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Abstract—Next-generation power networks will contain large
numbers of grid-connected inverters satisfying a significant
fraction of system load. Since each inverter model has a relatively
large number of dynamic states, it is impractical to analyze
complex system models where the full dynamics of each inverter
are retained. To address this challenge, we derive a reduced-order
structure-preserving model for parallel-connected grid-tied three-
phase inverters. Here, each inverter in the system is assumed to
have a full-bridge topology, LCL filter at the point of common
coupling, and the control architecture for each inverter includes a
current controller, a power controller, and a phase-locked loop for
grid synchronization. We outline a structure-preserving reduced-
order inverter model with lumped parameters for the setting
where the parallel inverters are each designed such that the filter
components and controller gains scale linearly with the power
rating. By structure preserving, we mean that the reduced-order
three-phase inverter model is also composed of an LCL filter,
a power controller, current controller, and PLL. We show that
the system of parallel inverters can be modeled exactly as one
aggregated inverter unit and this equivalent model has the same
number of dynamical states as any individual inverter in the
system. Numerical simulations validate the reduced-order model.

I. INTRODUCTION

Distribution networks are witnessing an increased integra-
tion of power-electronics inverters serving as grid interfaces
to renewable resources, electrical vehicles, and loads. For
instance, today there are roughly 800,000 Enphase microin-
verters on the Hawaiian island of Oahu alone [1] and this
number will only grow as Hawaii aims to meet its goal
of obtaining 100% of its energy from renewable sources
by 2045 [2]. To aid analysis and control, it is critical to
develop computationally affordable models that scale with
penetration level and accurately capture pertinent dynamics
of power electronics inverters. This paper takes a step in
this direction by formulating a reduced-order model for a
collection of parallel-connected grid-tied three-phase inverters
as may be seen in photovoltaic energy conversion systems,
electric-vehicle charging stations, and railway auxiliary power
supplies [3]–[5].

Without loss of generality, we examine a three-phase in-
verter with a full-bridge topology and output LCL filter. As

This work was supported by the U.S. Department of Energy (DOE) Solar
Energy Technologies Office under Contract No. DE-EE0000-1583.

shown in Fig. 1a, the inverter control system includes: a
current controller (that generates the PWM reference signals),
a power controller (that responds to active- and reactive-power
setpoints and generates current references for the current
controller), and a phase-locked loop (PLL) (for grid synchro-
nization) [6]. Models of this sort generally have more than
10 dynamical states (the particular one we study has 15);
and therefore, it is computationally infeasible and analytically
unwieldy to study large collections of such inverters with
different power ratings. To address these limitations, we derive
a structure-preserving reduced-order inverter model for the
setting where individual inverters in the parallel setup have the
same topology with filter components and controller gains that
scale linearly with the power rating. By structure preserving,
we mean that the reduced-order model itself is a three-phase
inverter that is also composed of an LCL filter, a power
controller, current controller, and PLL, i.e., it has the same
structure and the same number of dynamical states as any
individual inverter in the parallel multi-inverter system.

Model-reduction methods for individual inverters and syn-
chronous machines have received attention in the litera-
ture [7]–[9]. While model-reduction methods to analyze the
collective dynamics of machines and droop-controlled islanded
inverters have received attention [10], [11], this work focuses
on large collections of the most ubiquitous type of inverter in-
stalled on systems today–grid-tied inverters with conventional
grid-following current controllers and PLLs. We anticipate the
models developed here to be applicable in such problems as the
study of dynamic interactions between machines and inverters,
as well as stability analysis of networks with high inverter
penetration [12]–[14].

The remainder of this paper is organized as follows. In
Section II, we introduce a three-phase grid-connected inverter
model and power scaling laws for the inverter. In Section III,
we describe how the states of the inverter are scaled based on
its power-scaling parameter, and propose the reduced-order
structure-preserving model for parallel-connected inverters.
To validate the proposed reduced-order model, we compare
numerical simulation of a parallel system to its corresponding
reduced-order inverter in Section IV. Finally, we conclude this
paper and outline a few pertinent directions for future work
in Section V.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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(a) (b)

Fig. 1: (a) Block diagram of the three phase inverter (one leg of the LCL filter is depicted) and adopted shorthand. (b) For the parallel
connection of N inverters we obtain the power-scaling parameter, κ̂, for a reduced-order structure-preserving model.

