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With the development of and advances in smartphones and global positioning system (GPS) devices, travelers’ long-term travel
behaviors are not impossible to obtain. This study investigates the pattern of individual travel behavior and its correlation with
social-demographic features. For different social-demographic groups (e.g., full-time employees and students), the individual travel
behavior may have specific temporal-spatial-mobile constraints.The study first extracts the home-based tours, including Home-to-
Home and Home-to-Non-Home, from long-term raw GPS data.The travel behavior pattern is then delineated by home-based tour
features, such as departure time, destination location entropy, travel time, and driving time ratio. The travel behavior variability
describes the variances of travelers’ activity behavior features for an extended period. After that, the variability pattern of an
individual’s travel behavior is used for estimating the individual’s social-demographic information, such as social-demographic
role, by a supervised learning approach, support vector machine. In this study, a long-term (18-month) recorded GPS data set from
Puget Sound Regional Council is used.The experiment’s result is very promising.The sensitivity analysis shows that as the number
of tours thresholds increases, the variability of most travel behavior features converges, while the prediction performance may not
change for the fixed test data.

1. Introduction

An activity-travel behavior pattern analysis includes the
identification of activity patterns, such as types, duration,
sequence, and locations, and the recognition of travel behav-
ior pattern regarding departure time, travel time, and travel
types, such as commuting and noncommuting. It is one of
the most fundamental research topics to many real-world
applications, including Active Traffic and Demand Man-
agement (ATDM), Mobility-as-a-Service, and transportation
demand management. The activity-travel behavior pattern
is derived from either manually collected traveler activity
diaries in travel surveys or passively obtained data, like global
positioning system (GPS) trajectory data [1–5], geolocation
data [6, 7], and transit smart card data [8, 9].

Travel demand management, such as ATDM, aims to
reduce traffic demand or to redistribute the traffic demand
temporally or spatially [10]. There are “hard” and “soft”

strategies [11]. The “hard” strategies, also called hard policy
measures, use a penalty to enforce travel behavior changes
[12], including road pricing [13], toll roads [14–16], and
parking pricing [17]. The “soft” measures include two cat-
egories. The first one offers traffic information to impact
travelers’ decisions, which does not force behavior change
[18]. Implementation cases include a comparison study of
passengers’ travel choice behavior by altering the train
timetable, proposed by Kusakabe in Japan [19, 20]; a dynamic
ridesharing service, Virtual Bus in Italy [21]; a Predict-a-
Trip traffic information forecast program in San Francisco
[22]; and so on. The second category of “soft” measures uses
incentives to influence traveler behavior and has recently
attracted attention worldwide. A study in Germany showed
an increase in bus use by offering prepaid bus tickets [23].
An early bird, free-ticket program, applied in Melbourne,
Australia, aimed to mitigate the rail overcrowding issue and
to shift the demand from peak to nonpeak hours [24]. In

Hindawi
Journal of Advanced Transportation
Volume 2017, Article ID 7290248, 13 pages
https://doi.org/10.1155/2017/7290248

https://doi.org/10.1155/2017/7290248


2 Journal of Advanced Transportation

2013, a 10-week pilot study was conducted by Metropia in the
Los Angeles area using an incentive-based activity demand
management smartphone app [10], and significant travel
behavior changes, including departure time choices and route
options, were observed.

For incentive strategies, the challenge is that the travel
patterns and social-demographic features of the target users
are not entirely understood. Some ATDM programs use
incentives to influence travelers in specific groups [25, 26],
like transit riders, while some apply incentives to general
autodrivers directly [10]. The limited incentive resources dis-
tributed to a significant amount of general travelers may not
be efficient for influencing travel behavior. To stimulate trav-
elers to change their travel behavior efficiently and effectively,
recognizing the travelers’ social-demographic information,
such as social-demographic roles and the associated travel
pattern, scientifically dispatching incentives into the targeted
individuals or specific individual groups are critical for an
incentive strategy in ATDM.

However, collecting travelers’ social-demographic infor-
mation is not trivial. The most used method is collecting
an activity diary in a traffic survey, including paper-based
questionnaires and telephone interviews [27]. However, the
traffic surveys usually only recruit a small number of partic-
ipants for a short period (days or weeks), with shortcomings
of cost, labor, and unguaranteed accuracy. Fortunately, with
the prevalence of location-aware devices, such as a smart-
phone or GPS-enabled devices, the long-term (months or
years) continuous collection of individualized trajectory data
offers an unprecedented opportunity to gain insight into
the traveler’s daily travel pattern. Particularly, the GPS data
provided by smartphone apps, such as Uber [28], Google,
andMetropia [10], and the instrumented data derived byGPS
devices mounted in vehicles, are among the latest sources of
a new information collection mechanism. Rich information
relevant to one’s travel behavior is embedded in such long-
term continuous collected rawGPS data. However, extracting
the travel behavior patterns from rawGPS trajectory data and
using them to predict an individual’s social-demographic role
are challenging.

