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Ferroelastic modulation and the Bloch formalism
Angelo Mascarenhas,* Brian Fluegel, Lekhnath Bhusal

The key to the development of advanced materials is to understand their electronic structure-property relationship.
Utilization of this understanding to design new electronic materials with desired properties led to modern epitaxial
growth approaches for synthesizing artificial lattices, which for almost half a century have become the mainstay of
electronic and photonic technologies. In contrast to previous scalar modulation approaches, we now study synthetic
crystal lattices that have a tensor artificial modulation and develop a theory for photons and conduction band states
in these lattices in a regime with an unusual departure from the familiar consequences of translational symmetry
and Bloch’s theorem. This study reveals that a nonmagnetic crystal lattice modulated by a purely geometrical ori-
entational superlattice potential can lead to localized states or to spiral states for electrons and photons, as well as
weakly or strongly localized states that could be used to markedly slow down the propagation of light and for
optical energy storage applications.
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INTRODUCTION
The band theory of solids (1–7) forms the foundation for understanding
the electrical and optical properties of metals, insulators, and semicon-
ductors based on concepts such as Bloch functions, formation of gaps in
the energy spectrum, and the connection between energy surface dis-
continuities in k-space and special points of the Brillouin zone (BZ).
Because of the central role played by Bloch’s theorem in shaping these
concepts, they can be collectively referred to as the Bloch formalism.
During the past three decades, this formalism has also provided the
framework for developing a band theory of artificially modulated lat-
tices, such as superlattices (8) and photonic crystals (9). We now report
a study on artificiallymodulated nonmagnetic crystal lattices, whose pe-
riodic properties are derived purely by spatial orientation transforma-
tions. These orientationally modulated lattices or orientational
superlattices (OSLs) have a tensor artificial modulation for which
the quantum or wave mechanical description of electrons, photons,
phonons, etc., is best accomplished using symmetry transformations
for tensors. In contrast to conventional approaches, we demonstrate a
regime where a theory for conduction band states can be developed
without use of the Bloch formalism, and that the role played by
translation symmetry in this development differs from the traditional
approach. In addition to propagating states, we observed that a crys-
talline lattice modulated by a purely geometrical OSL potential can
lead to localized states or to spiral states for electrons and photons.
The existence of spiral states for electrons and photons in these OSLs
is unusual and is associated with the change from Riemann to Finsler
geometry (10, 11). We show that for these tensor-modulated struc-
tures, the reduction of the space group (6) depends on the translation
symmetry appropriate for inducing this. The existence of spiral and
localized states for electrons and photons can be exploited for elec-
tronic, photonic, and optical energy storage applications.
RESULTS
Electrons in orientationally modulated lattices
As an example of an OSL, we study a lattice that is constructed out of
proper ferroelastic domain wedges with crystalline symmetry Pmn21
(Fig. 1, inset). The emergence of a ferroelastic spontaneous strain tensor
can arise from an order-disorder transition (with a k-index of 2 that
defines the multiplication of the unit cell) in a material having wurtzite
symmetry P63mc (12, 13). Periodic twinning of these domains (Fig. 1A)
is used to construct the OSL shown in Fig. 1B that is described by the
modulated structure space group P63cm. Because the OSL translation
group is a subgroup of the Pmn21 translation group, the OSL modula-
tion is commensurate. In direct space, the unit cell of the modulated
structure (superstructure or superlattice) becomes larger than that of
the basic structure and is referred to as a supercell. We explore the the-
ory for conduction band states in these lattices for electrons as well as
photons using the effective mass approximation (14), wherein the
energy eigenfunctions for the bulk domain with symmetry Pmn21 that
constitutes the basic structure aremodulated by theOSLperiodic poten-
tial. We assume a regime where (i) the OSL periodicity is much larger
than the period of the Pmn21 unit cell and (ii) the length of a wedge side,
l≫ lde, which is the de Broglie wavelength (for light, lin medium). Here, l
and lde are large enough that the 63 screw axis or the soft antiphase
boundaries (see Materials and Methods) that occur at wedge interfaces
can be ignored in the treatment shown below. The difference in the bulk
Hamiltonians for any two domain wedges A and B constituting a do-
main twin (such as shown in Fig. 1A) is (DH)AB = [−VA(r) + VB(r)],