Notation: The matrix transpose will be denoted by (·)T.
The spaces of N × 1 real-valued vectors is denoted by R

N ;
and R

N×N denotes the space of N ×N real-valued matrices.
A diagonal matrix formed with diagonal entries composed
of entries of the vector x is denoted by diag(x); 1n and
0n denote an all ones and all zeros vectors of length n,
respectively; In denotes an n-by-n identity matrix; 0m×n
denotes an all zeros matrix of size m-by-n.

II. THE INVERTER MODEL AND POWER SCALING LAWS

A block diagram of the three-phase inverter is illustrated in
Figure 1a. We assume a voltage source inverter (VSI) with
an H-bridge topology and an output LCL filter (Lf , Cf ,
Lc). The grid voltage and frequency are denoted by vg and
ωg , respectively. The control architecture for each inverter
includes: an inner-loop current controller, an outer-loop power
controller, and a phase-locked loop (for grid synchronization).
As shown in Fig. 1b, we are primarily interested in the
collective behavior of N such inverters connected in parallel
to the grid. We begin this section with an overview on how the
inverters are designed for different power ratings, the features
of the reduced-order model sought for the parallel collection of
inverters, and then briefly discuss the controller and LCL filter
dynamics. Lastly, we represent the dynamics of the inverter in
state-space form.

A. Scaling Individual Inverters with Power Rating

We first introduce the notion of a power-scaling parameter,
κ, which is defined as

κ :=
prated
pbase

, (1)

where prated is the rated power of a given inverter, and pbase is
a system-wide base value. We make the assumption that both
real and reactive power ratings scale linearly with κ. In the
remainder of the digest, we will denote the base active- and
reactive-power setpoints as p∗ and q∗. Notice from Fig. 1a
that the reference-power setpoints for the inverter are given
by κp∗, κq∗. Therefore, the output active and reactive power
injected by each inverter into the grid are directly proportional
to κ. We scale elements of the LCL filter in the manner shown
in Fig. 1a so that the output current is inversely proportional

to the impedance of the filter. With regard to the controllers,
we also scale the gains of the current controller by 1/κ so that
its outputs, i.e., the reference for the input voltage of the LCL
filter, do not depend on κ, and neither does the voltage drop
across the LCL filter. Thus, the output current, and therefore
the output power, of the inverter scales directly proportionally
to κ.

The scaling approach described above is admittedly assump-
tive by nature. However, it is a herculean—if not impossible—
task to ascertain how commercial inverter manufacturers
would scale the cyber-physical architectures of inverters with
power rating. Therefore, we base our analysis around this
scaling approach, taking solace in the fact that it is grounded
in and guided by some fundamental engineering insights.

B. Desired Features of the Structure-preserving Reduced-
order Model

With the control and physical architecture of individual
inverters highlighted in Fig. 1a, and the procedure to scale
the inverter design to accommodate different power ratings
discussed above, we bring attention to Fig. 1b to describe
the main goal of this work. We consider a collection of N
inverters with different power ratings (described by power-
scaling parameters κ1, . . . , κN ) connected in parallel to the
grid bus. The dynamics of each inverter include those of the
different control blocks and LCL filters illustrated in Fig. 1a,
and are described collectively by a 15-order model (which
will be spelled out subsequently). We derive a structure-
preserving reduced-order model for this parallel connection.
Particularly, we will show that an inverter model with power-
scaling parameter, κ̂ =

∑N
`=1 κ` perfectly captures the input-

output behavior of the N -inverter collection with a dynamical-
system model that has the same order and structure as any
individual inverter.

C. Model of an Individual Inverter

With the design procedure adopted for scaling inverters in
place, and the goal of this effort described, we next briefly
overview individual portions of the dynamical models for the
individual inverters in Fig. 1a. We start with the reference-
frame transformation, and then go through the phase-locked
loop (PLL), the current controller, and the power controller. In

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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each case, we describe the model assuming assuming κ = 1,
but indicate how the dynamics are modified for an inverter
with a power rating that is not the base value.

