

Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

Huaiguang Jiang, Fei Ding, and Yingchen (Y.C.) Zhang
2017 IEEE Power & Energy Society General Meeting, 16-20 July 2017, Chicago, Illinois

NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

NREL/PO-5D00-68861

Background and Objectives

- Distribution system loads become more fluctuant and unpredictable.
- Large impacts from end users to distribution system
- More stochastic abrupt deviations than transmission systems.
- Traditional distribution reconfiguration cannot meet the requirements of modern distribution systems.
 - · Traditional distribution reconfiguration is static.
 - Dynamic end user profiles require a dynamic control strategy for distribution system reconfiguration.
- An automatic distribution network reconfiguration approach is designed based on short-term load forecasting.

Key Problems and Solutions

- How can the best parameters for the SVR be computed?
 Based on parallel computation frameworks, such as Hadoop and Spark, a parallel computation architecture is designed based on "Mapreduce" to reduce the computation time in the two-step parameter optimization approach.
- How can the forecasting results be used in network reconfiguration?

The network reconfiguration is solved every 5 min., leading to 12 results of the system topology for the next hour. The topology that achieves the most loss reduction will be selected and used for the entire next hour.

Main Architecture of the SVR

Parallel GTA for Parameter Optimization

- Objective: Solution space decomposition and local solution spaces selection of the global optimization problem.
- Initialization: (1) Initial C, ω, and γ, compute Λ_j and H.
 - (2) Initial the work notes.
- Map phase: (1) Send the elements of H to all the work notes.
 - (2) In different work notes, the received elements
 - of H are computed in parallel.
- Reduce phase: (1) Collect computation results from all
 work notes.
 - (2) Compare results, and select one or several local solution spaces for next step.

Problem Formulation of Network Reconfiguration

$$\begin{split} & \min J(S) = \operatorname{Re} \left\{ \sum_{j=1}^{N} \left[\sum_{k=a}^{c} \boldsymbol{V}_{j}^{*} \cdot \sum_{i=1}^{N} \left(\sum_{p=a}^{c} \boldsymbol{V}_{i}^{p} \cdot \left(\sum_{k=1}^{m} a_{il}^{0} a_{jl}^{0} \boldsymbol{y}_{l}^{pk} \cdot \boldsymbol{S}_{l}^{2} \right) \right) \right] \right\} \\ & = \sum_{j=1}^{N} \sum_{k=a}^{c} \sum_{i=1}^{N} \sum_{p=a}^{c} \left\{ \boldsymbol{e}_{i}^{k} \cdot \left(\boldsymbol{e}_{i}^{p} \cdot \boldsymbol{g}_{ij}^{pk} + \boldsymbol{f}_{i}^{p} \cdot \boldsymbol{b}_{ij}^{pk} \right) + \boldsymbol{f}_{j}^{k} \cdot \left(\boldsymbol{f}_{i}^{p} \cdot \boldsymbol{g}_{ij}^{pk} - \boldsymbol{e}_{i}^{p} \cdot \boldsymbol{b}_{ij}^{pk} \right) \right\} \end{split}$$

$$S.I. \begin{cases} P_{inject,i}^{l} = \sum_{k=1}^{n} \sum_{p=a}^{c} \left\{ f_{i}^{l} \left(g_{ik}^{lp} \cdot e_{k}^{p} - b_{ik}^{lp} \cdot f_{k}^{p} \right) + f_{i}^{l} \left(g_{ik}^{lp} \cdot f_{k}^{p} + b_{ik}^{lp} \cdot e_{k}^{p} \right) \right\} \\ Q_{inject,i}^{l} = \sum_{k=1}^{n} \sum_{p=a}^{c} \left\{ f_{i}^{l} \left(g_{ik}^{lp} \cdot e_{k}^{p} - b_{ik}^{lp} \cdot f_{k}^{p} \right) - e_{i}^{l} \left(g_{ik}^{lp} \cdot f_{k}^{p} + b_{ik}^{lp} \cdot e_{k}^{p} \right) \right\} \\ \left\{ 0.95 \cdot \left| V_{norm} \right| \leq \left| V_{i}^{a} \right|, \left| V_{i}^{b} \right|, \left| V_{i}^{c} \right| \leq 1.05 \cdot \left| V_{norm} \right| \\ \left| \left| V_{i}^{p} \right| - avg_{i} \right| \leq 3\%, and avg_{i} = \sum_{p=a}^{c} \left| V_{i}^{p} \right| \right\} \end{cases} \\ \left| \left| I_{branch,j}^{p} \right| \leq I_{j,\max} \end{cases}$$

where

 $S_{j} = \begin{cases} 1, switch \ j \ is \ closed \ and \ current \ direction \ keeps \ same. \\ -1, switch \ j \ is \ closed \ and \ current \ direction \ is \ opposite. \\ 0, switch \ j \ is \ open. \end{cases}$

i = 1.2....N: i = 1.2....M: l = a,b,c: p = a,b,c.

