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Short-Term State Forecasting-Based Optimal

Voltage Regulation in Distribution Systems
Rui Yang, Member, IEEE, Huaiguang Jiang, Member, IEEE, and Yingchen Zhang, Senior Member, IEEE

Abstract—A novel short-term state forecasting-based optimal
power flow (OPF) approach for distribution system voltage reg-
ulation is proposed in this paper. An extreme learning machine-
based state forecaster is developed to accurately predict system
states (voltage magnitudes and angles) in the near future. Based
on the forecast system states, a dynamically weighted three-
phase AC OPF problem is formulated to minimize the voltage
violations with higher penalization on buses which are forecast to
have higher voltage violations in the near future. By solving the
proposed OPF problem, the controllable resources in the system
are optimally coordinated to alleviate the potential severe voltage
violations and improve the overall voltage profile. The proposed
approach has been tested in a 12-bus distribution system, and the
simulation results are presented to demonstrate the performance
of the proposed approach.

I. INTRODUCTION

Voltage regulation has been a critical issue in distribution

system operations. The recent development and integration

of distributed energy resources (DERs) and smart loads has

made distribution systems increasingly flexible, active, and

variable, thus presenting new opportunities while bringing new

challenges to distribution system voltage control [1]–[3].

With the increased presence of DERs in distribution sys-

tems, regulating the system voltage within the acceptable

range becomes more difficult, as DERs may cause more

significant voltage violations in the system [4]. Furthermore,

voltage violation patterns vary significantly both spatially and

temporally, due to the rapid fluctuations of DER output. In

order to mitigate the voltage violations which may occur in the

near future, it is desired that the distribution system operator

have the capability to foresee the future system states (voltage

magnitudes and angles) and determine the best control actions

in advance.

Although resource and demand forecasting has been well

studied before [5]–[9], distribution system state forecasting

presents unique challenges and has received less attention in

prior research. Therefore, state forecasting approaches are in

need to accurately predict the near-term system states [10].

With information on future system states, the distribution

system operator is able to prioritize the control needs and bet-

ter coordinate the control efforts against the potential voltage

violations. Hence, a better understanding of the future grid

states will help the system operator better prepare for potential

voltage violations. However, there is a lack of studies on how a

The authors are with the National Renewable Energy Laboratory, Golden,
CO 80401 USA (e-mail: rui.yang@nrel.gov; huaiguang.jiang@nrel.gov;
yingchen.zhang@nrel.gov). This work was supported by the U.S. Department
of Energy under Contract No. DE-AC36-08GO28308 with the National
Renewable Energy Laboratory.

better voltage profile can be achieved given more information

on possible system states.

In this paper, a short-term state forecasting-based optimal

power flow (OPF) approach for voltage regulation is proposed.

Based on the forecast system states, a dynamically weighted

three-phase AC OPF problem is formulated to mitigate the

potential voltage violations and improve the overall voltage

profile in the near future by optimally coordinating all the

controllable resources in the system. Specifically, we first build

an extreme learning machine (ELM) based state forecasting

model using historical data. The model is then used to predict

system states in the near future. The predicted system state

violations are then transformed into dynamic weights in the

objective function in the voltage regulation problem. As such,

buses which are more likely to have voltage violations are

prioritized by being assigned higher weights, whereas less

weights are assigned to buses which are less likely to have

violations. The resulting dynamically weighted OPF problem

is then solved to achieve a better voltage profile by optimally

coordinating all the available resources in the system. Hence,

the proposed approach allows the system operator to dynam-

ically prioritize its control needs and optimally determine the

control actions according to the possible system states and

potential voltage violations which may occur in the near future.

The rest of the paper is organized as follows: Section II pro-

vides an overview of the proposed short-term state forecasting-

based OPF approach for voltage regulation. In Section III, the

state forecast model is discussed. The OPF formulation for

voltage regulation and the weight assignment according to the

state forecast is described in Section IV. Simulation results

are presented in Section V. Section VI concludes the paper.