1) Reference-frame transformation: Sinusoidally varying
three-phase signals (xa, xb, xc) in balanced settings are co-
ordinate transformed to equivalent DC signals (xd, xq) using
Park’s transformation:[
xd

xq

]
=

2

3

[
cos(δ) cos(δ − 2π

3 ) cos(δ + 2π
3 )

− sin(δ) − sin(δ − 2π
3 ) − sin(δ + 2π

3 )

]xaxb
xc


=:

2

3
Ψ

xaxb
xc

 , (2)

where δ is the instantaneous angle generated by the PLL. The
change in coordinates is signified with the abc-dq block in
Fig. 1a. We further note that [xa, xb, xc]T = ΨT[xd, xq]T.
To illustrate the adopted notation in abc and dq coordinates,
consider the grid voltage, vg , without loss of generality. First,
vabcg := [vag , v

b
g , v

c
g]

T captures vg in abc coordinates. In the
dq reference frame, we define vdqg := [vdg , v

q
g ]T, and vabcg =

ΨTvdqg .
2) Phase-locked Loop: The PLL is in feedback with the dq

transformation for the grid voltage, and it modulates the angle
δ such that vdg → 0 asymptotically. (Elementary trigonometric
identities coupled with (2) illustrate that when vdg = 0, δ is
the instantaneous phase angle of vag , i.e., the inverter is phase
locked with the grid.) It consists of a low pass filter (with cut-
off frequency ωc,PLL) and a PI controller (with PI gains kpPLL

and kiPLL). The dynamics of the PLL that generate the angle
δ are given by

v̇PLL = ωc,PLL(vdg − vPLL),

φ̇PLL = −vPLL,

δ̇ = 2π × 60− kpPLLvPLL + kiPLLφPLL =: ωPLL.

(3)

From the dynamics, we can see that at steady state, vdg =
vPLL = 0. Furthermore, when the grid frequency, ωg = 2π ×
60 [rad · sec−1], it follows that δ̇ = ωPLL = 2π × 60 [rad ·
sec−1].
Remark 1 (Dynamics of PLL in scaled inverter). The same
dynamics in (3) are utilized for inverters with different power
ratings, i.e., for the case κ 6= 1.

3) Output LCL Filter: The dynamics of the LCL filter
(in the dq reference frame) are derived by running pertinent
time-domain circuit equations through the dq transformation
with angle δ. This yields

i̇dql =
1

Lf
(−rf idql + vdqi − v

dq
o ) +

[
0 1
−1 0

]
ωPLLi

dq
l ,

i̇dqo =
1

Lc
(−rcidqo + vdqo − vdqg ) +

[
0 1
−1 0

]
ωPLLi

dq
o ,

v̇dqo = Rd(i̇
dq
l − i̇

dq
o )−

[
0 1
−1 0

]
ωPLLRd(i

dq
l − i

dq
o )

+
1

Cf
(idql − i

dq
o ) +

[
0 1
−1 0

]
ωPLLv

dq
o ,

(4)

where idql = [idl , i
q
l ]

T, idqo = [ido , i
q
o]

T, vdqi = [vdi , v
q
i ]T, and

vdqo = [vdo , v
q
o ]T.

Remark 2 (Dynamics of LCL filter in scaled inverter).
While the dynamics above correspond to the case where the
power-scaling parameter, κ = 1; for inverters with power
ratings that are scaled values of this base setting, we utilize the
filter parameters Lf/κ, rf/κ, κCf , Rd/κ, Lc/κ, rc/κ with κ
chosen according to (1).

4) Power Controller: The power controller consists of low
pass filters and PI controllers, with its outputs to be the
reference for the current controller:

id∗l = kpQ (q∗ − qavg) + kiQ

∫
q∗ − qavg,

iq∗l = kpP (p∗ − pavg) + kiP

∫
p∗ − pavg,

where p∗, q∗ are reference active- and reactive-power set-
points. Furthermore, pavg and qavg are low-pass-filtered ver-
sions of the inverter output active and reactive power outputs:

ṗavg = ωc(p− pavg), q̇avg = ωc(q − qavg), (5)

where p and q are the instantaneous active and reactive output
power (measured at the grid terminals) and given by

p =
3

2
(vdg i

d
o + vqg i

q
o), q =

3

2
(vqg i

d
o − vdg iqo).

To ease notation and exposition in subsequent developments,
we will find it useful to define:

φ̇p := p∗ − pavg, φ̇q := q∗ − qavg. (6)

Remark 3 (Dynamics of power controller in scaled in-
verter). For inverters with κ 6= 1, the power setpoints as
scaled as κp∗ and κq∗; all other dynamics reported above are
retained.