where HA ¼ p2

2mþ VA rð Þ, VB(r) = RVA(r)R
−1, and R is the operator

that transforms domain wedgeA intoB. Let yA
k

�� �
and yB

k0
�� �

correspond
to the conduction band eigenstates of HA and HB, the bulk Hamilto-
nians for the respective domain wedges. BecauseHA andHB are related
by a unitary similarity transformationR, they have the same eigenvalues,
and the subspace of the one-dimensional (1D) irreducible representa-
tion of HA is one-to-one mapped into that of HB by R for the cor-
responding eigenvalues, whereby for conduction band eigenstates of
eigenvalue E, yA

k

�� �
→ yB

k0
�� �

. Hence, the scattering of a conduction band
state of wedge A at the interface with wedge B by the modulating
potential (DH)AB as it propagates through the OSL is a one-band prob-
lem identical to that solved earlier (15, 16). It was shown there that
when R = s (the operation for the twin boundary mirror plane trans-
formation), then in the effective mass approximation, for any con-
duction band state yA

k

�� �
in wedge A incident on the twin boundary

with bulk wave vector k corresponding to eigenenergy E(k), there is
no back-reflected wave at the twin boundary interface. Thus, for the
state yA

k

�� �
propagating in wedgeA, it is the sequence of refractions at

the OSL domain interfaces encountered by this state that determines
its propagation through the OSL. Because the refraction rule [for ex-
ample, as determined by Zhang et al. (15)] depends only on k̂ ¼ k=jkj
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and not on |k| or on energyE(k) in the chosen regime, the propagating
eigensolutions in the OSL are characterized by k̂ but are independent
of |k|. The irrelevance of |k| = 2p/l for determining the propagating
conduction band states is due to the absence of backscattering and
resulting destructive/constructive interference generated by the mod-
ulating potential. Additionally, in the regime defined above, the con-
ventionally required use of Bloch’s theorem is not necessary for
determining the propagating eigensolutions in the OSL.

Photons in orientationally modulated lattices
The similarity between the propagation of light and that of electrons
through OSL domain interfaces (15) makes it convenient to illustrate
Mascarenhas, Fluegel, Bhusal, Sci. Adv. 2017;3 : e1602754 7 June 2017
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the features discussed above, by examining the propagation of light
in the x,y plane of the OSL (Fig. 1B) when the domain wedges are
optically transparent. Light propagation in the OSL birefringent
wedges is numerically modeled using section S1 and equation 9 in
section S2. A perfectly localized mode and a free mode for a light ray
parallel to either the base (a) or the sides (b) of wedges that meet at
the center of the hexagonal unit cell are shown in Fig. 2. The OSL
domain wedges are chosen to have positive birefringence with values
of refractive indices ne = ð1þ ffiffiffi

2
p Þ= ffiffiffi

3
p

≅ 1.3938 and no = 1 for the
extraordinary and ordinary refractions, respectively, and with the
wedge length l ≫ l/ne with l = 0.5 mm the wavelength of light
for this case (a similar localized orbit can be obtained for negative
birefringence). The dielectric tensor is of the form given in equation
6 in the study by Zhang et al. (15). The degree of localization can be
varied; for example, if the ray is launched at an angle q = 1.749 × 10−2

with the base of the wedge in the hexagon (Fig. 3, top left), the local-
ization is weak, whereas if q = 6.981 × 10−4 (Fig. 4, top center), the
localization is strong. However, in both cases, the ray now propagates
through the lattice. The trajectories in Figs. 2 ( A and B) to 4 catego-
rize the three modes of propagation in the OSL, namely, (i) totally
bound, (ii) freely propagating, and (iii) partial resonances, which com-
prise the vast majority of OSL trajectories. There will be a 2p/3 angular
degeneracy in the direction of propagation for trajectories in categories
(ii) and (iii). The abovementioned statements apply to a family of
parallel rays (see sections S3 and S7).