Travel behavior variability describes the variance of travel
behavior for an extended period, which was recognized
and studied [29–31] recently. Some researchers focus on the
temporal variability of travel behavior characteristics, such as
daily travel time [4, 32, 33]. The spatial variability (e.g., activ-
ity locations), in which the travelers either repeat or vary their
location choice over days, is also studied [32, 34]. In addition
to the temporal variability and spatial variability, the mobile
variability, such as driving time ratio variance and travel time
variance, describes the individual’smovement characteristics.
The temporal-spatial-mobile variability reflects the travel
characteristics with respect to time, space, and mobility. It
is directly correlated with a traveler’s demographic feature,
especially social-demographic role (i.e., employment status),
like full-time employee, part-time employee, student, retired
worker, and so on [35, 36]. For example, a full-time employee
is usually a daily commuter from home to work with tight
departure time and destination constraints. The commuter
may not have much flexibility to stop during the trip or

to detour onto a different route. On the other hand, a
retired worker may not be a regular commuter and has loose
temporal-spatial-mobile restrictions.

This study proposes a social-demographic role prediction
framework based on individuals’ travel behavior variability.
It first extracts travel behavior variability from a long-term
GPS data set. The travel behavior variability is decomposed
as three-dimensional features: temporal, spatial, and mobile.
The temporal dimension represents the departure time vari-
ability, and the spatial dimension indicates the destination
location variability. The fluctuations of trip travel time and
driving time ratio form the mobile variability dimension. In
this study, the travelers’ home sites are detected from the raw
GPSdata.Then, the home-based tours and the travel behavior
variability are produced. Next, the travel behavior variability
is fed into a supervised machine learning model (support
vector machine) to predict travelers’ social-demographic
roles.The study built upon the Puget SoundRegional Council
household 2004–2006 survey data, which are provided by
the National Renewable Energy Laboratory’s Transportation
Secure Data Center [37]. The data set includes 18 months
of continuous GPS tracking over survey 450 vehicles from
275 households and the individual traveler demographic
information from the travel survey. This complete data set
is used not only to extract the travel behavior variability
pattern of the survey respondents from their extended period
continuous GPS data but more importantly to cross reference
with the traditional house survey data and build machine
learning models for social role prediction. Other social-
demographic variables, such as income, age, and gender,
are also tested to understand the general performance of
the proposed social-demographic prediction model. Addi-
tionally, this study conducts a sensitivity analysis, which
investigates the impact of the data collection criterion (i.e.,
number of tours) on tour variability and social-demographic
character prediction.Themajor features and contributions of
this research are summarized below:

(i) This study proposes an individual social-demo-
graphic role prediction model based on travel behav-
ior variability. The travel behavior variability and
its correlation to the social-demographic role are
explored.

(ii) A sensitivity analysis of sampling threshold for a
long-term data set reveals how the travel behavior
variability and social-demographic role prediction
change by different data sampling thresholds.

This research is expected to provide a practical process
framework to fully take advantage of available emerging
data (i.e., continuous GPS tracked data) and integrate them
into the existing modeling or behavior-related research and
applications. These are elaborated in the following sections.
The details of travel behavior variability extraction and the
social role prediction method are introduced in Methodol-
ogy. Case Study and Discussion describe the experimental
details and the experimental results on the testing data set. It
also reveals the result of the sensitivity study of the impact of
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Figure 1: Methodology framework.

data collection on travel behavior variability and the social-
demographic role prediction. Finally, the Conclusion closes
the paper, and the principal findings are illustrated.

2. Methodology

The framework of the proposed social-demographic role pre-
dictionmethod is shown in Figure 1.The framework includes
three modules: (1) GPS trajectory preprocessing and tour
extraction, (2) tour features and variability generation, and
(3) social-demographic role prediction. First, it preprocesses
the raw GPS data and determines travelers’ home locations.
Based on that, the home-based tours from the original
trajectories are detected. Then, the method extracts the tour
variability by the tour features and variability generation
procedure. Next, the individual tour variability data set is
fed into the social role prediction module to estimate social-
demographic roles.Themethodology details are illustrated in
the following sections.

2.1. GPS Trajectory Preprocessing and Tour Extraction. The
GPS trajectory preprocessing aims to remove outliers from
vehicle-instrumented GPS data. Initially, a data cleaning
and smoothing process derived from Schüssler’s raw GPS
data-processing procedure [38] is carried out to address
GPS system errors, such as warm/cold start problems, and
random errors, such as urban canyon errors. Several criteria
are used for removing system errors, like the number of
satellites, the ground elevation, and the distance between
consecutive GPS points. A procedure to detect repeated
measurements will record nearly the same coordinates and

zero or almost zero travel speed measurements for two or
more consecutive GPS points. Only one point represents the
repeated measurements: for example, a vehicle stopped at a
location in front of a red light will only be represented by
one GPS point rather than duplicated measurement points.
After the data cleaning and filtering processes have been
applied, most of the outliers will be removed, and GPS data
trajectories are ready for use.

