

The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption

Wesley Cole, Pieter Gagnon, Bethany Frew, and Robert Margolis

Energy Policy Research Conference Park City, Utah September 7, 2017 NREL/PR-6A20-70114

DPV Has Been Growing Rapidly

UPV Has Also Been Growing Rapidly

Surprise: DPV and UPV Produce at the Same Time!

 PV systems have similar profiles – differences are due to orientation, tracking, shading, etc.

Value of Incremental PV Declines as Penetration Increases

- Increasing curtailment rate reduces energy value
- Declining capacity credit reduces capacity value

Top: Denholm & Margolis (2016) Bottom: Mills & Wiser (2012)

Deployment Drivers

- UPV Relative economics versus other utility-scale generator options
- DPV Relative economics versus tariffs

 Both are influenced by policy (tax credits, renewable portfolio standards, etc.)

Two Purposes of this Analysis

Understand how increased deployment of DPV and UPV might impact electricity prices

Our Approach

- ReEDS: Bulk power system capacity expansion model for UPV deployment (and the rest of the power sector)
- dGen: Consumer adoption model for DPV adoption

Regional Energy Deployment System (ReEDS) Model

- Central-planning optimization model of U.S. Electricity Sector
- 134 Balancing Areas
- 356 Wind/CSP regions
- Explicit consideration of RE integration issues

- Solves combined capacity expansion and dispatch out to 2050 under different assumptions
 - o Economic
 - Technology
 - Policy

Distributed Generation (dGen) Model

- Distributed generation adoption is modeled in an exogenous module
- dGen forecasts adoption of distributed generation (solar, storage, wind, heat pumps) by sector in the continental U.S. through 2050
- Agent-Based Model simulating consumer decision-making
- Incorporates detailed spatial data to understand regional markets and trends

(Top Left): Evaluate adoption potential for each 200m² cell; (Top Right): Spatial focus permits regional predictions; (Bottom): Results from BAU-Mid Costs Scenario in ITC Extension analysis

Scenarios

- Reference: 2016 ATB Mid PV prices
- SunShot: SunShot 2030 PV prices

Impact of PV Capital Costs on PV Deployment

Resulting Electricity Prices

Impact of Tariff Evolution on DPV adoption

Impact of Tariff Evolution on DPV adoption

Minimal Impact of Tariff Evolution on Total PV Generation

Summary

- Marginal value of PV declines as penetration increases
- Higher penetrations of PV lead to lower afternoon electricity prices
- If these lower electricity prices are communicated back to consumers, DPV adoption slows
- However, DPV adoption still grows 8-16 fold from 2016 levels in the scenarios considered
- Total PV generation not significantly impacted by level of DPV adoption

Future Work

- We only considered PV prices as a driver for increasing PV deployment. Other drivers might have different impacts
 - High natural gas prices
 - Renewable portfolio standards
 - Carbon tax
- We do not model any elasticity of demand as prices changes
 - Lower afternoon prices might incentivize increased consumption during the afternoon, which would in turn increase the value of PV

Thank You!

wesley.cole@nrel.gov

www.nrel.gov

