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Abstract—This paper focuses on multiphase radial distribution
networks with mixed wye and delta connections, and proposes
a semidefinite relaxation of the AC optimal power flow (OPF)
problem. Two multiphase power flow models are developed to
facilitate the integration of delta-connected generation units/loads
in the OPF problem. The first model is referred to as the
extended branch flow model (EBFM). The second model leverages
a linear relationship between phase-to-ground power injections
and delta connections that holds under a balanced voltage
approximation (BVA). Based on these models, pertinent OPF
problems are formulated and relaxed to semidefinite programs
(SDPs). Numerical studies on IEEE test feeders show that
the proposed SDP relaxations can be solved efficiently by a
generic optimization solver. Numerical evidence also indicates
that solving the resultant SDP under BVA is faster than under
EBFM. Moreover, both SDP solutions are numerically exact with
respect to voltages and branch flows. It is further shown that the
SDP solution under BVA has a small optimality gap, and the
BVA model is accurate in the sense that it reproduces actual
system voltages.

I. INTRODUCTION

Optimal power flow (OPF) is a fundamental task in power
system operations. At the distribution level, OPF underlies
(and possibly unifies) many applications, such as Volt/VAr
control [1], [2], dispatch of renewable energy sources [3], and
demand response [4]. With the rapid growth of distributed
energy resources—including renewables, energy storage de-
vices, and flexible loads—it is crucial for distribution systems
to solve OPF in a fast and scalable way over a large number
of active nodes. Towards this end, recent efforts have looked
at centralized and distributed OPF solution methods based on
convex approximations or relaxations (see, for example, [2],
[4]–[9] and pertinent references therein) because the noncon-
vexity of AC OPF is a major hurdle to overcome before
implementing efficient algorithms with possible optimality
guarantees.

A popular convex approximation is obtained through the
linearization of power flow equations using DC power flow
[10], LinDistFlow [11], [12], or recently developed techniques
such as [3], [13], [14]. In particular, power flow linearization
methods in multiphase networks are proposed or discussed in,
e.g., [12], [14].

Semidefinite relaxation is another commonly taken approach
to convexify OPF problems. To the best of our knowledge,

it was first proposed in [15] to solve OPF as a semidef-
inite program (SDP) in single-phase networks with general
topologies, and it was first studied in [16] whether and when
this SDP relaxation is exact. Sparsity of power networks was
exploited to simplify the SDP relaxation in [17], [18], and
relaxation to a more efficiently solvable second-order cone
program is available in radial (tree) networks [19]. See [20],
[21] for a survey of convex relaxations of OPF in single-phase
distribution networks. In multiphase radial networks, [6] was
the first that we know of that applied SDP relaxation; later,
[12] illustrated SDP relaxation on a numerically more stable
branch flow model. Based on these studies, distributed OPF
algorithms were developed in [6], [8].

Distribution networks in practice are not only multiphase
and radial but also composed of both wye and delta con-
nections [22], [23]. Oftentimes, wye- and delta-connected
loads/generation units can be present at the same time at the
secondary of a distribution transformer. A substantial body
of literature discusses power flow models, formulations, algo-
rithms, and analyses with mixed wye and delta connections
[24]–[26]; however, not much work on OPF has explicitly
incorporated delta connections. In [27], OPF under mixed
wye and delta connections was formulated and solved as
a mixed-integer nonlinear program without dealing with the
nonconvexity issue. The SDP relaxation-based OPF studies—
[6], [8], [12]—all take phase-to-ground power injections as
optimization variables, and hence essentially assume only wye
connections exist in the network.