For continuousGPS trajectory data, it is not hard to detect
the home location and then to generate home-based tours.
The top three most visited places clusters’ centroid location
that the user has visited (departure from or arrive to) are at
least 1 mile away from each other, as they are more likely to
be home or other locations, such as the workplace. According
to the characteristics of the trips related to these sites, such as
the departure location of the first trip of the day, the arrival
location of the last trip of the day, and the duration of the stay
(e.g., more than 8 hours) at this site, home locations can be
identified.

After determining the home location, the individual
home-based tours, such asHome-to-Home (HH) andHome-
to-Non-Home (HN), can be produced. AnHH tour is defined
as the traveler departing from and returning back home with
a reasonable trip travel time during the day (such as 3 hours).
AnHN tour is the travel during the day departing from home
and arriving at any other location, such as the workplace. In
a day, the HH and HN tour number, especially the HH tour
number, may be greater than 1.

2.2. Tour Features and Variability Generation. In this study,
a home-based tour, either HH or HN, may comprise one or
more consecutive trips, which is described by departure time,
destination location, driving time, and travel time. Similar to
the trip, a tour has the tour features encompassing departure
time, destination location, driving time ratio, and travel time.
The tour departure time is the first trip departure time of
the tour, which is a temporal travel behavior feature. The
spatial feature, tour destination location, includes the in-tour
trips destination locations and the tour destination location,
which is represented by a position coordinates set {𝑑1 =(lat1, lon1), 𝑑2 = (lat2, lon2), . . .}. The tour travel time is
defined as the total elapsed time (in minutes) from the tour
origin (i.e., home) to the destination (i.e., home or others),
while the tour driving time ratio is calculated by all trips’
driving time over the tour travel time. Both tour travel time
and tour driving time ratio are mobile features or “degree of
trip chain.” The travel behavior variability is derived from
the variance pattern of tour feature during the data collection
period.

For a traveler 𝑖 at 𝑗th tour, 𝑥𝑡,𝑘𝑖,𝑗 represents the tour feature
of home-based tour (𝑡 = HH,HN, 𝑘 = 1, 2, 3, 4 [1-departure
time; 2-destination location; 3-travel time; 4-driving time
ratio]), and V𝑡,𝑘𝑖,𝑛 denotes the tour variability of different tour
features, derived from 𝑛 tours. The descriptions of tour
features and variability variables are listed in Table 1. The
details of the tour features and variability are elaborated in
the following parts.
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Table 1: Tour feature and variability variables description.

Tour type Features Variability

HH

Departure time Departure time SEM∗

Destination locations Destination locations entropy
Travel time Travel time SEM

Driving time ratio Driving time ratio SEM

HN

Departure time Departure time SEM
Destination locations Destination locations entropy

Travel time Travel time SEM
Driving time ratio Driving time ratio SEM

∗SEM: expectation of standard error of the sample mean.

2.2.1. Temporal Feature and Variability. The tour temporal
feature is the tour departure time, which is converted into a
15-minute time slot index from the beginning (00:00 a.m.)
of the day, to describe the departure time within a day
numerically. In that case, any time of day can be expressed
as the 15-minute time slot index integer ranging from 0 to 95.
The tour temporal variability V𝑡,1𝑖,𝑛 is defined as the expectation
of standard error of the sample mean (SEM) of departure
time slot index 𝑥𝑡,1𝑖,𝑗 crossing 𝑛 tours in type 𝑡. The variability
of departure time feature V𝑡,1𝑖,𝑛 (i.e., departure time SEM) is
illustrated below, where 𝑥𝑡,1𝑖,𝑗 is the sample mean of 𝑥𝑡,1𝑖,𝑗

V𝑡,1𝑖,𝑛 = √∑𝑛𝑗=1 (𝑥𝑡,1𝑖,𝑗 − 𝑥𝑡,1𝑖,𝑗)2𝑛 (𝑛 − 1) . (1)

2.2.2. Spatial Feature and Variability. The spatial feature
is represented by the destination locations, which are the
destinations of all trips in the tour. For example, although the
HH tours have a fixed origin and destination (i.e., home), an
HH tour may include multiple trips with different purposes,
such as grocery shopping trips, children-pickup trips, or
social trips. They may have different destination locations.
For HN tours, except for the tour destination variation, the
in-tour trip destination locations may vary a lot like the
HH tours. To numerically describe the variability of the
destination locations, Shannon’s entropy [34, 39] is used in
this study.