II. PROPOSED APPROACH

Fig. 1 gives an overview of the proposed approach. Every

5 minutes, a state forecaster is employed to predict the

system voltages in the near future using historical system

states. Based on the potential voltage violations in the next 5

minutes, different weights associated with the voltages across

the system are dynamically chosen and fed into the OPF

problem. The OPF problem to minimize the voltage violations

is then solved by the system operator, which determines the

optimal schedule of the controllable resources in the system.

In this paper, the considered controllable resources include the

utility-scale photovoltaic (PV) plants equipped with advanced

inverter technologies whose active and reactive power gener-

ation could be controlled and smart loads with flexible power

consumption.
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Fig. 1. Overview of the proposed approach.

III. SHORT-TERM STATE FORECASTING

In this paper, an ELM-based approach is used to provide

the future distribution system states. The ELM has certain

advantages compared to conventional machine learning meth-

ods such as artificial neural network (ANN) and support

vector machine (SVM). In the traditional neural network-based

approaches, the parameters such as input weights, hidden

layer biases, and output coefficients are usually trained by a

back-propagation learning algorithm. This training algorithm

is time-consuming and easy to fall into a local minimum [11].

In [12], [13], the least squares SVM and proximal SVM are

two widely used evolution forms of the traditional SVM,

which avoid quadratic programming to achieve fast speed.

However, both contain many parameters and are difficult to

converge into the global minimum [11]. The ELM-based

distribution system state forecaster aims to achieve the best

training performance and smallest norm of the output co-

efficients [11], [14], which is different from many existing

forecasting approaches [15]–[18]. In [14], the single layer

feedforward networks can reach very small errors with the

input weights and the hidden layer biases arbitrarily chosen.

Therefore, only the output coefficients need to be optimized in

the ELM method, which dramatically reduces the computation

load and time consumption.

Consider that in a distribution system M1 observations are

collected as (αi1 ,γi1
), where i1 ∈ {1, 2, · · · ,M1}, αi1 =

[α1

i1
α2

i1
· · ·αn1

i1
]T ∈ Rn1 , γi1

= [γ1

i1
γ2

i1
· · ·γm1

i1
]T ∈ Rm1 .

Then, a designed ELM-based forecaster with K1 hidden

neurons can be formulated as follows:

K1∑

k1=1

ψ(ξk1
, bk1

,αi1)βk1
= Ψi1 (1)

where ψ is an activation function, which contains many dif-

ferent forms, such as the sigmoidal function, sine function, or

radial basis function, ξk1
is the input weight vector connecting

the input αi1 and the k1th hidden neuron, bk1
is the bias, and

the output weight coefficient vector βk1
is used to connect the

k1th hidden neuron and output Ψi1 .

As discussed above, the input weight vector ξk1
and bias bk1

can be arbitrarily generated in ELM. Therefore, the objective

function of the ELM aims to achieve the best performance

and smallest norm of the output weight coefficient vector βk1
,

which can be formulated as follows:

min
β

J1 = ||Hβ −α||τ1σ1
+C||β||τ2σ2

(2)

where the optimal variable is the output weight coefficient

vector βk1
, τ1 and τ2 > 0 indicate the exponents, σ1 and

σ2 indicate the norm, C is the coefficient to balance the

performance and the norm of the output weight coefficient

vector, and H is the matrix to map the input vector into the

hidden layer feature space, which can be defined as:

Hβ = Ψ (3)

where H(ξ, b,α) =



ψ(ξ

1
, b1,αi1) · · · ψ(ξK1

, bK1
,αi1)

· · · · · · · · ·
ψ(ξ

1
, b1,αM1

) · · · ψ(ξK1
, bK1

,αM1
)





M1×K1

(4)

β = [β1 · · ·βK1
], β ∈ RK1×m1 .

Therefore, the designed ELM-based system state forecaster

can optimize the parameter β with less computational burden

and forecast the future system state quickly.