In this paper, we propose an SDP relaxation of the AC
OPF problem in multiphase radial networks with mixed wye
and delta connections. To facilitate the derivation of an SDP
relaxation, we develop two power flow models to incorporate
delta connections. The first, hereafter referred to as extended
branch flow model (EBFM), extends the branch power flow
model of [12] to account for delta connections. The second,
hereafter referred to as balanced voltage approximation (BVA),
exploits a linear relationship between phase-to-ground power
injections and delta connections that holds approximately
when three-phase voltages are nearly balanced. Formulations
and SDP relaxations of OPF under both models are presented.
Numerical studies on IEEE 13- and 37-bus networks [23] show
that both SDP relaxations can be solved efficiently by a generic
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optimization solver (e.g., SeDuMi [28]). It is also noticed that
solving SDP under BVA is faster than under EBFM. Moreover,
both solutions are numerically exact with respect to voltages
and branch flows. The solution under EBFM is not exact with
respect to the delta-connected variables, but it provides a lower
bound of the OPF objective and reveals a small optimality
gap of the solution under BVA. Finally, accuracy of the BVA
model is shown via comparisons between voltages recovered
from SDP and solved by OpenDSS [29].

The rest of the paper is organized as follows. Section
II introduces the model of multiphase radial networks with
both wye and delta connections. Sections III and IV present
two power flow models, EBFM and BVA, respectively, and
formulate the OPF problems and their SDP relaxations under
these two models. Section V shows numerical results. Section
VI concludes the paper and discusses future work.

II. MULTIPHASE RADIAL NETWORK MODEL

A. Notation

Let R, C, and N denote the set of real, complex, and
(nonzero) natural numbers, respectively. Define j :=

√
−1. For

n ∈ N, let Hn×n denote the space of all n-by-n Hermitian
matrices. For any scalar, vector, or matrix A, let AT , A∗,
and AH denote its transpose, element-wise conjugate, and
conjugate transpose, respectively. For a square matrix A, let
diag(A) denote the column vector composed of its diagonal
entries, and tr(A) denote its trace. For an index set S, let AS
denote the set {Ai | i ∈ S }, or (when Ai’s are scalars) the
column vector composed of {Ai | i ∈ S }. Further, given an
n-by-n matrix A, rank(A) returns the rank of A. Let 1S (0S)
denote the |S|-dimensional column vector with all elements 1
(0), where |S| denotes the cardinality of S. The subscript S
is omitted when its meaning is clear from the context.

B. Network Model

Let N = {0, 1, . . . , n} denote the set of nodes of a multi-
phase radial distribution network. Let 0 index the substation
(or point of common coupling), and define N+ := N \ {0}.
Let E denote the set of lines connecting the buses. In particular,
each line connects an ordered pair (i, j) of buses, where bus
i lies between bus 0 and bus j. We use (i, j) ∈ E and i→ j
interchangeably, and denote i ∼ j if either i → j or j → i.
Let Nleaf denote the set of “leaf” nodes from which there are
no directed lines.

For ease of exposition and notation simplicity, we assume
that all the buses i ∈ N and lines (i, j) ∈ E have three phases:
a, b, c; and define Φ := {a, b, c} and Φ′ := {ab, bc, ca}. In
Section III-A, we will discuss how missing phases on certain
buses and lines can be readily managed. For i ∈ N and φ ∈ Φ,
let V φi denote the complex voltage on phase φ of bus i, and
define Vi := [V ai , V

b
i , V

c
i ]T . For i ∼ j and φ ∈ Φ, let Iφij

denote the phase φ current on the line from bus i to bus j,
and define Iij := [Iaij , I

b
ij , I

c
ij ]
T . Let yi ∈ C3×3 denote the

shunt admittance at bus i, and zij ∈ C3×3 denote the series
impedance of line i ∼ j.

Without loss of generality, let every bus i ∈ N have three
wye-connected net loads (one on each phase, with grounded
neutral) and three delta-connected net loads (one across each
pair of phases, ungrounded). Let sY,i := [saY,i, s

b
Y,i, s

c
Y,i]

T

denote the complex power consumptions of wye-connected
net loads at bus i. Let s∆,i := [sab∆,i, s

bc
∆,i, s

ca
∆,i]

T and
I∆,i := [Iab∆,i, I

bc
∆,i, I

ca
∆,i]

T denote the power consumptions and
currents of delta-connected net loads at bus i, respectively.
If a particular phase of a particular type of connection does
not exist at bus i, then the corresponding element of sY,i or
s∆,i (I∆,i) is set to zero. In practice, sY,i and s∆,i represent
the net power consumptions observed on the wye and delta-
connected primary windings of the service transformers at
bus i. Their secondary windings, which are ignored from our
model, connect to loads and distributed energy resources.