First, for individual 𝑖 and tour type 𝑡, all destination
locations from 𝑥𝑡,2𝑖,𝑗 for 𝑛 tours are collected. The total des-
tination locations of individual 𝑖 for 𝑛 tours are represented
as a random variable 𝐷𝑡𝑖 = {𝑑𝑡𝑖,𝑗, 𝑗 = 1, 2, . . . , 𝑚}, 𝑚 =∑𝑗 ‖𝑥𝑡,2𝑖,𝑗 ‖, where the𝑚 locations are denoted as𝑑𝑡𝑖,𝑗, and𝑚 ≥ 𝑛
because a tour may have more than one trip. A clustering
proceduremerges the close destination locations into clusters
according to the distance between any two locations less than
1 km. After the location merging and clustering procedure,
the clusters’ centroid locations for a traveler are collected as𝐷󸀠𝑡𝑖 = {𝑑󸀠𝑡𝑖,𝑗, 𝑗 = 1, 2, . . . , 𝑚󸀠}, 𝑚󸀠 ≤ 𝑚. Location variability

of individual 𝑖 for 𝑛 tours can be measured as the entropy
below,

V𝑡,2𝑖,𝑛 (𝐷󸀠𝑡𝑖) = −∑
𝑗

𝑃(𝐷󸀠𝑡𝑖 = 𝑑󸀠𝑡𝑖,𝑗) log2𝑃(𝐷󸀠𝑡𝑖 = 𝑑󸀠𝑡𝑖,𝑗) , (2)

where 𝑃(𝐷󸀠𝑡𝑖 = 𝑑󸀠𝑡𝑖,𝑗) is the historical probability of individual𝑖’s visiting the clustering location 𝑑󸀠𝑡𝑖,𝑗 during 𝑛 tours for
tour type 𝑡. The property of Shannon entropy indicates that
if a traveler repeatedly visits a single location, the location
variability of the individual equals zero, while a larger value of
V𝑡,2𝑖,𝑛 results from regular visits to a larger number of locations.

2.2.3. Mobile Features and Variability. The mobile features
reflect the vehicle movement behavior and travel property.
They are delineated by travel time and driving time ratio.
The variability of tour travel time V𝑡,3𝑖,𝑛 is defined as the SEM
of the tour travel time 𝑥𝑡,3𝑖,𝑗 for 𝑛 tours. Similar to the travel
time, the driving time ratio variability V𝑡,4𝑖,𝑛 is calculated by the
SEM of the tour driving time ratio 𝑥𝑡,4𝑖,𝑗 for 𝑛 tours.The details
are illustrated by (3), where the notations are similar as the
previous section

V𝑡,3𝑖,𝑛 = √∑𝑛𝑗=1 (𝑥𝑡,3𝑖,𝑗 − 𝑥𝑡,3𝑖,𝑗)2𝑛 (𝑛 − 1) ,
V𝑡,4𝑖,𝑛 = √∑𝑛𝑗=1 (𝑥𝑡,4𝑖,𝑗 − 𝑥𝑡,4𝑖,𝑗)2𝑛 (𝑛 − 1) .

(3)

2.3. Social-Demographic Role Prediction. After collecting
individuals’ variability variables, with the individuals’ social-
demographic role labels as the ground truth data, a super-
vised machine learning model describing the correlation
between travel behavior variability and social-demographic
role can be developed. The eight variability variables are
the independent features for defining an individual’s travel
behavior variability pattern, and the ground truth social-
demographic role is used as the dependent variable.The sup-
port vectormachine (SVM) [36, 40] is a favorite and themost
used supervised machine learning approach for multiple and
binary classifications and prediction applications. SVM is
known as a large margin classifier, and it determines the best
decision hyperplanes that provide the biggest possiblemargin
among classes. The primal problem is formatted as

min
𝑤,𝑏,𝜀

(12𝑊𝑇𝑊+ 𝐶 𝑛∑
𝑖=1

𝜀𝑖)
subjected to: 𝑦𝑖 (𝑊𝑇𝜙 (𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖, ∀𝑖

𝜀𝑖 ≥ 0, ∀𝑖,
(4)

where𝑊 is the weight vector of features to define the decision
boundary; 𝐶∑𝑛𝑖=1 𝜀𝑖 is a regularization (or penalty) term to
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relax the objective function, where 𝜀𝑖 is the distance of the
point from themargin if it is misclassified, and𝐶 is a constant
coefficient to weight the penalty; 𝑏 is the intercept and 𝜙(𝑥𝑖)
is the data transformation function; 𝑛 represents the data
sample size; and 𝑦𝑖 is the class label for data sample 𝑖 (i.e., −1
or 1 for binary classes).The dual problem is developed to help
in solving the constrained optimization primal problem,

max ( 𝑛∑
𝑖=1

𝛼𝑖 − 12 𝑛∑
𝑖=1,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜙𝑇 (𝑥𝑖) 𝜙 (𝑥𝑗))
subjected to:

𝑛∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, ∀𝑖
0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖,

