

U.S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

SMART Mobility Stakeholders – Curating Urban Data & Models

CO-PIS: JOSHUA B. SPERLING, PH.D. (NREL) AND JOHN M. BECK (INL) 2017 ANNUAL MERIT REVIEW - WASHINGTON, D.C. - JUNE 8, 2017

NREL/ PR-5400-68333

THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL, OR OTHERWISE RESTRICTED INFORMATION

Overview

Timeline

Project start date: 10/01/2016

Project end date: 9/30/2019

Percent complete: 15%

Budget

Total project funding

o DOE share: \$1.655 M FY17-FY19

Funding received in FY 2016: 0

Funding for FY 2017: \$555 K

Barriers

- High-quality data for integration, visualization, and analytics/modeling
- Constant advances in technology

Partners

 DOE Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Lab Consortium

NREL: National Renewable Energy Lab

INL: Idaho National Lab

LBNL: Lawrence Berkeley National Lab

ORNL: Oak Ridge National Lab

Associated Labs

LANL: Los Alamos National Lab

PNNL: Pacific Northwest National Lab

Subs

- Texas A&M Transportation Institute
- o Metropia Inc.

A Race the U.S. Cannot Afford to Lose: Technology/Infrastructure Services for Shaping Sustainable/Smart Cities and Energy-mobility Nexus Innovation

On the Cusp of Many Changes:

- → Transportation transformations & integrated mobility transitions at different speeds, in diverse cities:
 - How much will urban mobility change in the next 3, 10, 30 years? What will be the energy impacts?
 - Why and where will cities/districts individually and collectively shape energy-efficient mobility in the age of shared, electric, automated, and connected vehicles?
 - When are transitions/rates of change accelerated?

February 2016 Report on Technology and the Future of Cities:

This field is expected by 2030 "to connect thousands of researchers and represent more than \$2.5 billion in annual research and development investment to advance sustainable, resilient, and smart urbanization and transfer that knowledge to the public sector." (PCAST, 2016).

Utopia? Nightmare?

- → A **context** for data/model curation
 - Advancing objective analytics-toolsmodels for mobility blueprints and rapid testing/experimentation
 - Who are the change-makers that shape urban futures? Informed by and informing planning with key crossscale actors/institutions for cities.

Sun Valley EcoDistrict (SVED) Draft Master Plan

(graphic used with permission from the Sun Valley EcoDistrict) | Denver, Colorado, USA

Relevance – Alternative Urban Futures: Nightmare? Utopia?

- Rationale: Transportation may soon reach over 30% of U.S. energy consumption, with urban >80% of U.S. population
- Objective: Engage stakeholders to <u>curate</u> <u>urban data/models</u> and <u>accelerate</u> <u>research and innovation at the nexus of</u> <u>mobility and energy</u>
- Methods: Co-designed research & analytical approaches/questions to shaping mobility ecosystems with smart city stakeholders:
 - >Top-Down; Bottom-Up; Inside-Out; Outside-In
 - Transport as Share of U.S. Energy Consumption (%)
 - Urban as Share of Total U.S. Population (%)

Multi-Criteria Performance (Adapted from Isaac, 2016)	(-)	(+)
Energy/Vehicle Miles Traveled	1	↑ Ψ
Urban Sprawl / Congestion	^	4
Parking Requirements	No change	4
Low-Income Mobility	•	↑
Safety	↑	↑
Roadway Maintenance	Ψ	4
City Revenues (e.g., parking)	¥	1

[Sources: Adapted from *Driving Towards Driverless: A Guide For Government Agencies*, Isaac, 2016; US DOT/Census]

Relevance – Supporting Maximum Mobility, Minimum Energy...Urban Futures

Technology convergence <u>could</u> revolutionize transportation, dramatically improve safety and mobility while reducing costs and environmental impacts (e.g., via electrification)

Export

5.19

Net

4.87

Imports

Gross

Import

10.06

Will Marchetti's constant for cities hold true? Imagine 9 out of 10 cars and parking spaces disappearing from city centers versus auto-oriented sprawl for hundreds of miles...