Orientationally ordered sublattices
Because of the similarity of the dielectric and effective mass tensor for
the birefringent domain wedges [see equations 1 and 6 in the study by
Zhang et al. (15)], the trajectories for ballistic electron states |ynk〉 with
bulk energy En(k) in an allowed band with index n of an OSL domain
wedge are similar to those for light rays shown in Figs. 2 to 4 (as dis-
cussed in section S2). To elucidate the role of translation symmetry in
the energy band formalism for the electronic states of the OSL, it is
worth noting that the conventional structural ordering of alloys (for ex-
ample, R3m-type ordering in GaInP2) results in a differentiation of sites
ly 12, 2017
P63cm

Pmn21

Wedge A

Wedge B

B

A

Fig. 1. Structure of an orientation superlattice. Bottom: Periodic twinning of do-
main wedges A and B, each with crystalline symmetry Pmn21. Middle: Pmn21
symmetry unit cell. Top: OSL with symmetry P63cm.
a b

ne    1.3938, no = 1

Fig. 2. Free and localized modes of light. Perfectly localized and freemodes for a
ray launched parallel to the base or to the sides of wedges (a) and (b), respectively, that
meet at the center of a hexagonal unit cell. Triangular wedge materials are chosen to
bepositively birefringent, with values of refractive indices ne≅ 1.3938 andno = 1 for the
extraordinary and ordinary refractions, respectively. The direction ⊥ uniaxis is depicted
by the tick marks in each wedge. The wedge length l ≫ l which is the wavelength of
light for this case.
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on the cation sublattice. Ga and In atoms that occupied the same cation
sublattice in F�43m GaInP2 now occupy different cation sublattices in
R3m GaInP2 (17). These differentiated Ga and In sublattices cannot be
transformed into one another by a space group operation of the ordered
phase R3m. The primitive translation that before ordering mapped ca-
tions into one another is forbidden subsequent to ordering, and so the
translation group gets modified as the size of the direct lattice unit cell
gets doubled. In the present situation, the Bravais lattice before orienta-
tional ordering is shown in Fig. 5A. Analogous to chemical ordering,
“orientational ordering” results in the original Bravais lattice being dif-
ferentiated into three different sublattices (shown by red, blue, and
green dots in Fig. 5B) that cannot be mapped into one another by a
space group element of the OSL. The tick marks (which depict the di-
rection ⊥ uniaxis for wedges) equivalently identify the three orientation-
al sublattices. Thus, in the OSL, the orientational modulation potential
introduces a differentiation of the lattice in Fig. 5A into three sublattices.
The sublattice space groups (Pmn21)G, (Pmn21)B, and (Pmn21)R have
Mascarenhas, Fluegel, Bhusal, Sci. Adv. 2017;3 : e1602754 7 June 2017
distinct translation groups {tG}, {tB}, and {tR}, respectively, but they have
the same mm2 point group. The OSL translation group {T} is an in-
variant subgroup of (Pmn21)G, (Pmn21)B, and (Pmn21)R because the
sublattice translations t commute with the OSL translations T.

The conduction band effective mass approximation energy ellip-
soids in the x,y plane of the OSL unit cell are shown as shaded ellipses
in Fig. 6. Also shown in the figure are how a state with a given wave
vector k in the bulk material of a wedge A (blue) when incident on
the interface with awedgeB (green) gets transformed into awave vector
k′ and, subsequently, how k′ when incident on the interface with a
wedge C (red) gets transformed into wave vector k″. As shown in the
figure, when an electron propagates from one wedge to another, it
experiences a reorientation on the new energy ellipsoid. The momenta
parallel to the interface are conserved, and so from this value, the re-
fracted electron’s momentum normal to the interface can be deter-
mined from the new energy ellipsoid. This yields the wave vector
refraction rule. The angles of incidence (qi) and refraction (qr) (see fig.
S2) are defined in terms of the current density flow across the interface

