











# System dynamics analysis of strategies to reduce energy use in aluminum-intensive sectors

Rebecca J. Hanes, Scott Nicholson, Alberta Carpenter National Renewable Energy Laboratory

ISIE-ISSST Joint Conference 2017, Chicago, Illinois June 25-29, 2017

NREL/PR-6A20-68529

# **Aluminum Recycling**

- Aluminum use is increasing throughout the economy
- Aluminum is infinitely recyclable ... in theory
- Amount, type of alloying elements in recycled streams difficult to predict and control
- Recycled alloys are generally not separated
- Alloying requirements limit the amount of secondary (recycled) aluminum that can be re-used in some applications



## Objectives

- Use system dynamics modeling to quantify technical potential of strategies to reduce energy impacts of aluminum use and re-use
  - Future work: Evaluate strategy feasibility and nonenergy impacts
- Account for ...
  - Distinct aluminum use types
  - Reusability limitations caused by alloying elements
  - Delays from time aluminum spends in use

Is it possible to decouple aluminum use from energy consumption?

#### **Model Structure**



- Model scope is U.S. only
  - Exports, imports excluded
- 100 years time span
- Three aluminum intensive sectors
  - Buildings sector is excluded
- Recycling and "downcycling", but no "upcycling"

#### **Model Structure**

- Five aluminum stocks per sector: Available, In Production, In Use, Reusable, and Discarded
- Exogenous data and endogenous parameters control aluminum flows between stocks



# Assumptions



- Aluminum tends to be re-used within a sector before being sent to other sectors
- All secondary aluminum can be re-used somewhere
- Secondary aluminum processing remains static over time
   no major technological advances
- Future demand growth in all sectors is assumed to be approximately the same as pre-recession growth

## Challenges

- Lack of detailed data on alloy types in use, how specific alloys change over time
- "Quality" parameters used to model qualitative trends in secondary aluminum re-use



- Products that are in use longer will contain older alloys at time of recycling
- Longer lifetime leads to ...
  - Lower reusability in original sector
  - Fewer new products manufactured

## **Analysis Parameters and Scenarios**

#### Parameter impacts on secondary aluminum



#### Impact of smelting technology



#### Scenarios cover ...

- Improving secondary aluminum reusability
- Increasing secondary aluminum availability
- Reducing primary aluminum production energy
- Combinations of the above

## Base Case Scenario: Results by Sector

- Consumer products sector dominates consumption
- Consumption of all types of aluminum increases over time
- Aerospace sector requires highest fraction of primary aluminum, then vehicles, then consumer products

### Annual Aluminum Use (tonne)



## Base Case Scenario: Results by Sector

## Annual Energy Consumption (GJ)



- Energy consumption also dominated by consumer products
- Energy for EOL processing and secondary aluminum is insignificant compared to primary aluminum energy
- Energy, aluminum use are heavily coupled

## **Cumulative Energy Consumption**



EOL processing has minimal impact on cumulative energy consumption.

Increasing the recycling fraction and/or improving smelting process reduce energy significantly.

# Aluminum Use Over Time (select points)



Primary aluminum consumption only decreases over time if the recycling fraction increases over time.

## **Energy Consumption Over Time (select points)**



Recycling
fraction must
increase in order
to decouple
energy use from
aluminum use.

#### Model Extensions and Future Work

- Economics, price impacts and purchaser behavior
  - Either as a new standalone model or as an extension to the existing model
- Expand scope to include imports, exports, international demand
- In-depth analysis of scenarios
  - How "easy" or "difficult" is improving smelting technology vs. increasing use of recycled aluminum?
  - What performance metrics are most relevant to scenario evaluation?
- Large-scale economic impacts
- Explicitly incorporate scrapping companies

## Thank You

## Questions?

Research supported by the U.S. DOE Advanced Manufacturing Office

#### **Image Credits**

Kao et al, <u>Soda Can Recycling</u>
 <u>and How it Affects the</u>
 <u>Environment</u>. Accessed June
 13, 2017.

www.nrel.gov