IV. DISTRIBUTION OPTIMAL POWER FLOW

With the forecast system states, the distribution system

operator is aware of possible voltage violations in the near

future. In order to alleviate the possible voltage violations and

improve the overall system performance, a three-phase AC

OPF problem is formulated and solved by the system operator

to determine the optimal schedule of the controllable resources

in the system. In this paper, the controllable resources include

the utility-scale PV plants and smart loads. The mathematical

formulation of the considered OPF problem is as follows:

min
P

φ

S,m
,Q

φ

S,m
,P

φ

L,k

∑

i∈N

∑

φ∈Pi

ω
φ
i · sφi

+ωL ·
∑

k∈NL

∑

φ∈PL,k

(Pφ
L,k − P̃

φ
L,k

P̃
φ
L,k

)2

(5)

s.t. P
φ
G,i + P

φ
S,i − P

φ
L,i = ℜ{V φ

i ·
(
I
φ
i

)∗
} (6)

Q
φ
G,i +Q

φ
S,i −Q

φ
L,i = ℑ{V φ

i ·
(
I
φ
i

)∗
} (7)

V
φ
i − s

φ
i ≤ |V φ

i | ≤ V
φ

i + s
φ
i , s

φ
i ≥ 0 (8)

0 ≤ P
φ
S,m ≤ P

φ

S,m (9)

P
φ2

S,m +Q
φ2

S,m ≤ Sφ2

m (10)

P
φ
L,k ≤ P

φ
L,k ≤ P

φ

L,k (11)

Q
φ
L,k =

√
1

η
φ2

L,k

− 1 · Pφ
L,k (12)

where N denotes the set of all buses and Pi ⊆ {ai, bi, ci} the

set of phases at bus i. V
φ
i and |V φ

i | represent the complex

voltage and the corresponding voltage magnitude at bus i

phase φ with V
φ
i and V

φ

i as the associated lower and upper

limits of the voltage magnitude. I
φ
i is the complex current

flowing out of bus i in phase φ. PG,i and QG,i correspond

2
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to the active and reactive power produced by the conventional

generator at bus i phase φ, respectively.

The control variables in the considered OPF problem are

the active and reactive power generation of the PV plants

and the active power consumption of smart loads. For a PV

plant connected to bus m, P
φ
S,m and Q

φ
S,m represent the

active and reactive power generation of this PV plant in phase

φ. As shown in constraints (9) and (10), the active power

output P
φ
S,m in phase φ is limited by the forecast maximum

active power generation P
φ

S,m, while the apparent power is

constrained by the rated apparent power S
φ
k in phase φ.

For a smart load connected to bus k, P
φ
L,k and Q

φ
L,k are its

active and reactive power consumption and η
φ
L,k is the power

factor in phase φ. P̃
φ
L,k, P

φ
L,k, and P

φ

L,k represent the desired

active power consumption of this load in phase φ and the

corresponding lower and upper limits, which are determined

by its own management system based on its needs. Equations

(11) and (12) correspond to the constraints on the active and

reactive power consumption of the smart loads.

The equality constraints (6) and (7) correspond to the active

and reactive power balance equations at bus i phase φ, where

ℜ{·} and ℑ{·} denote the real and the imaginary parts of

a complex number, respectively. Operational constraints on

system voltages are also included in the OPF problem, which

are modeled as soft constraints in (8). The nonnegative slack

variable s
φ
i is used to quantify the violation of the voltage

constraint at bus i phase φ.

The objective function is to minimize the weighted sum

of all voltage violations while penalizing the relative devia-

tions of the load consumption from the desired values with

the penalization coefficient ωL. The weighting parameter ω
φ
i

associated with the voltage violation at bus i phase φ is

dynamically determined by the forecast system voltages. If

the voltage magnitude at a certain bus and phase is forecast

to have a higher violation in the next 5 minutes than those

at other buses and phases, the weighting parameter associated

with this voltage will be increased. With a higher penalization

on the specific bus and phase with a potential larger voltage

violation, the severe voltage violation which may occur in

the near future will be alleviated by controlling the available

resources accordingly.

V. SIMULATION RESULTS

A 12-bus system shown in Fig. 2 is used to test the proposed

state forecasting-based OPF approach. In the following, the

forecasting results of the near-future system states are first

shown, and then the state forecasting-based OPF results are

presented.