between wedges A and B as tan qiðrÞ
� � ¼ jAðBÞx

jAðBÞz

, yielding the equivalent of

Snell’s law for the domain twins: tan qrð Þ � tan qið Þ ¼ 2
ffiffi
3

p ðm⊥�mjjÞ
ðmjjþ3m⊥Þ , where

m⊥ andm|| are the effective masses ⊥ and ∥ to the uniaxis, respectively. Re-
placing current density by power flow yields an analogous equation for
photons: tan qrð Þ � tan qið Þ ¼ 2

ffiffi
3

p ðee � eoÞ
ðeoþ3eeÞ . Thus, inFig. 1A,when the con-

duction band bulk Bloch state yk(r) = eik·ruk(r) of a Pmn21 domain wedge
A is incident on an interface with wedge B, it is transformed into a state
yk0 ðrÞ ¼ eik

0:ruk0 ðrÞ, where k and k′ are related by the refraction law for
the domain twins. Because the refraction is lossless (15), the scattering
matrix is unitary, and so the transformation of states at the interface
can be viewed as a unitary transformationRAB ykj i ¼ jyk0 i. The total
path length for traveling once around the closed loop in Fig. 2 contri-
butes a spatial phase factor d that will be an integral multiple of 2p if
d ¼ ∑

closed loop
jkjjrdj cosðbÞ ¼ 2pp, p = 1,2,3…, where (k, rd, b) vary as

the ordered sequence {(k, rA, bA), (k′, rB, bB), (k″, rC, bC), .…}, corre-
sponding to the sequential linear segments of electron propagation
in domain wedges A, B, C,….., and where b is the angle between the
wave vector and the flow of the electron current density. This yields

E ¼ h2p2

216l2m⊥
, withk⊥ ¼

ffiffiffiffiffiffiffiffiffi
2m⊥ E
ℏ2

q
as the quantization condition for electron-

bound states (see sections S6 and S7). As a numerical example of this
quantization for the case of light, in a lattice formed of tiles with wedges
that have a side length of 2 mm, the bound orbit in Fig. 2 would have
quantized energies uniformly separated by 43 meV. In the case of elec-
trons in a tiling of wedges with a side length of 1500 Å and a relative
effective mass of 0.1, an electron with an energy of 1.55 eV would result
in Fig. 2 having a localized orbit of length = 500 lde and, hence, much
smaller separation of the quantized energies.

A spiral orbit is shown in Fig. 7, where the component of knormal to
the OSL x,y plane is chosen to be nonzero (kz ≠ 0). As an example, for
closed electron orbits analogous to the positive birefringence OSL in
Fig. 2, the anisotropy parameter g is given by g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m⊥=mjj
p

= 1.3938,
which is attainable in practical materials. For example, in the case of fully
ordered GaInP2 (order parameter, 1), using the values m⊥ = 0.2204
and m∥ = 0.0918 (here, the conduction band effective mass in the
ordering direction is chosen as the value form⊥) yields g =1.5495,which
can be tailored by tuning the order parameter (15). The value of optical
ne    1.3938, no    = 1

Ray angle with wedge
base = 6.981 × 10–4

Fig. 4. Strong localization of light. Strongly localized mode for a ray launched
at an angle of 6.981 × 10−4, with the side of the wedge in the hexagon shown at
top center. Inset shows ray propagation on a demagnified scale. The square in the
inset is zoomed out in the main figure. The birefringent triangular wedges are
identical to those in Fig. 2.
Ray angle with wedge base = 1.749    10–2