III. SEMIDEFINITE RELAXATION OF OPF UNDER
EXTENDED BRANCH FLOW MODEL

A. Extended Branch Flow Model

We extend the branch flow model in [12] to incorporate delta
connections.1 The resultant EBFM is given as the following.

1) Ohm’s law:

Vi − Vj = zijIij , ∀i→ j. (1)

2) Definition of auxiliary variables:

`ij = IijI
H
ij , Sij = ViI

H
ij , ∀i→ j

Xi = ViI
H
∆,i, ∀i ∈ N . (2)

3) Delta-connected loads:

s∆,i = diag(ΓXi), ∀i ∈ N (3)

where the matrix Γ is defined as:

Γ :=

 1 −1 0
0 1 −1
−1 0 1

 .
4) Power balance:∑

k:k→i

diag(Ski − zki`ki)−
∑
j:i→j

diag(Sij)

= diag
(
ViV

H
i yHi

)
+ sY,i + diag(XiΓ), ∀i ∈ N .(4)

To interpret ` and S, note that diag(`ij) denotes the mag-
nitude squares of three phases of current Iij , and diag(Sij)
denotes the sending-end three-phase power flow on line i→ j.
Given Γ, the three-phase delta-connected load at bus i reads:

s∆,i =

(V ai − V bi )(Iab∆,i)
∗

(V bi − V ci )(Ibc∆,i)
∗

(V ci − V ai )(Ica∆,i)
∗


= diag

(
ΓViI

H
∆,i

)
=diag(ΓXi) , (5)

1The bus injection model can be extended in a similar way, but it is not
introduced here because it is numerically less stable than the branch flow
model [12].
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and the three-phase power flow from bus i to the delta-
connected load is given by:V ai (Iab∆,i − Ica∆,i)

∗

V bi (Ibc∆,i − Iab∆,i)
∗

V ci (Ica∆,i − Ibc∆,i)
∗

 = diag
(
ViI

H
∆,iΓ

)
= diag(XiΓ). (6)

To interpret (4), note that the receiving-end three-phase power
flow on line k → i is:

diag(ViI
H
ki) = diag

(
VkI

H
ki − (Vk − Vi)IHki

)
= diag(Ski − zki`ki),

and diag
(
ViV

H
i yHi

)
represents the three-phase power flow to

the shunt element at bus i.
For notational simplicity, we assume that all the buses and

lines have all three phases. To deal with missing phases on
certain buses and lines, we fill zeros at the corresponding
locations of current/power vectors and impedance/admittance
matrices. As a result, the voltage at a missing phase of a bus
j connected to node i through line i → j is the same as the
voltage at the same phase of bus i.

B. Optimal Power Flow

Let f(sY, s∆) : C6(n+1) 7→ R denote the operating cost
function associated with net loads across the entire network.
Under EBFM (1)–(4), we formulate the optimal power flow
(OPF) problem as:

OPF-EBFM: min f(sY, s∆) (7a)

over sY,i, s∆,i, Vi, I∆,i ∈ C3, Xi ∈ C3×3, ∀i ∈ N
Iij ∈ C3, `ij , Sij ∈ C3×3, ∀i→ j

s.t. (1)–(4)
(sY,i, s∆,i) ∈ Si, ∀i ∈ N (7b)

V0 = V ref
0 (7c)

V φi ≤ |V
φ
i | ≤ V

φ

i , ∀i ∈ N+, ∀φ ∈ Φ. (7d)

The objective (7a) minimizes the operating cost. The power
flow equations (1)–(4) impose physical constraints to OPF.
The optimization variables (sY, s∆) integrate both controllable
and uncontrollable components of wye and delta-connected
net loads. In particular, the operational constraints on the
controllable components and the values of the uncontrollable
components (including when a component does not exist) can
both be specified by properly configuring the sets Si in (7b).
The substation voltage is fixed and given as V ref

0 in (7c).
Constraints on voltage magnitudes at all the other buses are
enforced by (7d).