Risks and Benefits:

- Order of magnitude energy savings/increases and safety upgrades/risks
- Increasingly vulnerable or resilient transport energy system (e.g. cyber)
- Reduced or increased congestion?
- Improved access to jobs and services or increased accessibility anxiety?
- Reduced costs for gov't and users vs. big
 \$ for infrastructure modernization
- Access & mobility synergies/tradeoffs

Does increasingly automated, connected, electric, & shared (ACES) mobility lead to energy efficiency gains? Quantitative impacts on urban travel, infrastructure, & energy consumption/supply/demand?

Mobility for

Smarter Cities?

Big Data

Demand

Mobility on

Urban Science for Exploring Advanced Mobility Systems, Technologies and Smart Cities for People: Task 2.1/2.2 Objectives

- Harmonize city-regional data, analysis methods, models on impacts/implications of "smart" mobility for people
- Provide new data, case studies, expertise, and leverage advanced tools
- Support data-driven development of city technology, plans, and policies
- Identify key leverage points/best practices to increase sustainability
- Create a suite of data integration techniques, analysis visualizations, and modular analytic tools to support DOT Smart Cities & beyond.
- Explore enablers/barriers to SMART Mobility technologies; tools to make sense of "big" data and multiple criteria
- Analyze city-relevant research questions; extend data integration, viz. tools/scenario models to augment decision-making & system performance

% of Open Datasets Focused on Transportation

Co-Designing Urban Science-Towards-Solutions

Critical Research Questions

- PEOPLE: How does SMART-enabled mobility impact urban travelers? Why energy use, vehicle miles traveled, congestion, vehicle ownership, mobility-as-a-service (MaaS), safety may shift and transform in the near to mid-term?
- INFRASTRUCTURE: What are long-term impacts of SMART mobility on city infrastructures? Where are combined infrastructures/social structures enabling SMART Mobility adoption?
- IMPACTS: What will SMART mobility system impacts be on energy, traffic congestion, parking, and land use in cities?
 When are transitions/rates of change accelerated to automated-connected-electric-shared mobility in cities?

Integration of Data, Advanced Tools, and Visualization to Accelerate Planning & Decision-Making

Photo Credit: Josh Sperling (in Columbus)

Milestones

Year	Description of Milestone or Go/No-Go Decision	Status
December 2016	 Assess the state of urban mobility modeling maturity and capability to reflect SMART mobility mega-trends Engage practitioners, industry, academia, and researchers through a hosted workshop to benchmark existing practice Convene workshops and develop key report for FY17 Q1. Prioritize future investments in mobility model development 	Complete
June 2017	 Curate Smart City partners transport models and data to include in repository for urban mobility science and research Extend data as basis to exercise/advance urban models Identify impacts of SMART technologies on urban travelers 	On Track
FY18/19	 Advance computational framework/open web-Diffuse data/model innovation with open transfer/up-scaling of best practices/analyses on advanced urban mobility Leverage data integration, visualization, and analytical tools to accelerate planning and decision-making on urban futures. 	On Track

Technical Accomplishments: Initial Progress Towards a Smart City Data, Resources & Solutions Library for Energy-Efficient Mobility Systems w/ Events, Key Findings, & More...

- NIST Global Smart City Transport Event
- DOE SMART Mobility city engagements as foundation for RD&D:
 - -City of Denver
 - -City of Portland
 - -City of Columbus
 - City of Pittsburgh

type	city-scale metric	national bench- mark	Denver, CO	Portland, OR	Austin, TX	
Transport	Road (VMT/ capita/day) Airline (enplaned passenger/	(27) (2.3)	24 <i>[28]</i> 8	22 [26] 4	26 <i>[28]</i> 3	_
	capita) Jet fuel (gallons/enplaned passenger)	(22)	19	26	17	
	Long distance freight truck (\$-1997/cap)	(\$288)	\$295	\$424	\$94	

Developing Integrated Urban Data-Modeling Resources to Advance and Accelerate Decision-Support Systems for Technology-Planning-Policy-Behavioral-Finance Transitions in Cities

Cross-Scale Actors
& Institutions

Open Data Platforms

Key Smart City Indicators Tools & Model Development

City-Based Lit.
Review & Reports

Approach – Urban Science Pillar Tasks on Curating Data & Models

April 2017

The current DRCOG activity-based model for the Denver metropolitan region was built using the 1997 Travel Behavior Inventory (TBI) Survey and calibrated using 2005 input datasets.