ne                       1.3938, no  = 1

Fig. 3. Weak localization of light. Weakly localizedmode for a ray launched at an
angle of 1.749 × 10−2, with the base of the wedge in the hexagon shown at the top
left. Inset shows ray propagation on a demagnified scale. The square in the inset is
zoomed out in the main figure. The birefringent triangular wedges are identical to
those in Fig. 2.
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birefringence Dn = ne − no required to obtain the closed orbits for light
in Fig. 2, where g = ne/no = 1.3938 is 0.3938, can be obtained using liquid
crystals, or photonic crystals where values of birefringence greater than
0.6 are obtainable (18, 19). The techniques used to orient ferroelectric
liquid crystals or periodic poling of ferroelectricmaterial can be used for
the artificial synthesis of OSLs (20, 21).
DISCUSSION
In a Landau order-disorder transition, the crystal symmetry transfor-
mation fromwurtzite P63mc to orthorhombic Pmn21 is associated with
awave vector instability along S and subsequent collapse of thewurtzite
BZ along this wave vector (see figures S5 and S6 in section S8). The six-
fold degeneracy of S leads to six possibilities for such a collapse
corresponding to six differently oriented Pmn21 ferroelastic domains
Mascarenhas, Fluegel, Bhusal, Sci. Adv. 2017;3 : e1602754 7 June 2017
(22). By neglecting wedge interface defects, the little group Pmn21 of
a wave vector S in theOSL is the same as that for wurtzite. Thus, refrac-
tion of a conduction band state ynk(r) from one Pmn21 symmetry fer-
roelastic domain into ynk0 ðrÞ in an adjacent domain corresponds to a
change in the description of the state from one little group k to another
little group k′. Although this change of momentum is forbidden in a
bulk wurtzite crystal, it becomes allowed in the OSL because of the
wedge interface boundaries that give rise to the lossless refraction phe-
nomenon (15). The interdomain electron transfer can be described as a
transition fromonePmn21 symmetry BZ (see fig. S6) to another rotated
by p/3, just as in Fig. 6. The intradomain transport obeys the translation
symmetry of the space group Pmn21. However, this translation group is
not an invariant subgroup of the P63cm supergroup corresponding to
the OSL because Pmn21 does not have a sixfold symmetry axis. Thus, k
changes can occur during interdomain propagation because k is not a
constant ofmotion of theOSL. The inter- and intradomain propagation
outlined above describes all propagation in the OSL. It is therefore not
Fig. 6. Energy ellipsoids and refraction. Shaded ellipses correspond to effec-
tive mass approximation free electron energy ellipses in the x,y plane of the
P63cm symmetry OSL unit cell. The blue vector depicts an electron with a wave
vector k in a wedge corresponding to a blue sublattice incident on an interface
(blue-green line), with a wedge corresponding to a green sublattice. The green
vector k′ depicts the refracted electron. Next, k′ incident on an interface (green-
red line) with a wedge corresponding to a red sublattice gets refracted into the
red vector k″. The wave vector component along the corresponding interface is
preserved at each refraction.
A B
Fig. 5. Bravais sublattices and orientational ordering. (A) The points in blue denote the Bravais lattice for the Pmn21-ordered wurtzite structure shown before
orientational ordering. The tick marks depict the direction ⊥ uniaxis for wedges, and solid lines depict the unit cell. There will be similar lattices for the other two Pmn21-
ordered variants. (B) Orientational ordering of the three ordered variants results in the original wurtzite Bravais lattice being differentiated into three different orien-
tational Bravais sublattices (shown in red, blue, and green, respectively). The tick marks (which depict the direction ⊥ uniaxis for wedges) equivalently identify the three
sublattices. The three interpenetrating flat tori for the P63cm symmetry OSL lattice are shown to the right of the OSL primitive unit cell.
Fig. 7. Spiral orbit for electrons. For out-of-plane momentum kz ≠0, the closed
loop trajectory of Fig. 2 evolves into the spiral trajectory for electron propagation
in a positive birefringence OSL, with g = 1.3938.
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necessary to invoke the Bloch formalism for the conduction band states
of the OSL space group, because although its translation group
operations are obeyed by the inter- and intradomain propagation, they
were not required in its determination.