C. Semidefinite Relaxation of OPF

Throughout this paper we assume that f in (7a) is a
convex function and that Si in (7b) are convex sets for all
i ∈ N . Sets Si are typically convex and compact for inverter-
interfaced renewable sources of energy [3] and for a number
of controllable loads (e.g., variable-speed drives). Then the
OPF problem (7) is nonconvex only because of the quadratic
equality constraints (2), (4) and the voltage-related constraint

V φi ≤ |V
φ
i | in (7d). In the following, we introduce our

approach to obtain the convex surrogate of (7) via semidefinite
relaxation.

We first reformulate (7) as the following equivalent prob-
lem, with some newly defined parameters explained after the
problem formulation:

OPF-EBFM’: min f(sY, s∆) (8a)

over sY,i, s∆,i ∈ C3, Xi ∈ C3×3, ∀i ∈ N
vi, ρi ∈ H3×3, ∀i ∈ N
Sij ∈ C3×3, `ij ∈ H3×3, ∀i→ j

s.t. vj = vi − (Sijz
H
ij + zijS

H
ij ) + zij`ijz

H
ij , ∀i→ j

(8b)
s∆,i = diag(ΓXi), ∀i ∈ N (8c)∑
k:k→i

diag(Ski − zki`ki)−
∑
j:i→j

diag(Sij)

= diag
(
viy

H
i

)
+ sY,i + diag(XiΓ), ∀i ∈ N (8d)

(sY,i, s∆,i) ∈ Si, ∀i ∈ N (8e)

v0 = V ref
0

(
V ref

0

)H
(8f)

vi ≤ diag(vi) ≤ vi, ∀i ∈ N+ (8g)
vi � 0, ∀i ∈ Nleaf (8h)[
vi Sij
SHij `ij

]
� 0, ∀i→ j (8i)[

vi Xi

XH
i ρi

]
� 0, ∀i ∈ N (8j)

rank (vi) = 1, ∀i ∈ Nleaf (8k)

rank
([

vi Sij
SHij `ij

])
= 1, ∀i→ j (8l)

rank
([

vi Xi

XH
i ρi

])
= 1, ∀i ∈ N . (8m)

The two problems (7) and (8) are connected via the following
variable transformation:[

vi Sij
SHij `ij

]
=

[
Vi
Iij

] [
Vi
Iij

]H
, ∀i→ j (9a)[

vi Xi

XH
i ρi

]
=

[
Vi
I∆,i

] [
Vi
I∆,i

]H
, ∀i ∈ N . (9b)

The transformation (9) is consistent with the definition of `,
S, X in (2), and it explains why the positive semidefinite
constraints (8h)–(8j) and rank-1 constraints (8k)–(8m) must
hold. Note that (8h) and (8k) are redundant given (8j) and
(8m), but we still put them there to separately describe the
structures of voltages and delta connections. Constraints (8b)
are obtained by multiplying both sides of (1) by their conjugate
transposes. Constraints (8c)–(8e) follow (3), (4), and (7b).
Constraints (8f)–(8g) follow (7c)–(7d), with inequalities in
(8g) treated element-wise and vi and vi defined as:

vi :=
[
(V ai )2, (V bi )

2, (V ci )
2
]T
, ∀i ∈ N

vi :=
[
(V

a

i )2, (V
b

i )
2, (V

c

i )
2
]T
, ∀i ∈ N .
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The only nonconvexity of (8) lies in the rank-1 constraints
(8k)–(8m). Therefore, by removing them we obtain the fol-
lowing SDP, which is a convex relaxation of the original OPF
problem (7):

EBFM-SDP: min f(sY, s∆)

over sY, s∆, v, S, `,X, ρ

s.t. (8b)–(8j).