5) Current Controller: The current controller consists of
two PI controllers and feedforward terms, with its outputs to
be the reference for the terminal voltage vi:

vd∗i = −ωPLLLf i
q
l + kpid

(
id∗l − idl

)
+ kiid

∫
id∗l − idl ,

vq∗i = ωPLLLf i
d
l + kpiq

(
iq∗l − i

q
l

)
+ kiiq

∫
iq∗l − i

q
l .

To ease notation and exposition in subsequent developments,
we will find it useful to define:

γ̇d = id∗l − idl , γ̇q = iq∗l − i
q
l . (7)

The (three-phase) PWM modulation signals for the inverter are
then obtained as vabc∗i = ΨTvdq∗i . With reference to Fig. 1a,
for an ideal inverter we have that the inverter terminal voltage,
vabci = vabc∗i (and equivalently vdqi = vdq∗i ).
Remark 4 (Dynamics of current controller in scaled
inverter). While the dynamics above correspond to the case
where the power-scaling parameter, κ = 1; for inverters with
power ratings that are scaled values of this base setting, we
utilize the parameters kpid/κ, kpiq/κ, kiid/κ, kiiq/κ.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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D. State-space Model for the Inverter Dynamics

For the model in (3)–(7), we assumed that κ = 1 and
hence, it defines the dynamics in the unscaled inverter. For this
case, the controller and LCL filter dynamics can be compactly
represented in state-space form as follows

ẋ = Ax+Bu1 + g(x, u2), (8)

where the states are x = [idl , i
q
l , i

d
o , i

q
o, γ

d, γq, pavg, qavg,
φp, φq, v

d
o , v

q
o , vPLL, φPPL, δ]

T, and the inputs include u1 =
[p∗, q∗]T and u2 = [vag , v

b
g , v

c
g]

T = vabcg . Here, the matrices
A ∈ R

15×15, B ∈ R
15×2, and function g : R15 × R

3 → R
15

can be derived from the dynamical-system models in (6)–(7)
straightforwardly. For completeness, their entries are listed in
the Appendix.

Now, let us consider a scaled inverter with
κ 6= 1. If we replace the unscaled model
parameters Lf , rf , Cf , Rd, Lc, rc, k

p
id, k

p
iq, k

i
id, k

i
id with

κ−1Lf , κ
−1rf , κCf , κ

−1Rd, κ
−1Lc, κ

−1rc, κ
−1kpid, κ

−1kpiq,
κ−1kiid, κ

−1kiiq (see Remark 1–4), we obtain the scaled
inverter model

ẋs = Asxs +Bsus1 + gs(xs, us2), (9)

where the inputs are us1 = κu1 and us2 = u2 = vabcg . The
matrices As ∈ R15×15, Bs ∈ R15×2, and function gs : R15 ×
R
3 → R

15 have the same structure as A, B, and g for the
unscaled model albeit with parametric scalings given above.
Next, define κ := [κ1T

10,1
T
5 ]T, where 1` denotes an `-length

vector of all ones.

III. INVERTER SCALING AND REDUCED-ORDER MODEL

In this section, we begin with establishing the relationship
between the states in the scaled and unscaled inverter models,
then we propose a method of aggregating N parallel-connected
inverters illustrated in Fig. 1b.

A. Scaling of Inverter States

Here, we establish the connection between the dynamics of
the scaled and unscaled inverters.
Proposition 1. Consider the dynamics of the unscaled inverter
(with κ = 1) and scaled inverter (with κ 6= 1) in (8)
and (9), respectively. Suppose the initial conditions for the
two dynamical systems at some time t0 ≥ 0 are such that
xs(t0) = diag(κ)x(t0). If us1 = κu1 and us2 = u2, it follows
that xs(t) = diag(κ)x(t), ∀t ≥ t0.

Proof. We partition x as [xT1 , x
T
2 ]T, where xT1 =

[idl , i
q
l , i

d
o , i

q
o, γ

d, γq, pavg, qavg, φp, φq]
T and xT2 = [vdo , v

q
o ,

vPLL, φPPL, δ]
T, and we also partition xs the same way. Then

we write (8) and (9) as follows[
ẋ1
ẋ2

]
=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u1 + g(x, u2), (10)[

ẋs1
ẋs2

]
=

[
As

11 As
12

As
21 As

22

] [
xs1
xs2

]
+

[
Bs

1

Bs
2

]
us1 + gs(xs, us2). (11)

By observing the entries of the state-space matrices, it is
straightforward to see the following relationships:

As
11 = A11, A

s
12 = κA12, A

s
21 =

1

κ
A21, A

s
22 = A22,

Bs
1 = B1, B

s
2 =

1

κ
B2.