(5)

where 𝛼𝑖 is the Lagrange multiplier, which is the decision
variable. The dual objective function can be represented by
the kernel 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙𝑇(𝑥𝑖)𝜙(𝑥𝑗). The radial basis function
kernel was suggested to be the most appropriate kernel [41,
42] and was used in this model. The dual problem solutions,
which are Lagrange multiplier 𝛼𝑖, are used for predicting
the data class by computing the decision function 𝑓(𝑥) =𝑊𝑇𝜙(𝑥) + 𝑏 = ∑𝑚𝑖=1 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏, where 𝑚 is the vector
dimension number (eight travel behavior variability variables
in this study). The binary classification is determined by the
positive or negative values of the decision function 𝑓(𝑥).
3. Case Study and Discussion

The Puget Sound Regional Council traffic choices study was
an 18-month (during 2004 to 2006) research on travel behav-
ior in response to road use. With 450 vehicles from over 275
households, the GPS raw trajectory data indicated that more
than 4.5 million vehicle miles were traveled. Travelers’ social-
demographic features are collected as well. The National
Renewable Energy Laboratory’s Transportation Secure Data
Center [37] summarized the data with high-resolution GPS
trajectory data and traditional household survey data. In
this experiment, the home-based tours features are extracted
from the raw GPS data and, based on that, the variability of
tour features is generated. In conjunction with the collected
individual social role data, taking tour variability features as
the independent variables, an SVM-based prediction model
is developed and validated.Thenumber of tours the threshold
sensitivity analysis presented based on the experiment data
indicates how the thresholds impact tour variability and
prediction.

3.1. Experiment

3.1.1. Case Study and Variability Observations. After the
raw data were preprocessed and incomplete records were
removed, a total of 218 individuals have complete variability
variables for at least five HH or HN tours with social-
demographic information. For those 218 individuals, the
individual’s HH tours (green) and HN tours (red) number
distributions are illustrated Figure 2. The mean value of HH
tours is about 195, while the average value ofHN tours is about

HN_num_tour
HH_num_tour

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

600 800400 500 7000 100 200 300 900
Number of tours

Figure 2: Histogram of number of HH and HN tours.

155. One observation is that the HH histogram shifted toward
the right-hand side, which implies that there are more HH
tours than there are HN tours for general travelers. That is
because there aremoreHH tours thanHN tours during a day.

The individuals’ social-demographic roles (employment
status) include six types: (1) full-time employee; (2) part-time
employee; (3) student; (4) homemaker; (5) retired; and (6)
other. The number of type 1-full-time employees dominates
the other types. Considering the unbalanced data amount of
social role types, the original data set is converted as a binary
class data set as type 1 and type 0. Type 1 class is the original
type 1 class, while type 0 class stands for the total of type 2
through type 6. Type 1 class has 165 travelers; type 0 class has
53 travelers.The tours’ variability variables of the binary class
data set are discussed. Table 2 illustrates the statistical details
for type 1 and type 0.

The statistically significant variables are HH tours depar-
ture time SEM and HN tours departure time SEM and HN
tours driving time ratio SEM.

(i) For HN tours, type 1 travelers have significantly lower
mean values of departure time SEM (2.51 versus 4.32)
than that of type 0 travelers.The reason behind is that
type 1 travelers have more departure time restriction
on home to other places tours, for example, morning
home-to-work commute.

(ii) For HN tours, the HN tour’s mean driving time ratio
SEM for type 1 travelers is smaller than that for type 0
(0.06 versus 0.08), which indicates that driving time
ratio change of type 1 is not significant as that of type
0. It can be explained as the type 1 travelers are more
dedicated to their trips and do not frequently stop
during their tours.

(iii) For HH tours, the departure time situation is re-
versed.Themean departure time SEM of type 1 is 6.81,
which is higher than that of type 0 (5.84). It indicates
that the type 1 travelers have slightly more departure
time variability for HH tours.



6 Journal of Advanced Transportation

Table 2: Variability variables statistical details for binary class.

Variability variables Type 1 Type 0
Mean Std. Mean Std. t-value p value

HH
Departure time SEM∗∗ 6.81 2.53 5.84 2.24 2.64 0.0096
Destination locations entropy 1.98 0.64 2.11 0.68 −1.26 0.213
Travel time SEM 62.76 48.34 54.59 42.06 1.09 0.28
Driving time ratio SEM 0.1 0.05 0.1 0.05 −0.77 0.445

HN
Departure time SEM∗∗∗ 2.51 2.81 4.32 3.19 −3.66 0.0004
Destination locations entropy 0.89 0.74 1.06 0.88 −1.32 0.19
Travel time SEM 23.64 47.3 27.61 50.61 −0.5 0.621
Driving time ratio SEM∗ 0.06 0.06 0.08 0.07 −2.24 0.028

∗Significant at level of 0.05. ∗∗Significant at level of 0.01. ∗∗∗Significant at level of 0.001.

Table 3: Multiclass and binary class employment status SVM prediction results.