Given an optimal solution (sY, s∆, v, S, `,X, ρ) of EBFM-
SDP that also satisfies (8k)–(8m), one can recover (V, I, I∆)
and therefore obtain an optimal solution of the original OPF
(7). Indeed, (V, I) can be recovered from (v, S, `) using [12,
Algorithm 2], and then I∆ can be recovered by:

I∆,i =
1

tr(vi)
XH
i Vi, ∀i ∈ N .

IV. SEMIDEFINITE RELAXATION OF OPF UNDER
BALANCED VOLTAGE APPROXIMATION

A. Balanced Voltage Approximation
The BVA model is grounded on the following assumption:

V ai
V bi
≈ V bi
V ci
≈ V ci
V ai
≈ ej2π/3, ∀i ∈ N ,

which assets that three-phase voltages are nearly balanced.
Under this assumption, the delta-connected net load between
phases ab of bus i can be approximately represented as2:

sab∆,i = (V ai − V bi )(Iab∆,i)
∗ =

(
1− e−j2π/3

)
V ai (Iab∆,i)

∗.

This and similar derivations for other phases lead to the linear
relationship between s∆,i in (5) and diag(XiΓ) in (6):

diag(XiΓ) = Ξs∆,i (11)

where

Ξ =

√
3

3

e−jπ/6 0 ejπ/6

ejπ/6 e−jπ/6 0
0 ejπ/6 e−jπ/6

 .
By (11), we modify EBFM (1)–(4) to obtain the follow-

ing approximate power flow model under balanced voltage
approximation (BVA).

1) Ohm’s law:

Vi − Vj = zijIij , ∀i→ j. (12)

2) Definition of auxiliary variables:

`ij = IijI
H
ij , Sij = ViI

H
ij , ∀i→ j. (13)

3) Power balance:∑
k:k→i

diag(Ski − zki`ki)−
∑
j:i→j

diag(Sij)

= diag
(
ViV

H
i yHi

)
+ sY,i + Ξs∆,i, ∀i ∈ N . (14)

In the BVA model, the delta-connected net loads s∆ contribute
to the power balance equation (14) via the constant coefficient
matrix Ξ, instead of relying on the auxiliary variable X .

2For convenience we use “=” instead of “≈” even if the equality holds
approximately.

B. OPF and Semidefinite Relaxation

Under the BVA power flow model (12)–(14), we formulate
the OPF problem as the following:

OPF-BVA: min f(sY, s∆) (15a)

over sY,i, s∆,i, Vi ∈ C3, ∀i ∈ N
Iij ∈ C3, `ij , Sij ∈ C3×3, ∀i→ j

s.t. (12)–(14)
(sY,i, s∆,i) ∈ Si, ∀i ∈ N (15b)

V0 = V ref
0 (15c)

V φi ≤ |V
φ
i | ≤ V

φ

i , ∀i ∈ N+, ∀φ ∈ Φ. (15d)

Similar to the way in which (7) is reformulated as (8), we
obtain the following problem, which is equivalent to (15).

OPF-BVA’: min f(sY, s∆) (16a)

over sY,i, s∆,i ∈ C3, vi ∈ H3×3, ∀i ∈ N
Sij ∈ C3×3, `ij ∈ H3×3, ∀i→ j

s.t. vj = vi − (Sijz
H
ij + zijS

H
ij ) + zij`ijz

H
ij , ∀i→ j

(16b)∑
k:k→i

diag(Ski − zki`ki)−
∑
j:i→j

diag(Sij)

= diag
(
viy

H
i

)
+ sY,i + Ξs∆,i, ∀i ∈ N (16c)

(sY,i, s∆,i) ∈ Si, ∀i ∈ N (16d)

v0 = V ref
0

(
V ref

0

)H
(16e)

vi ≤ diag(vi) ≤ vi, ∀i ∈ N+ (16f)
vi � 0, ∀i ∈ Nleaf (16g)[
vi Sij
SHij `ij

]
� 0, ∀i→ j (16h)

rank (vi) = 1, ∀i ∈ Nleaf (16i)

rank
([

vi Sij
SHij `ij

])
= 1, ∀i→ j. (16j)

Compared to (8), the problem (16) drops auxiliary variables
(X, ρ) and associated constraints that were used to represent
delta connections. The same as before, by removing the rank-
1 constraints (16i)–(16j), we obtain the following SDP, which
is a convex relaxation of (15).