A. State Forecasting

The simulations are executed using a server with a 3.60-

GHz Intel Xeon CPU and 32-GB RAM.

1) Results of ELM-based System State Forecasting: In this

paper, the collected system states are divided into two sets:

the training data set and the testing data set. The size of

the testing data set is 20% of the training data set with a

1 2 4 8

3 6 7

5

10

9

11

12

Fig. 2. A 12-bus distribution system.

TABLE I
PERFORMANCE OF PROPOSED APPROACH: MAPE

Forecasting Type Voltage (%) Angle (%)

1 hour-ahead 1.157 1.640

2 hours-ahead 1.271 1.772

TABLE II
PERFORMANCE OF PROPOSED APPROACH: KURTOSIS AND SKEWNESS

Forecasting Type Voltage (%) Angle (%)

Kurtosis 1.131 1.578

Skewness 1.182 1.628

sliding window algorithm, which is used to traverse all the

collected data sequentially and evaluate the proposed approach

comprehensively.

In this study, a short-term distribution system state fore-

casting approach is studied at 1-hour-ahead and 2-hour-ahead

time horizon to cooperate with the next steps. The results

are presented in Table I and Table II, which contain the

mean average percentage error (MAPE), the kurtosis, and the

skewness to evaluate the forecasting results. The kurtosis and

skewness indicate the asymmetry and the outliers-prone of the

probability distribution of the forecast errors [19]. According

the forecasting performance in Table I, the MAPEs of the

voltage forecasting are less than 1.50%, and the average is

1.214%. The MAPEs of the angle forecasting are less than

2.00%, and the average is 1.706%.

The histograms of the voltage and angle forecasting errors

are presented in Fig. 3 and Fig. 4. As shown in Fig. 3, in the

histogram of the voltage forecasting error, it is noticed that

more than 85% of the errors are accumulated between −2.5%
and 2.5%. Similarly, as shown in Fig. 4, in the histogram of

the angle forecasting error, it is noticed that more than 85%
of the errors are accumulated between −2.9% and 2.9%. In

Table II, the results of the skewness of the proposed approach

indicate that the error distribution is very close to normal

distribution. And the results of the kurtosis of the proposed

approach indicates that the accuracy of the proposed approach

is very high [19].

2) Compared to Other Approaches: In this part, the fore-

casting approaches in [8], [9], [20], [21] are compared to

the proposed state forecasting approach in 2-hour-ahead state

forecasting. As shown in Table III, the MAPE and time con-

sumption are the average of the voltage and angle forecasting

results. As shown in Table III, although the ANN has a similar

forecast accuracy to the proposed approach, the proposed

approach has the shortest time consumption.
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Fig. 4. Percentage error of distribution system forecasting: angle.

TABLE III
COMPARISON TO OTHER APPROACHES

ANN ARIMA GA-SVR Proposed Approach

MAPE 1.542% 8.211% 2.516% 1.521%

Time 120.3s 16.14s 156.3s 8.45s

B. OPF

As shown in Fig. 2, a utility-scale PV plant is connected

at bus 2, which has a rated capacity of 300 kVA. All loads

in the system are considered to be smart loads, and their

active power consumption values are assumed to be adjustable

within ±20% of the desired values. The lower and upper

limits for the voltage magnitude are set to be 0.95 p.u. and

1.05 p.u., respectively. The penalization coefficient on the load

deviations ωL is chosen to be 1.

Every 5 minutes, the developed ELM-based state forecaster

predicts the voltage magnitudes and angles in the system for

the next 1 hour. If any voltage violations are forecast to occur

in the next 5 minutes, 5 locations with the highest forecast

voltage violation are identified and the weighting parameters

associated with these locations are increased to be five times

the weighting parameters for the voltage violations in the rest

of the system. By solving the proposed OPF problem, the PV

plant and smart loads are optimally controlled to mitigate the

severe voltage violations in the next 5 minutes.