(a)

Employment status-multiclass Estimation Recall accuracy
Type 1 2 3 4 5 6 total

Actual

1 165 0 0 0 0 0 165 100.00%
2 3 20 0 0 0 0 23 86.96%
3 3 0 3 0 0 0 6 50.00%
4 2 0 0 14 0 0 16 87.50%
5 1 0 0 0 2 0 3 66.67%
6 2 0 0 0 0 3 5 60.00%

Total 176 20 3 14 2 3 218 —
Precision accuracy 93.75% 100% 100% 100% 100% 100% — 94.95%

(b)

Employment status-binary
class Estimation Recall accuracy

Type 1 0 Total

Actual
1 165 0 165 100.00%
0 11 42 53 79.25%

Total 176 42 218 —
Precision
accuracy 93.75% 100% — 94.95%

3.1.2. Social-Demographic Role Prediction Result. In the pre-
diction model, the SVM classification is implemented by
the python library (sklearn) taking default configurations,
and radial basis function kernel is used. The multiclass and
binary class prediction accuracy results are illustrated in
Table 3. It lists two accuracy metrics. The recall accuracy is
defined as the correctly estimated individuals’ number over
the total number of actual individuals of the type class.
The precision accuracy is the ratio of correctly estimated
individuals’ number over the total number of estimated
individuals of the type class.

From Table 3, the prediction results are promising, and
the overall general accuracy of prediction reaches 94.95%.
For multiclass prediction, type 1 class has the highest recall
accuracy (100%), type 3 student class has the worst recall
accuracy (50%), and three of them are falsely labeled as
full-time employees. From a precision accuracy perspective,
all classes have high precision accuracy values. For binary
class prediction, the recall of type 1 class is still 100%, and
11 travelers from type 0 class are predicted as type 1, which
generates a recall of 79.25%. The prediction accuracies for
type 1 and type 0 are 93.75% and 100%, respectively.
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Table 4: Income level multiclass SVM prediction results.

Income level-multiclass Estimation<$25K $25K–50K $50K–75K $75K–150K >$150K Total Recall accuracy
Actual<$25K 16 0 1 3 0 20 80.00%

$25K–50K 0 26 0 10 0 36 72.22%
$50K–75K 0 0 33 8 0 41 80.49%
$75K–150K 0 0 1 101 0 102 99.02%>$150K 0 0 1 5 13 19 68.42%
Total 16 26 36 127 13 218 —

Precision accuracy 100.00% 100.00% 91.67% 79.53% 100.00% — 86.70%
Table 5: Age level multiclass SVM prediction results.

Age level-multiclass Estimation Recall accuracy<21 22–34 35–44 45–54 55–65 >65 Total
Actual<21 0 1 0 2 0 0 3 0.00%

22–34 0 37 0 7 0 0 44 84.09%
35–44 0 1 51 11 0 0 63 80.95%
45–54 0 3 0 71 0 0 74 95.95%
55–65 0 1 1 4 19 0 25 76.00%>65 0 0 1 5 0 3 9 33.33%
Total 0 43 53 100 19 3 218 —

Precision accuracy — 86.05% 96.23% 71.00% 100.00% 100.00% — 83.03%
Table 6: Gender multiclass SVM prediction results.

Gender
status-binary class

Estimation Recall
accuracyFemale Male Total

Actual
Female 130 5 135 96.30%
Male 15 68 83 81.93%
Total 145 73 218 —

Precision accuracy 89.66% 93.15% — 90.83%
One observation of the results is the poor prediction

performance of type 2 to type 6 classes in the multiclass case
and type 0 in binary class cases. The poor prediction results
may be led by the unbalanced data set and the limited sample
size.

3.1.3. Income, Age, and Gender Prediction Results. In addi-
tion to the employment status, an individual’s other social-
demographic variables, including income, age, and gender,
are discussed in this study. Similar to the experiment results
of employment status shownpreviously, the prediction results
of those three variables (income, age, and gender) are shown
in Tables 4, 5, and 6. The individual’s income is defined
at five levels: (1) less than $25,000, (2) $25,000–$50,000,
(3) $50,000–$75,000, (4) $75,000–$150,000, and (5) greater
than $150,000. The individual’s age is categorized in different
classes: (1) less than 21, (2) 22–34, (3) 35–44, (4) 45–54,

(5) 55–65, and (6) greater than 65. The individual’s gender
includes female and male.

The overall prediction accuracy values of the three vari-
ables (income level = 86.7%, age level = 83.03%, and gender =
90.83%) are still acceptable, although they are relatively lower
than the prediction accuracy of employment status (94.95%).
It indicates that individual’s employment status is easier to
predict than other variables. The reason behind is that the
employment status is more directly and closely correlated to
the travel behavior variability than other social-demographic
variables.

3.2. Sensitivity Analysis. The test data were collected over
nearly 18 months, and for a data set collected over a long
time, it is feasible to carry out a sensitivity analysis for
the sampling threshold, that is, the number of tours. The
sensitivity analysis investigates how the threshold impacts the
tour variability and even social-demographic role prediction,
aiming to answer the questions about the data collection
sufficiency for travel behavior variability convergence and
estimating the individuals’ social-demographic roles. As a
comparison to the SVM model used in the study, another
machine learning classification model, logistic regression
(LR), is implemented in the analysis.

