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Abstract

The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern

United States (SE USA) requires an understanding of the science and context influencing market decisions asso-

ciated with its sustainability. Production of pellets has garnered much attention as US exports have grown from

negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports

are shipped to Europe to displace coal in power plants. We ask, ‘How is the production of wood pellets in the

SE USA affecting forest systems and the ecosystem services they provide?’ To address this question, we review
current forest conditions and the status of the wood products industry, how pellet production affects ecosystem

services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems.

Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations

and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are pro-

tected by the requirement to utilize loggers trained to apply scientifically based best management practices in

planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private

rural landholders and provide an incentive for forest management practices that simultaneously benefit water

quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest
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land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation

are essential to verify that regulations and good practices are achieving goals and to enable timely responses if

problems arise. Conducting rigorous research to understand how conditions change in response to management

choices requires baseline data, monitoring, and appropriate reference scenarios. Long-term monitoring data on

forest conditions should be publicly accessible and utilized to inform adaptive management.

Keywords: best management practices, biodiversity, bioenergy, carbon, ecosystem services, forests, pellets, southeastern Uni-

ted States, sustainability
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Introduction

Wood-pellet production in the southeastern United

States (SE USA) has garnered much attention (Olesen

et al., 2016; Cornwall, 2017) as exports have grown from

negligible amounts in the early 2000s to 4.6 million met-

ric tonnes in 2015 (US International Trade Commission,

2016). In 2015, 98% of these pellets were shipped from

the SE USA to the European Union (EU) for bioenergy

(US International Trade Commission, 2016). As EU pel-

let demand has grown, debate has increased about

potential effects on SE US forests. Environmental orga-

nizations and others have expressed concerns about

potential impacts on old-growth and bottomland forests

(forested wetlands that experience occasional flooding

in the SE USA), net greenhouse gas (GHG) emissions,

and biodiversity (Olesen et al., 2016; Cornwall, 2017).

Yet the US Department of Agriculture (USDA) Forest

Service identifies the greatest risks to SE US forests as

urban expansion and land development, lack of market

demand for wood products, and increases in invasive

species, fires, and other disturbances related to climate

change (Wear et al., 2013), although these risks are over-

looked in some studies (e.g., Cornwall, 2017).

Evidence-based analysis is essential to address con-

cerns and inform decision making. Evaluating effects

requires an understanding of how wood-pellet demand

interacts with other forest product markets and the

extent to which pellet production induces synergies,

tradeoffs, or other costs and benefits that can be differ-

entiated from the effects of ongoing forestry practices in

the absence of pellet markets. Our aim is to present an

objective review of key issues, constraints, and opportu-

nities associated with the wood-based pellets industry,

based on documented effects of wood-pellet production

on forest conditions in the SE USA.

Demand and production of wood pellets

The recent growth in global pellet demand has been dri-

ven largely by EU renewable energy targets to cut GHG

emissions in 2020 by 20% from 1990 levels. European

policies promoting bioenergy are partially predicated

on analysis showing that increased use of bioenergy can

contribute to both energy and climate objectives (Dale

et al., 2015a; Berndes et al., 2016; European Union, 2016).

The EU and individual member-state bioenergy policies

include a mix of tax exemptions, mandatory targets,

electric power feed-in tariffs, direct subsidies, and solid

biomass sustainability policies that stimulate market

growth of imported wood pellets (Abt et al., 2014;

Alberici et al., 2014).

Wood-pellet production in the SE USA has emerged

in response to several factors. The decline of pulp and

paper operations has resulted in stranded wood sup-

plies. Making pellets maintains employment in regions

where the forest products industry has been a key eco-

nomic driver. In addition, by-products of sawmill oper-

ations and forest management (e.g., from tree thinning

to maximize timber yield, unmerchantable stems or

from harvest residues such as branches and tops) pro-

vide pellet feedstock (Morrison & Golden, 2016). Fur-

thermore, access to EU markets for pellets from SE USA

is facilitated by carbon- and cost-efficient maritime ship-

ping (Dwivedi et al., 2014), high-volume direct shipping

lanes, and proximity of ports to productive timberlands

with established forest product supply chains. Although

pellet exports rose sharply after 2007, biomass for pel-

lets comprised only 2% of total harvest removals in the

SE USA in 2014 (Fig. 1), with traditional pulpwood and

sawtimber representing the other 98% (Stewart, 2015).