The abovementioned Bravais sublattice-to-sublattice propagation
mechanism is evident for either the Poynting vector for light or the cur-
rent density for electrons when a Bloch stateynk(r) in the blue rhombus
with Pmn21 symmetry domains in Fig. 8A refracts into an adjacent red
rhombus and then into an adjacent green rhombus, just as they are in
Figs. 2 to 4. The hexagonal unit cell of the OSL in Fig. 5B is outlined in
black, where the three colors represent the three orientational sublat-
tices. Figure 8B illustrates the procedure of taking the OSL hexagonal
unit cell in Fig. 5B, but instead using the conventional Bloch formalism
(that is, a single monochromatic Bravais lattice) applicable when con-
dition (i) of the present regime is invalid (that is, where the OSL period
is not much larger than the period of the Pmn21 unit cell). It then
does not make sense to describe the individual wedges in terms of states
ynk(r) determined using the translation group of Pmn21 for reduction
of this space group (6). In this case, the propagation of conduction band
Mascarenhas, Fluegel, Bhusal, Sci. Adv. 2017;3 : e1602754 7 June 2017
states fnK(r) (computed in the conventional Bloch formalism by using
the translation group of P63cm for reduction of this space group) for the
lattice of Fig. 8B results in linear propagation for the Poynting vector or
the current density. In this regime, l ≯ lde, and so Bragg scattering
effects influence the electronic structure. In contrast, when l ≫ lde,
the size of the OSL BZ becomes trivially small (see figs. S5 and S6),
and so Bragg scattering effects are negligible. The difference in the prop-
agation in Fig. 8 (A and B) arises because for the regime in Fig. 8B, OSL
Bloch states fnK(r) emerge from the use of a single P63cmBravais lattice
with the OSL translation group {T}, whereas for the regime in Fig. 8A,
the propagation of Bloch states ynk(r) in Pmn21 symmetry domains re-
cognizes the existence of three orientational Bravais sublattices (see Fig.
9) with translation groups {tG}, {tB}, and {tR}. The unusual existence of
spiral states for electrons and photons in these OSLs for the regime dis-
cussed in Fig. 8A, in contrast to the regime discussed in Fig. 8B, is as-
sociated with the change in the nature of geodesics from Riemann to
Finsler geometry (10, 11). The translation group plays a central role
in the framework of reduction of space groups, as derived in the study
by Seitz (6). It appears from Fig. 9 that in the case of tensor-modulated
structures, the reduction of space groups depends on the translation
symmetry appropriate to induce this in Fig. 8 (A and B).

Although we have used a rudimentary approach to analyze the be-
havior of photons and electrons in ferroelastic modulated lattices, it sat-
isfactorily explains the data in Figs. 2 to 4. In conclusion, the unusual
feature of these lattices for spiraling conduction band electrons without
external magnetic fields could be of interest for electronic applications,
and the existence of strongly localized and spiral states for photons can
be exploited to slow down the propagation as well as for storage of light
(23, 24). For the latter, a prism could be used to couple a laser beam into
the lattice. This interest could motivate the development of a new gen-
eration of the required synthesis techniques (25).
MATERIALS AND METHODS
Lattice structure and symmetry
The superlattice structure shown in Fig. 1Bwas designed to have optically
perfect interfaces by constructing the tiling out of crystallographic twins
ψ
k

Φ
K

A B
Fig. 8. Poynting vector (or current density for Bloch states). (A) Bravais lattice for the OSL space group P63cm, with the outlined plane diagram formed from the
hexagonal fundamental domain that was shown at the right of Fig. 5B, is composed of three interpenetrating flat tori. For l ≫ lde, a Bloch state yk is identified in the
blue rhombus with Pmn21 symmetry domains. Note that k changes can occur during interdomain propagation among the red, green, and blue sublattices. (Unlike in
Fig. 5B, the sublattice Bravais points are not shown.) The Poynting vector (or current density iℏ

