Telematics Framework for Federal Agencies

Fleet Feedback and Fleet Efficiency Metrics

Mark Singer
National Renewable Energy Laboratory
August 15, 2017

NREL/PR-5400-70047

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Agenda

- USMC Telematics User Feedback
- Fleet Efficiency Metrics
- VAM Support Metrics

USMC User Feedback

- USMC currently has telematics installed on over 8,000 vehicles ranging several providers
- NREL surveyed USMC personnel to understand how telematics are currently being used by the fleet.

	Surveyed Operations								
Personnel	8	Fleet and Operations Managers							
Locations	6	Across 4 states							
Fleet Size	> 6,000	86 to 3,400 vehicles							
Installed Devices	>2,300	40 to 1,000 vehicles							

Survey Findings – Current Usage

- Most managers access telematics daily or at least weekly.
- Real time vehicle tracking is highly valued for safety and operations success.
- Behavior metrics are tracked monthly.
 - Safety is the primary concern and speeding events are a focus.
- Managers report improved driver behaviors Speeding 🖖

- Driver behavior improvement requires:
 - Leadership remaining engaged in driver coaching.
 - Maintaining the manpower resources for tracking behaviors.

Survey Findings – Feature Importance

Please rank the following telematics features by their importance to you

Relative Importance of Available Telematics Capabilities

First Tier (Safety)	Second Tier (Fleet efficiency)	Third Tier (Operational)
Speeding Identification	Excessive idling	Geofence violations
Collision notification	Mileage tracking	Maintenance notifications
Aggressive driving		GPS routing capabilities
Driver video reports		

Personnel are most concerned with safety features.

Survey Findings – Goal Importance

Please rank the importance of the ways in which you use telematics in fleet management

Relative Importance of Telematics in Meeting Fleet Goals

First Tier (Safety)	Second Tier (Operational)	Third Tier (Fleet efficiency)	Fourth Tier
Preventative safety enforcement	Required reporting (FMIS and FAST)	Fuel consumption	Routing
Accident reporting	Locating Equipment	Low-use vehicle analysis	Geo-fencing
Assessing driver behavior		Maintenance	Alternative fuel use
			Vehicle acquisition analysis

Personnel value support to safety efforts.

Agenda

- USMC Telematics User Feedback
- Fleet Efficiency Metrics
- VAM Support Metrics

How can telematics services support fleet efficiency?

What should we ask for from telematics providers?

Notes:

- Developing telematics reporting capabilities will likely require close coordination between a telematics provider and internal information systems experts.
- Technologies will continue to evolve and capabilities will continue to expand.

Fleet efficiency behavior change efforts benefit from trip level data summaries and reports.

Trip level data – summary data for a vehicle event beginning when keyed on (operated for some time) and ending when keyed off.

Allows for:

- Identifying individual driver and vehicle events and behaviors in support of driver coaching.
- Summarizing at higher levels (driver, vehicle, organizational, etc.) to determine broad impacts of potential corrective actions.

Note: Data captured at more frequent intervals (perhaps 1 Hz) can be summarized at the trip level.

Reducing engine idling

Questions answered:

- Which drivers or vehicles idle most consistently?
- How much fuel is lost due to idling?

Beneficial trip level metrics:

- Engine run time
- Count of idling events
- Total idling time
- Fuel used while idling

Idling Impacts:

- Larger LD vehicles >1/3 gallon per hour.
- MD and HD vehicles can approach 1 gallon per hour.

http://www.anl.gov/energy-systems/downloads/vehicle-idle-reduction-savings-worksheet

Sample: Idling Report Fields

								Engine		Total	Fuel
-	Trip	Vehicle	Driver	Org.	Start	End Date	Fuel	Run	Idling	Idling	Used
	ID	ID	ID	ID	Date Time	Time	Used	Time	Count	Time	Idling

Reducing inefficient and aggressive driving

Questions answered:

Which drivers or vehicles are top concerns?

Beneficial trip level metrics:

- Trip fuel used
- Extreme acceleration count
- Extreme braking count
- Speeding count
- Speeding duration

Aggressive Driving Impacts:

- Improving driving behavior can lead to a 5-10% savings.
- Reducing extreme behaviors can save 20%.

https://www.afdc.energy.gov/conserve/driving_behavior.html

Sample: Inefficient Driving Report Fields

				Start	End	Trip	Extreme	Extreme		
Trip	Vehicle	Driver	Org.	Date	Date	Fuel	Accel.	Braking	Speeding	Speeding
ID	ID	ID	ID	Time	Time	used	Count	Count	Count	Duration

Reducing vehicle miles traveled

Questions answered:

Are drivers consistently driving farther than required?

Beneficial trip level metrics:

- Miles driven
- GPS calculated mileage
- Avoidable mileage → GPS route mileage driven mileage
- Geofence alerts

Sample: VMT Reduction Fields

										Avoidable	
				Start	End	Trip		GPS		Mileage	Campus
Trip	Veh.	Driver	Org.	Date	Date	Fuel	Miles	Calc.	Avoidable	Fuel	Geofence
ID	ID	ID	ID	Time	Time	Used	Driven	Mileage	Mileage	Saved	Alerts

Choosing efficient vehicles

Questions answered:

What fuel savings are possible with a more efficient vehicle?