International trade data show that pellets comprised

<1% of total US forestry products by weight and <0.5%
of total US forest products export value during 2014

(FAOSTAT-Forestry Database, 2016, based on conver-

sion factors in Lamers (2013) and UNECE (2009)).

Forest history sets the stage

The production of wood-based pellets should be viewed

in light of the dramatic changes that the SE US land-

scape has undergone since large-scale settlement began

in the 18th century. Two centuries of development, row

crop cultivation and almost complete forest conversion

resulted in high soil erosion rates. As crop production

became less competitive in the eastern USA, it moved to
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regions better suited to intensive agriculture and

afforestation ensued (Davis, 1996). Although only 12%

of global forest area is privately owned (White & Mar-

tin, 2002), 87% of SE US timberland is privately owned

and about 60% is family owned (Oswalt et al., 2014).

Whereas institutional owners (e.g., private forest prod-

ucts corporations and investment firms) respond pri-

marily to market signals, management decisions of

family forest owners are motivated by diverse interests

including asset preservation, profit generation, aesthet-

ics, wildlife and recreational opportunities, and inheri-

tance for heirs (Butler et al., 2017). Harvesting decisions

by family forest owners are frequently triggered by life

events, such as the need to raise money for medical

treatment, education, or retirement (Butler et al., 2017),

or by a change in ownership.

Concerns

Effects on old-growth forests

The potential for pellet-wood production to affect old-

growth forests has been raised as an issue by some con-

servationists. However, the legacy of land clearing, log-

ging, and agriculture has left only isolated pockets of

old-growth forest in the SE USA (Davis, 1996). Remnant

old-growth forests (as defined by advanced tree age,

minimal human disturbance, and mature successional

stage of the forest) are valued for their ecological char-

acteristics and are almost exclusively found in protected

areas where logging is prohibited (Davis, 1996). US fed-

eral policy instruments safeguarding all forests include

protection of rare species under the Endangered Species

Act, Safe Harbor Agreements and Habitat Conservation

Plans (on private lands), and protection of ecosystem

services under the Clean Water Act and Clean Air Act.

State agencies, land trusts, nongovernmental organiza-

tion, and citizen alliances safeguard state and private

forests (Davis, 1996). Depending on the forest type and

condition, that protection may involve active manage-

ment. For example, fire-dependent, native longleaf pine

(Pinus palustris) stands that once blanketed large areas

of the SE USA have been reduced to 3% of their original

area as a result of settlement and fire suppression (Var-

ner et al., 2005). Removing hardwood trees and manage-

ment of understory vegetation via controlled burns and

other practices is key for restoring the longleaf pine

ecosystem across its former range and maintaining open

canopy conditions in other pine forest types (Varner

et al., 2005; Greene et al., 2016), and bioenergy can offer

a market for that material.

Effects on bottomland forests

The effect of wood-pellet production on bottomland for-

ests is also a concern. Over the past two centuries,

nearly all bottomland forests were converted to other

land uses (as much as 80% in some regions (De Steven

et al., 2015)) or have been managed for wood products.

Important challenges to bottomland forest ecosystems

include (i) conversion to urban uses (Wear et al., 2013);

(ii) anthropogenic alterations in flooding patterns

(Cooper et al., 2009) including those associated with

dikes, dredging, oil and gas extraction, and salt water

intrusion; and (iii) high populations of white-tailed deer

(Odocoileus virginianus) that promote expansion of

Fig. 1 Annual forest harvest removals in the SE USA shown in green million metric tonnes (MT) based on Forest2Market data

reported for the Atlantic and Gulf regions (Stewart, 2015). In this figure, 2 tonnes of green wood are assumed to produce 1 tonne of

dry pellets.
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invasive plant species and alter tree species composition

(Cogger et al., 2014).

A variety of conservation programs have promoted

restoration of bottomland forests previously converted

to other land uses. In the 13 states that comprise the

Forest Service southern forest region, nearly four thou-

sand tracts covering more than 526 000 hectares (ha)

were enrolled in the Wetlands Reserve Program from

2009–2015 to protect, restore, and enhance wetlands and

bottomland forests on private farmland (King et al.,

2006; NRCS, 2016). Since the 1990s, over 275 000 ha of

bottomland forest have been restored in the lower Mis-

sissippi River valley alone, mostly on private farmland

(Berkowitz, 2013).