BVA-SDP: min f(sY, s∆)

over sY, s∆, v, S, `

s.t. (16b)–(16h).

Given an optimal solution (sY, s∆, v, S, `) of BVA-SDP that
also satisfies (16i)–(16j), one can recover (V, I) using [12,
Algorithm 2] and hence obtain an optimal solution of (15);
however, this recovered (V, I) may not be the exact voltages
and currents in the network under optimal power injections
(sY, s∆) because the power flow model (12)–(14) is approx-
imate under BVA. One can use OpenDSS or other power
flow solvers to obtain the exact voltages and currents under
(sY, s∆). In Section V-C, we will show that the recovered and
exact voltages are close, implying accuracy of the BVA model.
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V. NUMERICAL RESULTS

We assess the performance of EBFM-SDP and BVA-SDP
through numerical studies on the IEEE 13- and 37-bus test
feeders. In particular, we check both schemes to determine
1) if they can be solved by a generic optimization solver
such as SeDuMi; 2) how close their solutions are to rank
one; 3) how optimal their solutions are; and 4) how close the
voltages recovered from (v, S, `) are to the voltages calculated
by OpenDSS under the same power injections.

A. Experiment Setup

The IEEE test networks are modeled by EBFM (1)–(4)
and BVA (12)–(14) with the following simplifications [12],
[22]: 1) load transformers are modeled as lines with equiva-
lent impedances; 2) switches are modeled as open or short
lines depending on their status; 3) substation voltages are
V ref

0 = V [1, e−j2π/3, ej2π/3]T , where V will be specified later,
and substation transformers and regulators are removed; 4)
distributed load (shunt admittance) along a line is split into
two identical loads (shunt admittances) at the terminal buses
of this line; and 5) capacitor banks are modeled as controllable
(in continuous values) reactive power sources.

We solve OPF to determine optimal decisions for demand
response in distribution networks. The objective is to regulate
power flow at the substation such that it tracks a reference
signal from the system operator while minimizing total disu-
tility caused by deviating from the nominal load power usage.
Specifically, our objective function is:

f(sY, s∆) = wdisu,pDp(pY, p∆) + wdisu,qDq(qY, q∆)

+wtrack,p

(
1T pY,0 − pref

sub

)2
psub

+ wtrack,q

(
1T qY,0 − qref

sub

)2
qsub

(18)

which is explained in the following two parts.
i) Disutility for load control. With s = p+ jq, the functions:

Dp(pY, p∆) =
∑
i∈LY

∑
φ∈ΦY,i

1

2pφY,i

(
pφY,i − p

φ
Y,i

)2

+
∑
i∈L∆

∑
φ′∈Φ′

∆,i

1

2pφ
′

∆,i

(
pφ

′

∆,i − p
φ′

∆,i

)2

Dq(qY, q∆) =
∑
i∈LY

∑
φ∈ΦY,i

1

2qφY,i

(
qφY,i − q

φ
Y,i

)2

+
∑
i∈L∆

∑
φ′∈Φ′

∆,i

1

2qφ
′

∆,i

(
qφ

′

∆,i − q
φ′

∆,i

)2

are disutilities associated with real and reactive power loads,
respectively. In particular, LY and L∆ denote the sets of
buses with wye and delta-connected loads, respectively, and
ΦY,i ⊆ {a, b, c} and Φ′∆,i ⊆ {ab, bc, ca} denote the sets of
phases at which wye and delta-connected loads exist at bus i,
respectively. The p and q are nominal real and reactive power
loads, which take the same values as the load data given in the
IEEE test cases. The feasible regions of p and q, i.e., the sets
Si in (7b), (8e) are defined as 0.5p ≤ p ≤ p and 0.5q ≤ q ≤ q.
A capacitor bank with nominal reactive power qcap is treated as