Then we have

diag(κ)A =

[
κA11 κA12

A21 A22

]
=

[
κAs

11 As
12

κAs
21 As

22

]
= Asdiag(κ),

(12)

diag(κ)B =

[
κB1

B2

]
=

[
κBs

1

κBs
2

]
= Bs(κI2). (13)

Next, we are going to show that gs(diag(κ)x, us2) =
diag(κ)g(x, u2). Notice that the PLL dynamics for both
inverters are decoupled from the rest of internal states and
their parameters are the same, so we can conclude that
vβsg = vβg , v

s
PLL = vPLL, φ

s
PLL = φPLL, δ

s = δ. Then, the
following identities hold for vdg and vqg :

vdg (diag(κ)x, us2) =
2

3

(
cos(δ)vag + cos(δ − 2π

3
)vbg

+ cos(δ +
2π

3
)vcg

)
= vdg (x, us2) = vdg (x, u2),

vqg(diag(κ)x, us2) =
2

3

(
sin(δ)vag + sin(δ − 2π

3
)vbg

+ sin(δ +
2π

3
)vcg

)
= vqg(x, us2) = vqg(x, u2).

The nonzero entries of gs(diag(κ)x, us2) are given by

gs3(diag(κ)x, us2) = (−kpPLLvPLL + kiPLLφPLL)κiqo

− κ

Lc
vdg (diag(κ)x, us2) = κg3(x, us2),

gs4(diag(κ)x, us2) = (kpPLLvPLL − kiPLLφPLL)κido

− κ

Lc
vqg(diag(κ)x, us2) = κg4(x, us2),

gs7(diag(κ)x, us2) =
3

2
κωc

(
vdg (diag(κ)x, us2)ido

+vqg(diag(κ)x, us2)iqo
)

= κg7(x, us2),

gs8(diag(κ)x, us2) =
3

2
κωc

(
vqg(diag(κ)x, us2)ido

−vdg (diag(κ)x, us2)iqo
)

= κg8(x, us2),

gs11(diag(κ)x, us2) = (−kpPLLvPLL + kiPLLφPLL)(−Rdiql + vqo)

+
Rd
Lc
vdg (diag(κ)x, us2) = g11(x, us2),

gs12(diag(κ)x, us2) = (kpPLLvPLL − kiPLLφPLL)(−Rdidl + vdo )

+
Rd
Lc
vqg(diag(κ)x, us2) = g12(x, us2),

gs13(diag(κ)x, us2) = ωc,PLLv
d
g (x, u2) = g13(x, us2),

gs15(diag(κ)x, us2) = 2π × 60 = g15(x, us2), u2).

Therefore, we have

diag(κ)g(x, u2) = gs(diag(κ)x, us2). (14)

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Let us define function h(xs, us2) : R15 × R
2 → R

15 to have
the same structure as gs(xsus2) except the following entries:

h3(xs, us2) = (−kpPLLv
s
PLL + kiPLLφ

s
PLL)iqso ,

h4(xs, us2) = (kpPLLv
s
PLL − kiPLLφ

s
PLL)idso ,

h11(xs, us2) = (−kpPLLv
s
PLL + kiPLLφ

s
PLL)

(
−Rd
κ
iqsl + vqso

)
,

h12(xs, us2) = (kpPLLv
s
PLL − kiPLLφ

s
PLL)

(
−Rd
κ
idsl + vdso

)
,

h13(xs, us2) = 0,

h15(xs, us2) = 0.

Then, the following identity holds

gs(xs, us2)− gs(diag(κ)x, us2) = h((xs − diag (κ)x), ur2) .
(15)

Let us define z := xs − diag(κ)x, and note from (10)
and (11) that

ż = ẋs − diag(κ)ẋ = Asxs +Bsus1 + gs(xs, us2)

− diag(κ)Ax− diag(κ)Bu1 − diag(κ)g(x, u2). (16)

Leveraging identities (12)–(15), we can rewrite (16) as

ż = As(xs − diag(x)) + h((xs − diag (κ)x), us2)

= Asz + h(z, us2). (17)

It is straightforward to see h(015, u
s
2) = 015. Then, if

we initialize z(t0) = xs(t0) − diag(κ)x(t0) = 015, we
have z(t) = 015,∀t ≥ t0. Therefore we have xs(t) =
diag(κ)x(t),∀t ≥ t0.