Conservation easements often involve management,

including harvest. Forest management practices in wet-

lands are exempt from the Clean Water Act permitting

requirements, although other regulations to protect

water and biodiversity are applicable. Forest manage-

ment activities cannot convert wetlands to another land

use and must protect threatened and endangered spe-

cies. Federal and state policies and programs such as

the Endangered Species Act, state water quality laws,

and forestry best management practices (BMPs) protect

rare species, habitats and water quality. Zoning and tax-

ation may further restrict allowable activities, and some

pellet producers have a formal policy not to source bio-

mass from rare forest ecosystems such as cypress and

tupelo stands in wetlands (Drax Biomass Inc., 2016) and

sensitive bottomland forests (Enviva Forest Conserva-

tion Funds, 2016).

While timber harvesting cycles in bottomland forests

have short-term (e.g., annual to decadal) effects includ-

ing declines of standing carbon stocks and alteration of

habitat for forest species, managing these lands for for-

estry is ecologically preferable to their transformation to

nonforest alternatives. As with all land-use activities,

effects on biodiversity and ecosystem services of har-

vesting bottomland forests for bioenergy are highly

variable and context specific and can have differential

effects across the landscape and over time (Costanza

et al., 2016; Tarr et al., 2016). Negative impacts of bioen-

ergy harvests can be avoided or reduced by identifying

priority areas for conservation and adopting manage-

ment plans tailored to best achieve multiple goals in

production forests (Joly et al., 2015).

Effects on climate change

Climate change impacts are another concern in the pro-

duction of wood-based pellets. The Intergovernmental

Panel on Climate Change (IPCC, 2014) distinguishes

between the slow domain of the carbon cycle, where

turnover times exceed 10 000 years, and the fast domain

(the atmosphere, ocean, vegetation, and soil), where

vegetation and soil carbon have turnover times of 1–100
and 10–500 years, respectively. Fossil-fuel use transfers

carbon from the slow domain to the fast domain, while

bioenergy systems operate within the fast domain (Ciais

et al., 2013). Using wood for energy displaces fossil fuels

(mostly coal) and can contribute to the phasing out of

technologies and infrastructures that cause fossil carbon

emissions, which is necessary for keeping fossil sources

secured underground (Ter-Mikaelian et al., 2015; Bern-

des et al., 2016; Galik & Abt, 2016).

Fossil-fuel inputs to wood-pellet supply chains typi-

cally correspond to a small fraction of the energy con-

tent in the produced pellets, and fossil carbon emissions

are small compared to the biogenic carbon flows associ-

ated with forest operations, transport, and pellet use

(Eriksson et al., 2007; Lindholm et al., 2011; Gustavsson

et al., 2011; Lamers & Junginger, 2013; Hansson et al.,

2015). Thus, concerns about climate effects of wood-pel-

let production are mainly related to how the forest car-

bon cycle is affected by management changes that may

result from wood-pellet production systems.

As concluded by the IPCC (2014), it is the cumulative

emissions of CO2 that largely determine global warming

by the late 21st century and beyond. Woody bioenergy

affects cumulative emissions through two primary

mechanisms: change in biospheric carbon stocks and

displacement of fossil fuel. If the goal is to stabilize glo-

bal warming within a 2-degree target, for example, then

critical questions are how bioenergy markets influence

net changes in total biospheric carbon stocks and net

changes in fossil-fuel use. The latter depends largely on

how bioenergy policies influence investments in fossil-

fuel-based technologies and infrastructure, which has

implications for future GHG emissions. A recent analy-

sis for Canada, in which substitution values for wood

products were considered across their life cycle, found

that the greatest avoided emissions occurred when

bioenergy was substituted for energy obtained from

high-emission fossil fuel such as coal (Smyth et al.,

2016).