m� y�
k∇yk) for yk will exhibit refraction at the wedge interfaces. (B) Bravais

lattice for the space group P63cm with the hexagonal unit cell outlined in black. For l ≯ lde, a Bloch state FK derived using the conventional Bloch formalism for the
P63cm symmetry OSL is identified in the plane diagram. Because K is a constant of motion, the Poynting vector (or current density iℏ

m� f�K∇fK) for FK yields straight lines
(no refraction).
Fig. 9. Tori representing tricolor and monochromatic Bravais lattices. (A) Torus
for tricolor Bravais lattice using the plane diagram shown in Fig. 8A. Here, the
translation group of Pmn21 is used for the reduction of this space group. (B) Torus
for monochromatic Bravais lattice using the plane diagram in Fig. 8B. Here, the
translation group of P63cm is used for the reduction of this space group
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for which the underlying bonding was maintained across every interface.
This ferroelastic twinning occurs during an order-disorder transition and
is an example of ferroelastic states that emerge across the structural phase
transition (26). By choosing a parent compound with three equivalent
coplanar ordering directions, atomic ordering will ensure both the re-
quired birefringence and dislocation-free interfaces shown in Fig. 1.
The k-index = 2 ferroelastic ordering in wurtzite has three equivalent co-
planar directions and produces a point group with refractive index prin-
ciple directions parallel and normal to the triangular tile base with an
ordered orthorhombicPmn21 unit cell (Fig. 1A). This could be composed
of, for example, ZnS/Se, with S and Se represented by the two large atoms
in the figure. The refractive index in the direction normal to the tiling
planewould be independent of the indices in the two coplanar directions,
and for the purpose of the H-polarization mode exclusively considered
here, it may be ignored. For simplicity, we refer to the in-plane principle
axis that is parallel to the triangle base as being the optical “uniaxis.”

The requirement to form the superlattice using perfect interfaces
results in additional constraints on its symmetry group. It is not possible
for a triangular wedge formed with a single anion column at its apex to
bond to a 60° rotated version of itself. For defect-free bonding, the rota-
tion should be a 63 screw axis that shifts the rotatedwedge down one-half
lattice constant (Fig. 1). This shift does not affect themacroscopic proper-
ties of refractive index or effective mass tensors, and they will maintain a
sixfold rotation symmetry. The bonding between the bases of two triangle
tiles oriented 180° from each other is more problematic, and to maintain
the simple lattice of Fig. 1, it is required that the triangle bases bond at an
antiphase boundary. This “soft antiphase” error (it does not involve a cat-
ion anion swap) does not affect the principle axis directions and should
have a minimal effect on the boundary conditions that determine optical
refraction.The final result shown inFig. 1Bhas space groupP63cm, which
is very similar to that of the original wurtzite structure P63mc, but
differing from it only in the placement of mirror and glide planes relative
to the rotation and screw axes. The recent observations of spontaneously
generated vortices in ferroelastic materials as well as of self-assembling
patterns of six ferroelectric domain states with alternating polarization
in hexagonalmanganites indicate that theremay exist an internal driving
force that stabilizes the formation of OSL structures (27–29).

The effective mass approach used for the treatment of the electronic
states is valid in the regime where the OSL periodicity is much larger
than the periodicity of Pmn21 bulk domain potential and where the size
of the bulk domains are large enough that the 63 screw axis or the soft
antiphase boundaries can be ignored. For example, in a ZnS/Se-based
prototypical system, a wedgewith 1500Å side length has approximately
3.1 × 105 atoms in 3.8 × 104 unit cells.

Electronic structure and optical modeling
Light propagation in the OSL birefringent wedges is modeled numeri-
cally using equation 9 of section S2, with the electric field in the x,y
plane. By neglecting interface defects, the OSL point symmetry group
6mm of the tiling in Fig. 5B is identical to that of the wurtzite tiling.We
have ignored scattering at interfaces and at the vertices of the 2D lattice
of Fig. 5B because the wedge sizes are assumed to be large, and so the
contribution from these effects will be negligible.
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