Beneficial trip level metrics:

- Route/mission identifier based on start and stop locations
- Miles driven
- Off-road geofence alert
- Fuel saved with downsized vehicle

Sample: Efficient Vehicle Choice Report Fields

				Start	End	Trip			Off-road	Fuel Saved
Trip	Vehicle	Driver	Org.	Date	Date	Fuel	Route	Miles	Geofence	With
ID	ID	ID	ID	Time	Time	Used	ID	Driven	Alert	Downsize

Fuel Saved with Downsize: Based on a comparison of the current vehicle's fuel usage and mpg rating versus expected fuel consumption from a more efficient vehicle.

Organizational summaries can highlight success and areas for improvement.

Example:

Org ID	Driver ID	Idle Events Per Trip	Total Idling Time (mins)		Speeding Count			Mileage Fuel Use	Fuel Saved With Downsize
Org 1	Driver 1	0	0	0	2	5	0	0	13
Org 1	Driver 2	1	10	0.02	10	90	2	0.1	0
Org 1	Driver 3	4	90	1.5	1	1	50	1.7	0
Org 1	Driver 4	0	0	0	0	0	5	0.25	10
Org 1	Driver 5	1	7	0.01	0	0	100	3	5

Agenda

- USMC Telematics User Feedback
- Fleet Efficiency Metrics
- VAM Support Metrics

Telematics Support to VAM Processes

Telematics services can improve VAM processes:

- Reduced manual effort and total time to complete.
- Improved accuracy through automated data capture.

The VAM process includes utilization statistics which can be captured through summaries of trip level data:

- Numbers of trips
- Miles traveled
- Hours of use
- Fuel consumed

Note: VAM processes will always require manual input including estimates of criticality, changing missions, etc.

VAM Trip Count Summaries

Vehicle trip counts define how often a vehicle is used and can justify a vehicle need.

Example trip utilization metrics (prior 12 months):

- Number of trips
- Date of last trip
- Number of weeks with no trips
- Average trips per week (of weeks with at least one trip)

	Li	fetime		Prior 12 months					
					· ·		Average		
Vehicle	Org.	Date	Date of	Number	With	With No	Trips Per		
ID	ID	Assigned	Last Trip	of Trips	No Trips	Trips	Week		

Days and weeks with no trips can help define periodic or seasonal vehicle usage patterns.

VAM Mileage Summaries

Vehicle mileage further defines vehicle utilization

Example mileage utilization metrics:

- Lifetime mileage
- Prior 12 months mileage
- Average miles per trip
- Average miles per week (of weeks with at least one trip)
- Weeks with low mileage (manually defined)

	Li	fetime			Prior	12 months	
Vehicle ID	Org. ID	Date Assigned	Miles	Miles	Average Miles per Trip		Weeks with Low Mileage

VAM Processes – Other Metrics

Engine Runtime:

	Lif	etime			Prior 12 months							
		_				Average						
						Hours						
ID	ID	Assigned	Hours	Hours	Per Trip	Per Week	Hours	On-site				

Time On-site: Mobile workstations may require a vehicle whose engine operates intermittently at a job site.

Fuel Consumption:

	Life	time				Prior 12	months	
								Fuel Saved
Vehicle	Org.	Date	Fuel	Fuel	Fuel	Fuel Per	with Low	with
ID	ID	Assigned	Use	Use	Per Trip	Week	Fuel Use	Downsize

VAM Processes – Other Metrics

LSEV Opportunity:

Lifetime		Prior 12 months						
			Trips	Trips Per	Trips With	Trips Per		
			Leaving	Week	Max Speed	Week with		
Vehicle	Org.		Campus	Leaving	Below	Max Speed		
ID	ID	Trips	Geofence	Campus	25mph	Below 25mph		

4X4 Requirement:

Life	etime		Prior 12 months			
			Trips in	Trips Per Week		
Vehicle	Org.		Off-road	in Off-road		
ID	ID	Trips	Geofence	Geofence		

Telematics Support to VAM Processes

Continuous updating of utilization statistics.

Example:

			Prior 12 months							
Vehicle ID	Org ID	Date Assigned	Trips	Weeks w/ 0 Trips	Miles	Weeks With <10 Miles	Time at Job Site (hrs)	LSEV Possible	4X4 Required	Mission Type
Veh 1	Org 1	5/1/2014	100	23	11,000	23	0	N	N	Commuter
Veh 2	Org 1	6/1/2015	50	2	3,000	30	200	N	Υ	Mb Wk Stn
Veh 3	Org 2	3/1/2014	600	2	10,000	4	0	N	N	Regional
Veh 4	Org 2	4/1/2015	90	36	1,000	40	0	Υ	N	Campus

Fleet specific business rules could be applied to highlight low and high use vehicles.

Other Telematics Support

Maintenance tracking and effects on efficiency

Vehicle acquisition planning

Alternative fuel deployment

Questions??

Mark Singer
NREL
mark.singer@nrel.gov
(303) 275-4264