There is no question that the use of wood from man-

aged forests to displace fossil-based energy reduces net

GHG emissions over multiple cycles of forest harvest

and re-growth (Ter-Mikaelian et al., 2015; Galik & Abt,

2016). It is rather the timing of net GHG savings that is

currently debated, and the science literature provides

different views, depending on policy objectives and

context, which have a major influence on the formula-

tion of research questions, the scale and system delin-

eation, and other critical parameters that influence the

results and conclusions (Helin et al., 2013; Miner et al.,

2014; Dale et al., 2015a; Berndes et al., 2016; Cintas et al.,

2017).
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Life cycle assessment studies concerning displace-

ment of fossil-fuel-based EU electricity generation from

SE US pellets show that GHG savings occur over vary-

ing time scales (Dwivedi et al., 2014; Giuntoli et al.,

2015; Wang et al., 2015; Fingerman et al., 2016; Hanssen

et al., 2017). When pellets are produced from precom-

mercial thinnings, harvest residues and mill residues,

the previously sequestered carbon is returned to the

atmosphere via pellet combustion in heat and power

plants. This process may occur faster or slower than

when the carbon is returned via decomposition or burn-

ing on site. If the pellet use returns the carbon to the

atmosphere faster than decomposition or burning,

short-term increases in net GHG emissions occur unless

the GHG emissions savings from displacing fossil fuels

outweigh the biogenic carbon emissions. The choice of

spatial and temporal boundaries for analysis and the

choice of reference case or counterfactual scenario affect

the result and may mean that different studies come to

different conclusions about the same bioenergy system

(Marland et al., 2013; Buchholz et al., 2014; Wang et al.,

2015). The outcome, in addition, depends on the

broader consequences of the bioenergy market itself on

forest management, disturbance regimes, and forest

expansion, which may or may not be considered in

studies (Cowie et al., 2013; Berndes et al., 2016)

Overall forest stocks in the SE USA have increased

for the last 50 years and are projected to continue

increasing if conversion to nonforest uses is low (Wear

et al., 2013), while also supporting significant removals

for sawtimber, pulpwood and wood-pellet production

(Oswalt et al., 2014; Woodall et al., 2015; USDA Forest

Service, 2016). On intensively managed, corporate-

owned timberland, carbon stocks are essentially stable

(Heath et al., 2010). The presence of a bioenergy market

increases the economic attractiveness of forestry, which,

in turn, supports maintenance and expansion of SE for-

est lands and their carbon sink capacity (Miner et al.,

2014; Zhang et al., 2015), where that capacity is defined

by the ability to store more above- and below-ground

carbon both now and in the future. The USDA projects

declines in the SE US forest area of up to 8.5 million ha

or 10% between 2010 and 2060, largely driven by popu-

lation growth, income-driven urbanization and a greater

projected economic attractiveness of agricultural prod-

ucts as compared to timber products (Wear et al., 2013).

Private forest landowners will need incentives, financial

or otherwise, to retain forested land as forest. Loss of

forested land area is one of prime causes of decline in

forest carbon stocks (K€orner, 2017).

In the face of uncertain future demand for lumber

and other forest products (Wear et al., 2013), an

increase in the price of wood pellets may motivate

land owners to implement shorter rotations, higher

density planting, or more frequent thinning (Olesen

et al., 2016), which could affect carbon stocks. That

being said, there is no evidence to date of a change in

stocking density trends based on analysis of the US

Forest Service Forest Inventory and Analysis (FIA) data

for counties in the SE USA with high pellet production

(Dale et al., in press). Furthermore, prices for bioenergy

feedstocks are unlikely to increase enough to drive

wholesale shifts in forest management to favor pellet

production because low-cost biomass (e.g., agricultural,

logging and wood-processing residues) is plentiful

across the globe.

Addressing concerns about environmental effects

of bioenergy

Reliable demand for wood-based bioenergy helps

address the concerns mentioned above, for it improves

the business proposition to retain land in forest (Galik

& Abt, 2016) and to apply practices that improve forest

conditions (Anderson & Mitchell, 2016). While high-

value sawtimber and pulp markets are expected to con-

tinue driving major forest management decisions, a

market for low-value stems, residues and roundwood

(where demand is otherwise weak) helps support better

forest management, for example, by reducing the prac-

tice of slash burning to dispose of unmerchantable bio-

mass. Furthermore, markets for products made from

low-value wood provide extra income (Malmsheimer &

Fernholz, 2015) that can be used for management prac-

tices such as thinning that decrease risks of insect out-

breaks, disease and destructive wildfire (Coppoletta

et al., 2016); increase site productivity and consequent

carbon uptake rates (Fox et al., 2007); and address non-

timber objectives such as recreation and habitat for

wildlife (Evans et al., 2013). Benefits of controlling dis-

ease, pests and fires on private forests extend to neigh-

boring forests, public lands and reserves (Malmsheimer

et al., 2011; Dale et al., 2015a).