The number of tours threshold is defined as the
required minimum number of tours for both HH and
HN for a successful data collection. The number of tours
threshold ranges as [1, 2, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90,100, 120, 150, 180]. For example, a value of 5 indicates that



8 Journal of Advanced Transportation

any travelers with less than five tours are disqualified and
discarded, while the travelers with 5 or more are qualified
and collected. For the qualified individuals, five tours are
randomly selected from this traveler’s tour pool. If the
threshold value is high, the number of individuals satisfying
the number of tours requirement becomes small and vice
versa.

3.2.1. Tour Variability. The tour variability variables plotted
against the number of tours thresholds for type 1 and type
0 travelers are illustrated in Figure 3. For all diagrams, the𝑥-axis is the number of tours thresholds, and the 𝑦-axis
is the variability variables; each single curve represents an
individual’s variability values along with the number of tours
thresholds. In the diagrams, all variability variables of type 1
and type 0 follow the same or similar patterns.

The HH and HN tours’ departure time SEM, travel time
SEM, and driving time ratio SEM variability curves are oscil-
lating at the beginning (lower number of tours thresholds of
40) and then converge to the small values at the end. This
indicates that a larger sample size will reduce the variability
of the tour features.

The destination location entropy of HH tours (Figures
3(c) and 3(d)) dramatically increases at the beginning (at
about 40 tours) and then converges to large individual
values for all people. This means that more samples will
bring more uncertainty to the destination locations at a
small threshold range and then stays constant for the high
thresholds. However, the destination location entropy of HN
tours (Figures 3(k) and 3(l)) does not follow the significant
increase and convergence pattern.

Generally, for a large sample size, the variances of travel
behavior features will not change too much, and the vari-
ability values are low. According to the diagrams, one thumb
of rule is that when the number of tours reaches about 40,
the variances of travel behavior features keep constant at low
values (except destination location entropy) and the travel
behavior variability is more reliable and predictable.

The statistical analyses of two types of travelers for all
eight travel behavior variability variables are conducted to
understand the travel behavior features variances “before and
after 40 tour threshold.” The statistical results are listed in
Table 7.The feature variability values for each type of traveler
are separated into two groups: “equal to and less than 40”
(≤40) and “greater than 40” (>40), according to the number
of tours threshold attributes. The sample sizes of the two
groups are comparable for each type of travelers. For type
0, the “≤40” group has 379 measurements, while the “>40”
group has 197 measurements. For type 1, the “≤40” group
has 1,272 measurements, while the “>40” group has 847
measurements.

The standard deviation and mean values of the “>40”
group for each type of traveler at nearly all features are
significantly smaller than those of the other group (“≤40”),
except for a few cases (e.g.,HN location entropy andHN travel
time SEM at type 1). Besides, for almost all cases, hypothesis
tests are significant, except the HN travel time SEM at type
1 and HH travel time SEM at type 0. This indicates the two
groups are statistically different for two types of traveler.

The statistical analysis results are consistent with the
observations from Figure 3.They validate the conclusion that
when the number of tours is more than 40, the variances of
travel behavior features keep constant at low values (except
for destination location entropies, which are at high values)
compared to the cases which are within the “equal to and less
than 40” group.

3.2.2. Social-Demographic Role Prediction. The sensitivity
study includes logistic regression (LR) as a comparable
prediction approach to the SVM model used in this study.
This comparison study focuses on the data set overall recall
accuracy. Since the number of qualified individuals decreases
as the number of tours threshold goes up, the various sample
set sizes at different thresholds may impact the prediction
results. Figure 4 describes decreasing trend of the number
of qualified individuals as the number of tours thresholds
increases.

From Figure 4, we can see that, after 90, the decreasing
trend of the number of qualified individuals is more signifi-
cant. The number of qualified individuals at thresholds after
90 is almost less than 100. A fixed sample set, which includes
the 126 qualified individuals at threshold 90 (who have at least
90 tours), is used for the test in the study. Those 126 qualified
individuals exist as a subset in the qualified individual sets at
thresholds from 5 to 90.

The sensitivity research result for the fixed sample set for
the number of threshold ranging from 5 to 90 is illustrated
in Figure 5. The SVM and LR prediction accuracy values
roughly keep constant throughout all different thresholds,
while the average prediction accuracy of SVM (about 95%)
is always better than that of the LR model (about 84%).