1) 5-Minute Results: In the following, one 5-minute time

step is used as an example to demonstrate the proposed state

forecasting-based OPF approach. By employing the developed

state forecasting algorithm, system voltages for the next 5

minutes are predicted. Fig. 5 shows the average forecast

voltage violations at all buses in the considered 5-minute

time interval. The voltage magnitudes at buses 12, 9, 7, 10,

and 8 in phase C have the largest predicted violations of the

voltage lower bound. Therefore, the weighting parameters for
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Fig. 5. Forecast voltage violations.
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the voltages at these buses in phase C are increased to be five

times the weights associates with other buses in the system.

Fig. 6 depicts the voltage violations in the following three

cases: 1) forecast of the system voltages used (‘w/ f’), 2) no

forecast of the system voltages (‘w/o f’) and 3) no control over

the PV plant and loads (‘w/o c’). In the case with no control

over the PV plant and loads, the PV plant is producing as

much active power as possible with a constant power factor 1,

and the power consumption of all loads is not flexible. In the

case without the forecast of the system voltages, the weighting

parameters for all voltages are set to be the same.

Compared to the case without control over the PV plant and

loads, the voltage violations in phases A and C in the other two

cases are significantly smaller if the PV plant and smart loads

are optimally controlled. Since the weights for the buses 12, 9,

7, 10, and 8 in phase C which have the lowest predicted voltage

magnitudes are larger than the weights for the voltages at other

buses in other phases, with forecasting the system voltages, the

most severe voltage violations at buses 4 and 7 to 12 in phase

C are reduced significantly compared to the voltage violations

without the voltage forecasting, while the violations in phase

A slightly increase with forecasting the system voltages. For

phase B, the voltage magnitudes are lower if the available

resources are optimally controlled, however, no violations of

the voltage lower limit occur.
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Fig. 7 shows the desired active power consumption (‘ref’)

and actual active power consumption of the smart loads with

(‘w/ f’) and without the state forecasting (‘w/o f’). Compared

to the case without the voltage forecasting, the active power

consumption of the smart loads connected in phase C is further

reduced in order to reduce the large voltage violations which

occur at the end of the distribution feeder in phase C.

2) 24-Hour Results: The proposed state forecasting-based

OPF approach for voltage regulation has been tested for a

whole day. Fig. 8 depicts the total voltage violation in the

system for the whole day in the aforementioned three cases:

with (‘w/ f’) and without state forecasting (‘w/o f’) as well as

no control over the PV plant and loads (‘w/o c’). As shown

in Fig. 8, the total voltage violation values are significantly

smaller if the state forecasting is employed compared to the

total voltage violation values in the other two cases. One

interesting observation is that when the total voltage violations

are really high, i.e., around 6 p.m. and 8 p.m., the reduction

in voltage violations by using the state forecasting is not

significant. The reason for that is the active power consumption

of each load is flexible only within ±20% of its desired

consumption. When extremely severe voltage violations occur,

purely curtailing the load consumption may not be good

enough to significantly alleviate the voltage violations. Other

mitigation methods need to be considered.

In summary, by employing the proposed state forecasting-

based OPF approach, the most severe voltage violations are

mitigated, and the overall voltage profile is improved.

VI. CONCLUSION

In this paper, a state forecasting-based OPF approach is

developed to mitigate the potential severe voltage violations

in distribution systems. The developed ELM-based short-

term state forecaster accurately predicts the near-term system

voltage magnitudes and angles in a computationally efficient

manner. By employing the state forecasting results, the distri-

bution system operator is able to prioritize its control needs

and optimally control the available resources to improve the

overall voltage profile by solving a dynamically weighted OPF

problem. Simulation results show that the proposed approach

is able to significantly reduce the voltage violations and

achieve a better overall voltage profile in the system.

The OPF problem developed in this paper only considers

system states in the next 5 minutes. Future work includes

extending the single-step optimization problem into multistep

problem by taking into account the potential system states in

the future 1 or 2 hours. Further development is also needed to

integrate short-term state forecasting into the optimal operation

of distribution systems for different control objectives.
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