a controllable reactive power injection qcap ∈ [0, qcap], where
qcap does not incur any disutility.
ii) Power tracking at the substation. The third and fourth
terms on the right-hand-side of (18) are tracking errors for
real and reactive power flows at the substation, respectively.
In particular, 1T pY,0 and 1T qY,0 add up three-phase real and
reactive powers flowing upstream from the substation to the
main grid, and their reference values, pref

sub and qref
sub, are set

around 80% of the additive inverses of total real and reactive
power loads. We scale the tracking errors by the total real and
reactive power loads psub and qsub so that they have a similar
order of magnitude with the disutility.
In our experiments, we choose weighting factors wdisu,p =
wdisu,q = 0.1 and wtrack,p = wtrack,q = 0.4.

B. Solutions of EBFM-SDP and BVA-SDP

As described above, we formulate EBFM-SDP and BVA-
SDP in the IEEE 13- and 37-bus networks with different
choices of V and V , which are the uniform upper and lower
limits of voltage magnitudes at all the buses and phases. To
solve them, we call the optimization solver SeDuMi from
CVX, a MATLAB-based convex modeling framework [30].
The ranks and objective values of the SDP solutions are
summarized in Tables I and II, respectively. Table II also
collects the elapsed CPU times when SeDuMi solves each
SDP on a Dell laptop with Intel Core i5-4300 CPU (1.90
GHz, 2.50 GHz), 16 GB RAM, 64-bit Windows 7 OS, and
MATLAB R2015b.

TABLE I
RANKS OF SDP SOLUTIONS

network voltage method (v, S, `)-ratio (v,X, ρ)-ratio

IEEE 13
2% EBFM 1.028× 10−7 0.9893

BVA 2.443× 10−7 -

5% EBFM 1.194× 10−7 0.9577

BVA 1.733× 10−7 -

IEEE 37
2% EBFM 1.111× 10−6 0.9352

BVA 8.605× 10−3 -

5% EBFM 1.155× 10−6 0.9094
BVA 9.494× 10−8 -

TABLE II
CPU TIMES AND OBJECTIVE VALUES OF SDPS

network voltage method time (s) Objopt Objno control

IEEE 13
2% EBFM 2.246 10.65

106.6
BVA 1.763 10.93

5% EBFM 2.200 10.55
105.0

BVA 2.075 10.83

IEEE 37
2% EBFM 9.719 6.348

64.59
BVA 5.366 7.019

5% EBFM 9.438 6.271
63.42

BVA 3.136 6.379

In Tables I and II, the column “voltage” specifies volt-
age limits V and V . For example, 2% means [V , V ] =
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[0.98, 1.02] p.u. The column “method” specifies whether
EBFM-SDP or BVA-SDP is successfully solved.

In Table I, the columns “(v, S, `)-ratio” and “(v,X, ρ)-ratio”
quantify how close the SDP solutions are to rank one, where
a smaller ratio means that the solution is closer to rank one.
Specifically, to obtain the (v, S, `)-ratio of an SDP solution,
we compute the largest two eigenvalues λ1, λ2 (|λ1| ≥ |λ2|)
of the matrices in (8l) [(16j)] for all i → j, and we take the
average (over all i → j) of |λ2/λ1|. The (v,X, ρ)-ratios are
computed in the same way but for the matrices in (8m). We
observe from Table I that, in most cases, the (v, S, `)-ratios are
very small, whereas the (v,X, ρ)-ratios are very large. In other
words, the SDP relaxation is numerically exact with respect
to voltages and branch flows (consistent with observations
in [12]), but is usually not exact with respect to the delta-
connected variables. In our future work, we will investigate
formulations and conditions for exact convex relaxation of
OPF in multiphase networks.

