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The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon.
Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. How-
ever, changingamaterial’s structureby applying tensionundernegativepressure ismuchmoredifficult.We showhow
negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures—a general
approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy
to mix low-density structures than high-density structures, due to less competition for space between the atoms.
Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a
Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower
electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that
none of the parent compounds have. This example shows howheterostructural alloying can lead to negative-pressure
polymorphs with useful properties—materials that are otherwise nearly impossible to make.
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INTRODUCTION
Polymorphism is the ability of amaterial to adoptmultiple crystal struc-
tures, often with different properties. This natural phenomenon is so
interesting that it has been featured in popular fiction, for example
“ice-nine” from Kurt Vonnegut’s Cat’s Cradle (1). Polymorphism has
also long fascinated researchers in various fields of science and technol-
ogy. For example, mineral polymorphs can be used in geology to study
temperature andpressure conditions long after ameteor impact (2), and
the performance of drugs strongly depends on the conformation of the
molecules in the pharmaceutical industry (3). The classical examples in
solid-state chemistry include different properties in allotropes of carbon
(inexpensive soft metal graphite versus expensive hard insulator dia-
mond) (4) and varying photocatalytic activity in rutile versus anatase
polymorphs of titanium dioxide (5).

Targeted synthesis of specific polymorphs remains a significant chal-
lenge in materials science (6). High-pressure synthesis is commonly
used to stabilize high-density polymorphs with unique structure and
properties, such as the optically transparent allotrope of sodium (7)
or rocksalt (RS)–like polymorph of zinc oxide (8). In contrast, lower-
density structures are much more difficult to access due to the inability
to apply large enough tensile force [“negative pressure” (9)] to change
thematerial structure. One technique that has been successfully used to
achieve large negative pressure is thin-film epitaxy (10). However, this
physical method can only apply tensile strain in two dimensions and,
hence, is limited by a small critical film thickness of up to 10 to 100 nm
(11). (Electro)chemical ion extraction or ion-exchange methods to
achieve low-density materials are substrate-agnostic but are limited to
small mobile atoms (for example, Li, Na, and Ne) and specific open
structures (for example, Si, Ge, or H2O ice clathrates) (12, 13). Increas-
ing the atomic volume of the material by isoelectronic alloying with
larger ions [also known as “chemical pressure” in Fe-based supercon-
ductors (14)] and annealing the low-density precursors at high tem-
perature [for example, in oxide perovskites (15)] can tune thematerial’s
properties, but without the ability to switch to a different lower-density
crystal structure. It is likely thatmany newmaterials with useful proper-
ties would be discovered, if conditions equivalent to negative pressure
could be realized.

In our recent publication (16), we have theoretically shown that
mixing two compounds with different crystal structures (“heterostruc-
tural alloying”) using nonequilibrium thin-film synthesis techniques
can be used to access a broad range of chemical compositions, where
no composition fluctuations or phase segregation occurs. This finding
opened up new possibilities for designing materials functionality, as
demonstrated for optoelectronic properties of Mn1−xZnxO alloys (17)
and thermoelectric properties of Sn1−xCaxSe alloys (18). Here, we show
that heterostructural alloying can be used to make materials that are
stable only under large negative pressure and that such “negative-pressure
polymorphs” can have unique properties that the parent compounds do
not have. The present analysis goes well beyond the previous work, be-
cause it shows that, in addition to tuning structure and properties, het-
erostructural alloying can be used to synthesize new materials that are
very dissimilar from the parent compounds and that are not possible to
synthesize in any other way.
RESULTS
Thermodynamic and kinetic stability model
Consider amodel compound Awith three polymorphs a, b, and gwith
different polymorph energies DEA at different equilibrium atomic
volumesV. As illustrated in Fig. 1A, at ambient pressure, the lowest en-
thalpy structure isa, and the twohigher-enthalpy structures are b and g.
The a and b polymorphs are examples of high-density structures with
smaller atomic volume, whereas g represents a lower-density structure
with larger atomic volume. Although high-pressure synthesis can be
used to stabilize the high-density b polymorph of material A, access
to its lower-density g polymorph is limited by the inability to apply nega-
tive pressure.
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However, in an alloy, the polymorph enthalpy DH depends not
only on the formation enthalpy and the atomic volume but also on
the enthalpic cost to mix the alloy constituents DHmix(x). Thus, for a
polymorph a in an alloy system A1−xBx, the enthalpy DHa(V,x) can
be calculated as

DHaðV ; xÞ ¼ DHmix;aðxÞ þ DHvol;aðVÞ ð1Þ

with

DHmix;aðxÞ ¼ DHpoly;aðxÞ þ DHW;aðxÞ ð2Þ

Here,DHpoly, a(x) = (1− x)DEA,a + xDEB,a is the ideal component of
the mixing enthalpy, determined as the polymorph energy interpolated
between the end-member compounds; DHW,a(x) = Wa x(1 − x) is the
nonideal component of the mixing enthalpy arising from interactions
between dissimilar substituents of the alloy, with the interaction
parameter Wa quantifying the enthalpic strength of these interactions
and the resulting bowing of the mixing enthalpy; and DHvol(V) is the
energetic contribution from volume changes (see the Supplementary
Materials for details). Figure 1A shows the DH(V) projection of DH(V,x)
for the three considered polymorphs at x= 0, and Fig. 1B shows theDH(x)
projection of DH(V,x) for the equilibrium volume of the respective
phase at each composition.