Spatial Resolution of Model Counties MAZs TAZs 🗸 Input Data from Surveys 1997 TBI **2010 HHTS** 4-Step 2008 Transit Survey Activity-Based Model **Architecture** Static Dynamic **Next Upgrade** Latest Upgrade Year 2010 2017 **Assignment** Assignment **Modes Covered TNCs** Taxi Freight 🗸 Auto 🗸 Transit 🗸 Walk V Bike • **Special Generator** Freight Internal/External Trip Generator Other: Mountain / Casino Airport University **Scenarios** Demographic Infrastructure Land Use Energy **Economy** Technology Other Level of Detail by Mode: Freight Level of Detail by Mode: Non-Motorized

None/Not

covered

Advanced/Extensive

Level of Detail by Mode: TNCs

None/Not covered Advanced/Extensive

None/Not covered

Advanced/Extensive

Approach – Urban Science Pillar Tasks on Curating Data & Models

April 2017

The current DRCOG activity-based model for the Denver metropolitan region was built using the 1997 Travel Behavior Inventory (TBI) Survey and calibrated using 2005 input datasets.

Spatial Resolution of Model Counties MAZs TAZs 🗸 Input Data from Surveys 1997 TBI 2008 Transit Survey 2010 HHTS 4-Step Activity-Based Model **Architecture** Static Dynamic **Next Upgrade** Latest Upgrade Year 2010 2017 **Assignment** Assignment **Modes Covered TNCs** Taxi Freight 🗸 Auto V Transit 🗸 Walk V Bike • **Special Generator** Internal/External Trip Generator Freight Other: Mountain / Casino Airport University **Scenarios** Demographic Infrastructure Land Use Energy **Economy** Technology Other Level of Detail by Mode: Non-Motorized Level of Detail by Mode: Freight None/Not covered Advanced/Extensive None/Not Advanced/Extensive covered

Approach – Curation of Modeling Template (Text Box Headings) to Inform Pillar Interdependencies & Engagement with Stakeholders

MODEL SUMMARY

MODEL PROCESS FLOW CHART

FOCUS

INPUTS

OUTPUTS

BENEFITS

LIMITATIONS

RELATED PROJECTS

RELATED MODELS

OPEN DATA RESOURCES

PRIORITIES FOR MODEL IMPROVEMENT

NEW MODEL SCENARIOS

KEY MODEL CONTACTS & REVIEWERS

Technical Accomplishments and Progress

- Participation in Major
 Forums: "Decision Science & Changing Mobility Landscape" at BECC 2016; Smart Cities-Energy-Mobility Panel at ACEEE Intelligent Efficiency
- Curating Baseline Data: on models, open data sources, model output maps/GIS data
- Convening and Peer-to-Peer Sharing: Talks, urban data/technology workshops, posters, exchange and ongoing surveys/interviews.

Annual excess fuel consumed due to

Technical Accomplishments and Progress

- Collaborative discussion /annual data collection with cities for Automated Mobility/Zero Energy District deployments as test beds; presentations/paper submissions:
 - A Convergence of Public-Private Benefits in Denver, USA: Surveys and Analysis to Inform Energy-Efficient Urban Mobility Systems and Urban Infrastructure Planning & Operations
 - Exploring an Energy-Mobility Nexus: A Framework for Curating and Comparing Data, Key Performance Indicators, and Models Using Case Studies of Four DOT "Smart City" Finalists

Project not reviewed last year

Collaboration & Coordination with Cities and Other Institutions – With Learning from Regular 'TIC' & City of Denver Engagements

Live from Austin, Texas

Mobility System

Vision for a 21st Century

Beyond Traffic: The Smart City Challenge

- DOE National Laboratories
- Smart City Finalists, their cities/MPOs, universities, transit agencies, and MaaS providers
- Emerging Collaborations via invites to DOE SMART Mobility Data and Modeling Workshops