$$\begin{cases} \sum_{k=1}^{M} |S_k| = N - d \quad and \quad \sum_{i=1}^{M_k} |S_i| \le M_k - 1 \\ rank(A) = N - d \end{cases}$$

Proposed Network Reconfiguration Approach

Test Bench

· Test bench: IEEE 123-bus distribution system

Forecasting Results

· Four profiles of forecasted net loads for four different regions

Percentage error of forecast results

Reconfiguration Results

· Results of open switches

	Hour	Opened Switches	Loss Reduction
	1	93-95, TS-2, 29-30, 101-105	36.71%
	2, 3, 4, 5	93-95, TS-2, 29-30, 101-105	
		TS-1, TS-2, 29-30, 101-105 (for 0-15 mins)	0.089%
		TS-1, TS-2, 29-30, 105-108 (for 15-30 mins)	2.686%
		87-89, TS-2, 29-30, 108-300 (for 30-60 mins)	2.55%
	7	87-89, TS-2, 29-30, 108-300	
	8	87-89, TS-2, 29-30, 105-108 (for 0-10 mins)	3.356%
		87-89, TS-2, 29-30, 57-60 (for 10-60 mins)	53.02%
		91-93, TS-2, 29-30, 57-60 (for 0-20 mins)	0.484%
		67-72, TS-2, 29-30, 57-60 (for 20-60 mins)	5.513%
	10	67-72, TS-2, 29-30, 57-60 (for 0-5 mins)	
		67-72, TS-2, TS-3, 57-60 for (5-10 mins)	2.336%
		67-72, TS-2, 29-30, 57-60 for (10-15 mins)	1.685%
		67-72, TS-2, TS-3, 57-60 for (15-45 mins)	0.575%
		67-72, TS-2, 18-21, 57-60 for (45-60 mins)	23.32%
	11, 12, 13	67-72, TS-2, 18-21, 57-60	
	14	67-72, TS-2, 18-21, 57-60 (for 0-15 mins)	
		67-72, TS-2, 21-23, 57-60 (for 15-20 mins)	0.721%
		67-72, TS-2, 18-21, 57-60 (for 20-30 mins)	3.212%
		67-72, TS-2, 21-23, 57-60 (for 30-35 mins)	3.805%
		67-72, TS-2, 18-21, 57-60 (for 35-45 mins)	1.080%
		67-72, TS-2, 21-23, 57-60 (for 45-55 mins)	2.547%
		67-72, TS-2, 18-21, 57-60 (for 55-60 mins)	0.975%
	15	67-72, TS-2, 18-21, 57-60 (for 0-10 mins)	
		67-72, TS-2, 21-23, 57-60 (for 10-30 mins)	2.435%
		67-72, TS-2, 18-21, 57-60 (for 30-60 mins)	0.862%
	16 17	67-72, TS-2, 18-21, 57-60 (for 0-25 mins)	
		67-72, TS-2, 21-23, 57-60 (for 25-30 mins)	3.060%
		67-72, TS-2, 18-21, 57-60 (for 30-35 mins)	1.783%
		67-72, TS-2, 21-23, 57-60 (for 35-45 mins)	1.745%
		67-72, TS-2, 18-21, 57-60 (for 45–50 mins)	4.084%
		67-72, TS-2, 21-23, 57-60 (for 50-60 mins)	2.053%
		67-72, TS-2, 21-23, 57-60 (for 0-10 mins)	0.4000/
		67-72, TS-2, 18-21, 57-60 (for 10–15 mins) 67-72, TS-2, 21-23, 57-60 (for 15–25 mins)	2.420% 7.240%
		67-72, TS-2, 21-23, 57-60 (for 15-25 mins) 67-72, TS-2, 18-21, 57-60 (for 25-60 mins)	7.240% 3.520%
	18, 19, 20, 21, 22, 23	67-72, TS-2, 18-21, 57-60 (107 25-60 mins)	3.520%
	10, 13, 20, 21, 22, 23	67-72, TS-2, 18-21, 57-60 67-72, TS-2, 18-21, 57-60 (for first 15 mins)	0.354%
24	24	67-72, TS-2, 18-21, 57-60 (for first 15 mins) 67-72, TS-2, 21-23, 57-60 (for last 45 mins)	0.354%
	07-72, 13-2, 21-23, 57-60 (for last 45 mins)	0.001%	

Conclusion

- Compared to other approaches, the proposed approach can reduce loss and operation times. In the future:
 - Consider more factors—such as weather, irradiance, and temperature—as inputs for system state forecasting.
 - Build a big data platform to visualize the numerical results with Google Earth, SQL, Java, and Python.