The prediction results illustrate that a larger number
of tours required for data collection does not significantly
improve the prediction accuracy. Since the traveler type
detection result heavily depends on the travel behavior
variability differences between both types of travelers, the
same or similar travel behavior variability patterns of both
types of individuals (which are observed from the diagrams
in Figure 3) may explain the result. Although most travel
behavior features’ variability converges as the number of
tours threshold increases, the relative variability difference
of type 1 and type 0 travelers may not change much for
different thresholds. Also, for the fixed sample set (126
qualified individuals), the two types of individuals’ variability
mean difference ratio ((type 1 − type 0)/type 1) of each travel
behavior variability variable, crossing different thresholds, are
used to describe the relative variability difference indirectly
and to help understand the prediction result, statistically.
Figure 6 illustrates the variability mean difference ratio
changing trend of all eight variability features as the number
of tours threshold increases. From it, the variability mean
difference ratios of most features (except (3) HH travel time
SEM and (7) HN travel time SEM) stay low and keep constant
crossing all thresholds. It tells that the relative variability
differences of almost all features are not significantly changed
by different thresholds. It partially explains that increase in
the number of tours threshold does not cause significant
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Figure 3: Continued.
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Figure 3: Variability versus number of tours thresholds.
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Figure 4: Number of qualified individuals versus number of tours
thresholds.

social-demographic prediction changes, at least for this fixed
sample set.

4. Conclusions

This paper proposes a social-demographic role prediction
method based on the travel behavior variability pattern.
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Figure 5: Sensitivity study of prediction accuracy and number of
tours threshold for a fixed sample set.

It is based on the principles that, for different social groups,
they have specific travel behavior patterns. The paper pro-
vides a way to formalize traveler’s travel behavior variability
pattern by analyzing long-term raw GPS data and to predict
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Table 7: Statistical analysis of variances of travel behavior features for threshold-40.

Features Statistical measures Type 1 Type 0≤40 (1272) >40 (847) ≤40 (379) >40 (174)
HH departure time SEM

Mean 4.17 1.99 3.66 1.94
Std. 3.28 0.46 2.90 0.47

t-value 23.26 — 11.22 —
p value 0.00 — 0.00 —

HH location entropy

Mean 2.21 3.10 2.20 3.15
Std. 0.92 0.57 0.95 0.51

t-value −27.52 — −15.08 —
p value 0.00 — 0.00 —

HH travel time SEM

Mean 129.84 103.76 393.90 164.91
Std. 388.96 164.87 409.97 264.37

t-value 2.12 — 1.82 —
p value 0.03 — 0.07 —

HH driving time ratio SEM

Mean 0.06 0.03 0.06 0.03
Std. 0.05 0.01 0.06 0.01

t-value 21.29 — 10.22 —
p value 0.00 — 0.00 —

HN departure time SEM

Mean 1.46 0.83 2.42 1.11
Std. 2.23 0.59 2.95 0.60

t-value 9.53 — 8.22 —
p value 0.00 — 0.00 —

HN location entropy

Mean 0.89 1.32 0.98 1.38
Std. 0.77 0.75 0.93 0.98

t-value −12.89 — −4.44 —
p value 0.00 — 0.00 —

HN travel time SEM

Mean 46.38 52.15 36.16 23.12
Std. 276.03 192.73 103.15 37.95

t-value −0.57 — 2.16 —
p value 0.57 — 0.03 —

HN driving time ratio SEM

Mean 0.04 0.02 0.05 0.03
Std. 0.05 0.01 0.06 0.01

t-value 11.24 — 7.34 —
p value 0.00 — 0.00 —

individuals social-demographic roles through support vector
machine model by travel behavior variability.

The study applies to Puget Sound Regional Council data
set, which includes a long-term (18-month) GPS trajectory
data set and a particular individual social-demographic data
set.The variability derived from the data set indicates that, (1)
for HN tours, the full-time employees have tighter departure
time restrictions on home to other places tours, for example,
the morning home-to-work commute; (2) they are more
dedicated to their trips and do not stop frequently; (3) for
HH tours, the full-time employee individuals have more
departure time flexibility. According to the travel behav-
ior variability properties, the prediction accuracy rates for
social-demographic features, including employment status,
income, age, and gender, are discovered. Among the social-
demographic features, an individual’s employment status is
mostly related to the travel behavior variability and can be
predicted accurately. The sensitivity analyses about sampling

size (number of tours threshold) impacts on the tour vari-
ability and the prediction accuracy are also studied. The
tour variability is going to converge as the number of tours
threshold increases. However, for the fixed sample set, the
social-demographic role predictions do not change much as
the number of tours threshold increases.

This study preliminarily explores the possibility of using
travel behavior variability to predict an individual’s social-
demographic information. This prediction method helps to
obtain the social-demographic data for the people with long-
term collected activity data without any traditional travel
surveys. The sensitivity analysis can guide future studies to
gather data and design the experiments. However, there are
several limitations of this study. The first issue is that there
are only a few individuals in the test data set. A larger
traveler sample size may improve the model’s performance:
the model only considers home-based tours and limited
travel behavior variability attributes. More measures of travel
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behavior features and their variability, such as travel mode,
trip purpose, and other types of tours (e.g., work-based
tours), should be considered in future work.
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