B. Aggregation of Inverters

Consider the parallel-connection of N inverters with power-
scaling factors κ1, . . . , κN illustrated in Fig. 1b. Define the
equivalent power-scaling factor as κ̂ :=

∑N
`=1 κ`. For this

system, define the reduced-order model

ẋr = Arxr +Brur1 + gr(xr, ur2), (18)

where the inputs ur1 and ur2 are given by ur1 = κ̂[p∗, q∗]T,
ur2 = [vag , v

b
g , v

c
g]

T = vabcg , and we have the same collection
of states as the model in (9), except with the dynamics of
the states being governed with κ = κ̂. Consequently, Ar ∈
R
15×15, Br ∈ R

15×2, gr : R15 × R
3 → R

15 have the same
structure as (9), except with power-scaling parameter κ̂.
Proposition 2. Let ido` and iqo` denote the output current of
the `-th inverter. Then, the output current of the reduced-order
inverter is given by

idro (t) =
N∑
`=1

ido`, iqro (t) =
N∑
`=1

iqo`, (19)

where idro and iqro denote the output current of the reduced-
order inverter.

Proof. Let id0o and iq0o denote the current output of inverter
with nominal power rating. Since the reduced-order inverter
has power-scaling factor of κ̂, idro (t) = κ̂id0o (t) and iqro (t) =

t[s]

i
d o
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Fig. 2: Simulation results for three-phase inverter system demonstrat-
ing the validity of the scaling and model-reduction procedure.

κ̂iq0o (t) for t ≥ t0. By the definition of κ̂ and the scaling of
output current, the following equations hold for t ≥ t0:

idro (t) = κ̂id0o (t) =
N∑
`=1

κ`i
d0
o (t) =

N∑
`=1

ido`(t),

and similarly for the q component of the current.

IV. SIMULATION RESULTS

In this section, we simulate a system of 4 parallel-
connected inverters alongside the reduced-order equivalent
inverter model, as illustrated in Fig. 1b. For the multi-inverter
system, N = 4, with power-scaling parameters: κ1 = κ2 = 1,
κ3 = 2, and κ4 = 3. The reduced-order inverter model is given
initial conditions as prescribed in Proposition 2. The power
and RMS voltage ratings are 500kW and 288V, respectively,
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and correspond to a Siemens SINVERT PVS500 inverter [15].
During the time-domain simulation, we let q∗ = 0VAR.
The filter and controller parameters are taken from [9]. We
introduce a step change in p∗ from 500kW to 400kW at
t = 0.5s. Figure 2 shows the output current, voltage, and
active power dynamics of the individual and equivalent (i.e.
reduced-order) inverters. Note that the plots for inverter#2 are
omitted since it has the same scaling factor as inverter#1, and
therefore their plots are identical. To validate the equivalent
inverter and its correspondence to the individual inverters, we
also plot the output current and power of the unscaled inverter
(i.e. inverter#1) scaled by a factor of 7. We can see that
they satisfy the following scaling properties: idro (t) = 7ido1(t),
vdro (t) = vdo1(t), and pravg(t) = 7pavg1(t).

V. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

In this paper, we derived a reduced-order structure-
preserving model for parallel-connected grid-tied three-phase
inverters. In particular, it was shown that N parallel inverters
with heterogeneous power ratings can be modeled as a single
inverter with an equivalent power rating equal to the sum of
the individual inverter ratings. At its foundation, the proposed
reduced order model is built on a set of scaling laws that pre-
scribe how the filter and controller parameters of an individual
inverter change with power rating. Ultimately, we showed that
N parallel inverters that adhere to such scaling laws can be
represented as one equivalent inverter whose output terminal
behavior is identical to the original multi-inverter system. The
next step of our study is to extend this result for the system
of inverters with arbitrary electrical networks.