In Table II, the column “time” shows the elapsed CPU times
to solve the SDPs, from which we see that SDP-BVA can be
solved faster than SDP-EBFM. The column “objopt” shows the
minimum objective values obtained by solving SDPs. A spe-
cial treatment in calculating the objective values of the BVA-
SDPs is that we run OpenDSS to obtain the exact substation
power under the SDP-solved loads to calculate the accurate
tracking error. For comparison, the column “objno control” shows
the objective values when all the loads consume nominal
power and none provide demand response. We see that both
EBFM-SDP and BVA-SDP significantly decrease the OPF
objective compared to the cases without control. Moreover,
the difference between the objective values of EBFM-SDP
and BVA-SDP gives an upper bound on the optimality gap
of BVA-SDP, i.e., how far is the BVA-SDP objective to the
actual minimum, because EBFM-SDP expands the feasible set
of the original OPF (7). We observe that this gap is small in
most cases.

Among all the cases we test, the largest (v, S, `)-ratio and
optimality gap both occur with the BVA-SDP in the IEEE
37-bus network, under the 0.98–1.02 p.u. voltage limit. The
substantial impacts of the network configuration and voltage
limit on the performance of the proposed schemes remain to
be studied in our future work.

C. Accuracy of Recovered Voltages

In Table III, we compare the voltages recovered from
(v, S, `) using [12, Algorithm 2] and the voltages solved by
OpenDSS under the same power injections at the optimal
solutions of the EBFM-SDPs and BVA-SDPs. Specifically,
we consider the voltages solved by OpenDSS to be exact,
and show the root-mean-square-error (RMSE) and maximum
absolute error (MAX), over all the buses and phases, of the
recovered voltages from the exact ones.

We observe from Table III that the voltages recovered
from the solutions of the BVA-SDPs stay close to the exact
voltages solved by OpenDSS. This implies the accuracy of the
approximate relationship (11) that leads to the BVA model

TABLE III
DIFFERENCE BETWEEN RECOVERED AND EXACT VOLTAGES

network voltage method RMSE (pu) MAX (pu)

IEEE 13
2% EBFM 6.953× 10−3 1.467× 10−2

BVA 1.488× 10−4 2.915× 10−4

5% EBFM 6.753× 10−3 1.424× 10−2

BVA 1.357× 10−4 2.673× 10−4

IEEE 37
2% EBFM 6.528× 10−3 1.113× 10−2

BVA 2.547× 10−4 9.833× 10−4

5% EBFM 6.343× 10−3 1.081× 10−2

BVA 2.855× 10−4 5.496× 10−4

(12)–(14). The voltages recovered from the solutions of the
EBFM-SDPs, however, deviate further from the exact voltages.
This is not surprising given the fact that the solutions of
the EBFM-SDPs, in terms of the delta-connected variables
(v,X, ρ), are far from rank one.

VI. CONCLUSIONS AND FUTURE WORK

Two power flow models, EBFM and BVA, were introduced
for multiphase radial networks with mixed wye and delta
connections. Under both models, we formulated OPF prob-
lems and developed their SDP relaxations. Numerical studies
on IEEE 13- and 37-bus networks showed that both SDP
relaxations can be efficiently solved by SeDuMi, whereas
BVA-SDP is solved faster than EBFM-SDP. Moreover, both
SDP solutions are close to rank one, and hence numerically
exact with respect to voltages and branch flows. The SDP
solution under EBFM is far from rank one in terms of the
delta-connected variables, and therefore does not qualify as a
good solution itself; however, it provides a lower bound of
the OPF objective and reveals a small optimality gap of the
SDP solution under BVA. Finally, by comparing the voltages
recovered from the SDP solution and solved by OpenDSS, we
saw that BVA is accurate in the sense that it reproduces actual
system voltages.

To strengthen our findings, we will perform numerical tests
on other IEEE test feeders as well as realistic systems from
Southern California Edison. Moreover, we plan to develop
and test scalable distributed algorithms to solve the proposed
SDP relaxations while borrowing ideas from existing algo-
rithms based on primal-dual iterations [31]; alternate direction
method of multipliers [8], [9], [32]; interior point method
[33]; auxiliary problem principle [32], [34]; predictor-corrector
proximal multiplier [4], [32], etc. We are also interested in
studying formulations and conditions for the exact convex
relaxation of OPF in multiphase radial networks, which is
generally believed to be a hard problem.
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