Designing Innovative Transportation Systems Solutions: Starting with the Data

Simons Institute for the Theory of Computing, UC Berkeley, Berkeley, Ca

May 9 - 10, 2017

November 17 & 18, 2016 • Urban Dynamics Institute at

Oak Ridge National Laboratory, Oak Ridge, TN

Table 1. City Populations of Smart City Challenge Finalists				
Columbus	800,000	Total pop.		
Denver	600,158	in the cohort of		
Austin	790,390	Smart		
Portland	583,776	Cities		
San Francisco	805,235	finalists =		
Pittsburgh	305,704	~ <u>4.4 M</u>		
Kansas City	459,787			

Technologist in Cities (TiC)

Remaining Challenges and Barriers The Urban Trans-boundary Challenge for Energy Assessment using Data & Models

Data / models keeping up with reality and model integration/urban energy assessments

Feedback loops of applied urban science, technology, and policy in real-world settings

Freight & Goods

Airline Travel

City
or
Urban
Region w/
Buildings,
Vehicles,
Industries
(Scope 1)

Ramaswami et al., 2008.

Remaining Challenges and Barriers The Urban Trans-boundary Challenge for Energy Assessment using Data & Models

• Data / models keeping up with reality and model integration/urban energy assessments

Key Urban Flows

-Food

- Water

EnergyElectricity(Scope 2)Transp Fuel

- Shelter Cement

. . .

Feedback loops of applied technology, and policy in

City
or
Urban
Region w/
Buildings,
Vehicles,
Industries
(Scope 1)

Commuter

settings

Ramaswami et al., 2008.

Proposed Future Research – FY17

- Curation/synthesis of city models and related DOE urban tools
- Further curate data/models with remaining finalists: San Francisco, Kansas City, Pittsburgh
- Advance data, analytics, models on energy-efficient mobility, land use, parking, and infrastructure/ information/institutional systems
- Scenarios of SMART Mobility and energy impacts of changing cities.

EXAMPLE OF 3 SCENARIOS IN A REGIONAL-TO-STATEWIDE TRANSPORT MODEL

- 1. Quick and Full Adoption: of CAVs with both shared and private ownership
- 2. Strategic Uses: of CAVs by transit agencies, car share companies, and freight
- 3. Market Quagmire: some high-profile crashes and other hiccups lead to consumer skepticism

[Note: any proposed future work is subject to change based on funding levels.]

Proposed Future Research

• FY18/19

- Iterate on SMART Mobility with harmonized approaches to urban datamodels co-designed research with cities and DOE SMART Mobility
- Develop web-based data repository and platform with other lab consortium pillars and offer city-to-city exchange on research and innovation
- Analytics on urban energy-mobility infrastructure investments, AMD deployments, and tools to accelerate city experimentation/learning.

BROAD IMPACTS:

- Enabling efficient transfer of SMART analyses and case studies to interested cities
- Engaging Cities/MPOs/Industry/Academia/DOE-DOT to accelerate innovation.

PROPOSED NEXT STEPS:

- → Advancing spatial/temporal resolution of data, models, and visualization tools to accelerate planning and decision-making (with usability) across diverse city contexts
 - → E.g., residential, downtown, freight, commercial; growing / shrinking; sprawled / compact

[Note: any proposed future work is subject to change based on funding levels.]

Summary

- DOE SMART Mobility Urban Science Efforts are helping:
 - Expose key data sets, models, roles for DOE in engaging across the seven Smart City Finalists+ for ensuring useful/useable insights
 - Assess opportunity (model and data maturity) for analyses
 - -Feed/support other Urban Science/broader SMART initiatives

ADVANCING THE OF FUTURE ENERGY-EFFICIENT MOBILITY SYSTEMS AND SERVICES FOR PEOPLE IN CITIES

An Opportunity?

An Urban Energy-Mobility Challenge:

Info/Incentives/Social Norms for New Sustainable Behaviors shaped by Automated, Connected, Electric & Shared Mobility?

THANK YOU! QUESTIONS? Joshua.Sperling@nrel.gov