In addition, multiple environmental benefits can be

achieved via the use of wood for bioenergy. Wood pel-

lets provide a renewable alternative to the primary

anthropogenic cause of environmental effects associated

with climate change: fossil-fuel use (Cowie et al., 2013;

Berndes et al., 2016). Without bioenergy markets, woody

material cut for land clearing or leftover from thinning

and harvest slash is often burned on site or left to decay

in piles and may, thereby, increase the potential wildfire

fuel load (Fig. 2). Furthermore, mid-rotation thinning

increases both forest water yield and land-owner profits

(Susaeta et al., 2016), and those thinnings could provide

biomass for bioenergy. Hence, forest management that

delivers multiple benefits for the region can be a way to

support both sustained employment and diverse

© 2017 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 9, 1296–1305
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ecosystem services (Meyer et al., 2015). When residues

are removed for bioenergy, economic and operational

limitations, as well as BMPs, ensure that adequate

woody debris remains on site to protect soil and water

quality (Neary & Koestner, 2012; Evans et al., 2013;

Fritts et al., 2014; Cristan et al., 2016).

Best management practices define practices to mini-

mize soil disturbance and water quality impacts from

bioenergy operations, including timber harvest and resi-

due removal (Ice et al., 2010). Neary & Koestner (2012)

report that forest bioenergy production systems can be

compatible with maintaining high quality water sup-

plies in forest catchments. In their review of 30 research

studies of BMPs in the SE USA, Cristan et al. (2016)

found that forestry BMPs efficiently protect water yield

and quality (e.g., decrease suspended sediment flux and

concentrations of nitrate and other nutrients). Further-

more, a detailed study of Coastal Plain loblolly pine

(Pinus taeda) plantations (where Biomass Harvesting

Guidelines recommend retaining a portion of woody

biomass on the forest floor following harvest) found

that removal of residues from clear-cut sites for bioen-

ergy feedstock does not impact herpetofauna, breeding

bird, or winter bird populations (Fritts et al., 2016; Grod-

sky et al., 2016a,b). An integrated approach that bundles

ecosystem services and financial incentives offers a

means to address the diverse values of forests via proac-

tive forest management (Deal et al., 2012). BMPs, in

combination with a market for wood-based pellets, pro-

vide such an approach.

Forest management can cause changes in the parti-

tioning of precipitation between runoff, drainage, evap-

oration and plant transpiration (Berndes, 2002; Jackson

et al., 2005; Bonsch et al., 2017). Measures to enhance

biomass production, such as expanding forest area,

shifting to shorter rotations, or increasing stocking rates

(more trees per area) or forest area, can lead to

increased evapotranspiration and possibly greater risk

of water stress in areas of water scarcity. Measures to

enhance biomass production for energy can also be ben-

eficial and reduce water risk, for example, the probabil-

ity of experiencing a deleterious water-related event.

For example, in humid areas and on steep slopes, the

establishment of tree cover can decrease erosion and

flood risk by reducing runoff and increasing infiltration

and retention of rain water in the soil. Matching bioen-

ergy feedstocks and management practices to local con-

ditions and constraints is essential and possible (King

et al., 2013). For example, Susaeta et al. (2016) report that

privately owned forests could become an important

potential source of additional water supply in SE USA

under a forest-water-yield-payment system.