APPENDIX

In order to show the entries of matrices A, B, and function
g(x, u2) compactly, let us permute the state vector as x̂ :=
[idl , i

q
l , i

d
o , i

q
o, v

d
o , v

q
o , γ

d, γq, pavg, qavg, φp, φq, vPLL, φPPL, δ]
T,

and the permuted dynamics are given by

˙̂x = Âx̂+ B̂u1 + ĝ(x̂, u2), (20)

Suppose we partition the permuted state vec-
tor as x̂ = [xTLCL, x

T
CC, x

T
PC, x

T
PLL]T, where

xLCL = [idl , i
q
l , i

d
o , i

q
o, v

d
o , v

q
o ]T, xCC = [γd, γq]T,

xPC = [pavg, qavg, φp, φq]
T, and xPLL = [vPLL, φPLL, δ]

T.
Then, we can write (20) as

ẋLCL
ẋCC

ẋPC

ẋPLL

 =


ALCL ACC

LCL APC
LCL 06×3

ALCLCC 02×2 APC
CC 02×3

04×6 04×2 APC 04×3

04×6 04×2 04×4 APLL



xLCL
xCC

xPC

xPLL



+


BLCL
BCC

BPC

03×2

u1 + ĝ(x̂, u2),

where the nonzero submatrices ALCL, ACC
LCL, APC

LCL, ALCLCC ,
APC

CC, APC, APLL, BLCL, BCC, and BPC are given by

ALCL =



−k
p
id+rf
Lf

0 0

0 −k
p
id+rf
Lf

0

0 0 − rc
Lc

0 0 −2π × 60

−Rd
kpid+rf
Lf

+ 1
Cf

−(2π × 60)Rd Rd
rc
Lc
− 1

Cf

(2π × 60)Rd −Rd
kpid+rf
Lf

+ 1
Cf

0

0 − 1
Lf

0

0 0 − 1
Lf

2π × 60 1
Lc

0

− rc
Lc

0 1
Lc

0 −Rd( 1
Lc

+ 1
Lf

) 2π × 60

Rd
rc
Lc
− 1

Cf
−2π × 60 −Rd( 1

Lc
+ 1

Lf
)


,

ACC
LCL =

kiidLf
0

0
kiiq
Lf

 ,
APC
LCL =

 0 −k
p
id

Lf
kpQ 0

kpid
Lf
kiQ

−k
p
iq

Lf
kpP 0

kpiq
Lf
kiP 0

 ,
ALCLCC =

[
−1 0 0 0 0 0
0 −1 0 0 0 0

]
,

APC
CC =

[
0 −kpQ 0 kiQ
−kpP 0 kiP

]
,

APC =


−ωc 0 0 0

0 −ωc 0 0
−1 0 0 0
0 −1 0 0

 , APLL =

−ωc,PLL 0 0
−1 0 0
−kpPLL kiPLL 0

 ,

BLCL =



0
kpid
Lf
kpQ

kpiq
Lf
kpP 0

0 0
0 0

0
kpid
Lf
kpQRd

kpiq
Lf
kpPRd 0


, BCC =

[
0 kpQ
kpP 0

]
,

BPC =


0 0
0 0
1 0
0 1

 .
The nonzero entries of ĝ(x̂, u2) are given by

ĝ3(x̂, u2) = (−kpPLLvPLL + kiPLLφPLL)iqo −
κ

Lc
vdg (x̂, u2),

ĝ4(x̂, u2) = (kpPLLvPLL − kiPLLφPLL)ido −
κ

Lc
vqg(x̂, u2),

ĝ5(x̂, u2) = (−kpPLLvPLL + kiPLLφPLL)(−Rdiql + vqo)

+
Rd
Lc
vdg (x̂, u2),

ĝ6(x̂, u2) = (kpPLLvPLL − kiPLLφPLL)(−Rdidl + vdo )
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+
Rd
Lc
vqg(x̂, u2),

ĝ9(x̂, u2) =
3

2
ωc
(
vdg (x̂, u2)ido + vqg(x̂, u2)iqo

)
,

ĝ10(x̂, u2) =
3

2
ωc
(
vqg(x̂, u2)ido − vdg (x̂, u2)iqo

)
,

ĝ13(x̂, u2) = ωc,PLLv
d
g (x̂, u2),

ĝ15(x̂, u2) = 2π × 60,

where vdg (x̂, u2) and vqg(x̂, u2) are given by

vdg (x̂, u2) =
2

3

(
cos(δ)vag + cos(δ − 2π

3
)vbg

+ cos(δ +
2π

3
)vcg

)
,

vqg(x̂, u2) =
2

3

(
sin(δ)vag + sin(δ − 2π

3
)vbg

+ sin(δ +
2π

3
)vcg

)
.
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