HEMS
controls were updated every 30 minutes using the CVX
solver, and the appliance simulation was implemented at 1-
minute intervals.

As mentioned in Section II-F, one of the unique feature
of the HEMS is the ability to estimate the DR loads upon
receipt of the DR signal. The following metric was used to
evaluate the prediction error:

ε =

∣∣∣∣ Eactual − EpredictEactual − Ebaseline

∣∣∣∣ (15)

where Eactual and Epredicted are the actual and predicted
energy consumed during the DR period when controlled
by the HEMS, respectively, and Ebaseline is the energy
consumed during the DR period when controlled by the
traditional hysteresis (or deadband) controller. The same
appliance models under the same weather condition were
used to simulate the baseline case and generate Ebaseline.

Figure 3 shows the response of the building equipment
controlled by the HEMS to a winter morning DR event.
The winter morning load shed DR event, shaded in gray in
Figure 3, started at 7:00 a.m. and ended 11:00 a.m. Before
the DR event started, the HEMS sent out control signals to
pre-heat the building and pre-charge the battery. During the
DR period, most loads were off except the heat pump, which
turned on several times to maintain the thermal comfort. The
battery powered the heat pump and the uncontrollable load
to minimize grid power usage. The net load of the home
occasionally dropped below zero and pushed power back
to the grid. This was because the battery control decision
variables (P disb and P chb ) were updated once per prediction
step, which was 30 minutes in this case. Very little PV was
generated due to the season. The baseline load is also shown
in the figure in the black dashed line, generated by using the
traditional controls without a HEMS or battery storage.

In this case study, a 2-hour advance notification for the
DR event was assumed in both heating and cooling cases and
the HEMS provided the forecast of the load reduction to the
utility/aggregator right after the DR notification was received.
As shown in Table II, the DR resource forecast error was
17.67% in the heating case and 10.60% in the cooling case,
following the metric defined in Equation (15). The HEMS
achieved significant load reduction. Compared to the baseline
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Fig. 3. Power consumption of HEMS-controlled building loads and home battery system responding to a winter morning DR load shed event

TABLE II
SUMMARY OF THE DR RESOURCE FORECAST ERRORS AND ENERGY

REDUCTION DURING DR EVENTS IN HEATING AND COOLING CASES

Heating Case Cooling Case
DR advance notification 2 hours 2 hours
DR start/end time 7 am to 11 am 3 pm to 7 pm
DR forecast error (%) 17.67% 10.60%
Energy
reduction
during DR

Total 13.13 kWh 9.45 kWh
Thermal Loads 5.23 kWh 4.10 kWh
Battery 7.90 kWh 5.35 kWh

case, the HEMS provided a reduction of 13.13 kWh in the
heating case and 9.45 kWh in the cooling case over the 4-
hour DR period while still maintaining thermal comfort and
meeting other preferences. Both the home battery system and
thermal loads contributed to the significant load reduction.
In the heating case, the battery capacity was fully utilized
by going through full charge and discharge cycles during
the winter morning DR event. In the cooling case, the load
reduction was smaller and the battery capacity was not fully
utilized due to the lower heat pump load when operating in
the cooling mode.

V. CONCLUSIONS

We presented a solution for user-preference-driven resi-
dential DR with building loads and battery storage. A multi-
objective optimization problem was formulated and solved
by quadratic programming for ease of implementation on
embedded platforms. User preference was learned using the
SMARTER method and the weights for different attribute
terms were incorporated in the objective function. House
models and appliance models were obtained using system
identification while statistical learning was used to estimate
the uncontrollable loads and hot water draw patterns that
drove the water heating loads. Simulation results indicate the
HEMS was able to accurately predict the DR load reduction
a few hours before the event starting time and improve the
flexibility and reliability of the DR resources.

Recommended future research topics include:
• Implement the HEMS on a hardware platform and test

it with the real appliances;

• Explore other DR use cases such as load-up events when
consuming more energy is encouraged by the utility
grid;

• Incorporate a battery lifetime model in the objective
function to minimize the battery degradation;

• Develop algorithms for optimal sizing of the battery and
the PV panel based on a home’s historical load data.
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