(a)

(b) (c)

Fig. 2 In east Tennessee, much wood is left on the ground after a clear-cut where it decomposes and gradually releases carbon to

the atmosphere (a). After a forest clearing in northern Florida, whole trees and residues are piled (b) and then pushed into a pit to be

burned (c) resulting in immediate release of carbon into the atmosphere. Both practices are common across the SE USA. Note that the

person on the right in photograph b shows the size of that pile. Photograph credits: Keith Kline.
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To ensure that wood pellets used in industrial, large-

scale energy production contribute to mitigating climate

change without unacceptable impacts on biodiversity

and ecosystem services, the major wood-pellet-importing

EU nations require that forest operations be certified to

internationally accepted sustainability standards. Insti-

tutional forests commonly meet this requirement, but

small SE US family forest owners often lack the

resources or incentives to engage in such processes

(Morris, 2014). However, most commercial timber

harvests in the SE USA are performed following state-

defined BMPs (Wear & Greis, 2013), with implementa-

tion rates exceeding 90% (National Association of State

Foresters, 2015). Mills that export wood pellets require

feedstock to originate from sites where the logging is

supervised by professionals trained in wildlife habitat

conservation, water quality protection, and other BMPs

(National Association of State Foresters, 2015). Logger

training is a component of the Sustainable Forestry Ini-

tiative’s certified Fiber Sourcing Standard, which sets

expectations for responsible procurement of all fiber

and is audited by an independent third party. Loggers

who received training are more likely to implement

BMPs during harvesting operations on nonindustrial

private forests (Davis & Clatterbuck, 2003).

The value of systematic monitoring and

transparency

Publicly available science-based information can bolster

public trust and confidence in the effects of forest man-

agement changes (e.g., FIA, 2012; Norman et al., 2013;

National Association of State Foresters, 2015; Butler et al.,

2017) by providing evidence to determine whether bioen-

ergy from SE US wood pellets achieves desired goals.

State and federal regulations and BMPs, forest and fiber-

sourcing certification programs, nonprofit conservation

organizations, land trusts, and logger training programs

provide a network of support and accountability for pro-

tection of both public and private SE US forest lands. The

effectiveness of these safeguards is documented via ongo-

ing collection and analysis of consistent data on actual for-

est conditions (FIA (Forest Inventory and Analysis),

2012), as required in the USA by the Resources Planning

Act Assessment (Butler et al., 2017). The application and

effectiveness of BMPs undergo systematic reviews that

document costs and benefits (Cristan et al., 2016) as well

as provide feedback to guide their continual improve-

ment, which is a core principle of sustainable forest man-

agement (Lattimore et al., 2009; Dale et al., 2015b; ASTM

2016). Furthermore, when considering effects of BMPs at

a watershed scale, weight-of-evidence approaches that

include monitoring of multiple response parameters may

be themost useful approach (Ice, 2011).

An indirect benefit of pellet demand is that EU

renewable energy and climate policies are driving inten-

sive reviews of current practices that could lead to

improvements in forest management across the SE

USA. To maximize this potential and mitigate risks, the

costs, benefits, socioeconomic implications, and oppor-

tunities of wood-based bioenergy should be scientifi-

cally quantified on a regional basis to inform decisions

regarding tradeoffs among energy options, forest use,

and multiple environmental objectives. Continued mon-

itoring of the effects of forest harvest and management

and implementation of sustainable management prac-

tices are necessary to instill confidence that priority for-

est ecosystems are conserved, water quality is

protected, and BMPs are followed. Furthermore, the net

effects of bioenergy systems need to be monitored to

verify that they are helping to achieve both near-term

emission reduction targets and long-term temperature

targets.

Conclusion

Forests produce a range of products: sawlogs, pulp

logs, low-value logs, and poles as well as residues.

How the forest is managed affects the proportion of

each product available, revenues, and environmental

effects. Renewable bioenergy should ideally improve

the delivery of social, economic and environmental ben-

efits from forestry. Bioenergy markets can assist

landowners and society to achieve desired economic,

social, and environmental outcomes by supplementing

incomes to private landholders and thereby enabling

management required to improve forest conditions and

protect ecosystem services.

The balance of evidence, some of which is reviewed

here, suggests that current levels of wood-pellet produc-

tion in the SE USA have had a benign effect on forest

ecosystem services. Future production has the potential

for positive effects when it builds landowner commit-

ment to retain land in forest cover and when wood-pellet

production becomes more efficiently integrated into

proactive forest management plans. Regulatory and vol-

untary provisions exist to protect forests. Nonetheless,

systematic monitoring and evaluation of managed for-

ests are essential to ensure that intended outcomes are

achieved. Knowledge gained from monitoring and rigor-

ous scientific research should be used to inform contin-

ual improvement of forest management and should be

reflected in decision making in both the USA and the EU.
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