The nonideal component of mixing enthalpy DHW(x) depends on
the crystal structure of the alloy: Lower-density structures tend to have
smaller alloy interaction parameters W owing to less competition for
space between the atoms [that is, less steric hindrance (19)]. In turn,
the evolution of the enthalpy as a function of composition is different
for each polymorph, with the lower-density structure showing a smaller
Siol et al., Sci. Adv. 2018;4 : eaaq1442 20 April 2018
bowing of the mixing enthalpy. Consequently, as shown in Fig. 1B, the
metastable lower-density g polymorph can become themost stable solid
solution structure at intermediate concentrations in an alloy system
A1−xBx. This general analysis indicates that heterostructural alloying
should provide a route to negative-pressure polymorphs with lower-
density structures.

At absolute zero temperature (T = 0 K) depicted in Fig. 1, stabi-
lization of the g polymorph at A1−xBx composition would also require
a kinetic barrier that prevents its decomposition into the a polymorph
of compound A and the b polymorph of compound B. However,
at more realistic synthesis temperatures, the stability of polymorphs
is defined by their Gibbs free energy DG = DH − TDS, where DH is
the enthalpy discussed above and DS is the entropy. Therefore, in re-
ality, the lowest-enthalpy g polymorph at A1−xBx composition would
be further stabilized by the increased configurational entropy of the
alloy with respect to the pure compounds A and B. The configura-
tional (DSconf) and vibrational (DSvibr) entropy terms of the alloys are
likely to be similar among the different polymorphs, such that the dif-
ferences in free energy DG are dominated by the differences in en-
thalpies DH.

Figure 1C summarizes the dependence of the alloy enthalpyDH(V,x)
on both chemical composition x and atomic volume V for the three
considered polymorphs. Selecting the minimum enthalpy DHmin(V,x)
among the three polymorphs for each coordinate (V,x), the basins of
attraction can be drawn as shown on gray scale in Fig. 1C, highlighting
how the g polymorph becomes energetically favorable for interme-
diate alloying concentrations. This heterostructural alloying method
to achieve negative-pressure polymorphs does not require impractically
large tensile strains unlike mechanical methods and is not limited by
critical film thickness and the choice of substrate unlike epitaxial
methods.
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Fig. 1. Stabilization of negative-pressure polymorphs in heterostructural alloys. (A) Schematic illustration of a-, b-, and g-polymorph enthalpies DH as a function of
their respective atomic volume V and polymorph energies DEA for a model compound A. Stabilization of lower-density polymorph g would require negative pressure (p = −∂H/
∂V < 0). (B) Polymorph enthalpies as a function of the alloying composition x in an alloy system A1−xBx at equilibrium volume. Because of a smaller nonideal component of the
mixing enthalpy DHW,g < DHW,a, the lower-density g polymorph can become energetically favorable for intermediate alloying concentrations, if entropic stabilization or kinetic
barriers prevent phase separation into a and b. (C) Grayscale projection of the minimum enthalpy DHmin(V,x) among the considered polymorphs outlines the basins of
attraction for the three considered structures. The smaller bowing of the g-polymorph enthalpy enables the stabilization of this high-volume structure by controlling the
alloying concentration. a.u., arbitrary units.
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Composition and crystal structure
To demonstrate how heterostructural alloying can lead to negative-
pressure polymorphs,we predicted and synthesized theMn(Se,Te) alloy
with a previously unreported low-density structure. The MnSe-MnTe
materials system was chosen because according to theoretical calcu-
lations (see table S1), the wurtzite (WZ), RS, and nickeline (NC)
structures for both MnSe and MnTe are energetically close (differ-
ences, <30 meV per atom). Notably, the WZ structure has an almost
30% larger atomic volume compared to that of the RS and NC struc-
tures. According to experimental literature, MnSe is most stable in the
cubic low-volume RS-type structure, whereas other polymorphs could
be experimentally realized by epitaxial growth (20) and in colloidal
nanoparticles (21). MnTe crystallizes in the hexagonal low-volume
NC-type structure (a-MnTe), whereas, at higher temperature and pres-
sure, it forms in RS-type structures (b-MnTe) (22). Taking into account
these MnSe and MnTe polymorph orderings from experimental lit-
erature, and the close calculated spacing of polymorph enthalpies
(table S1), the design principle outlined in Fig. 1 would predict that
the high-volume WZ structure may become energetically favorable
for intermediate Mn(Se,Te) alloying concentrations, creating effective
negative-pressure conditions. The loss of crystal inversion symmetry
going from NC-type MnTe and RS-type MnSe structures to the WZ-
type Mn(Se,Te) structure should enable new functionality, such as the
piezoelectric response. The resulting optoelectronic properties of the
WZ-Mn(Se,Te) alloys are also expected to differ from the parent RS-
MnSe and NC-MnTe compounds due to the larger atomic volume and
different atom coordination environments (tetrahedral in WZ versus
octahedral in RS and NC).

To determine how the minimum enthalpy of Mn(Se,Te) varies
with volume and composition (Fig. 1C), we performed first-principles
calculations of the RS, WZ, and NC polymorph enthalpies and their
Mn(Se,Te) alloy interaction parameters (see table S1 for the results).
Because standard density functional theory (DFT) often finds in-
correct ground states in transition metal compounds (23), we used
calculations in the random phase approximation (RPA) (24), includ-
ing a wave function optimization approach (see the Supplementary
Materials for computational details) (25). Figure 2A shows on the
color scale the lowest enthalpy among the three considered poly-
morphs as a function of the atomic volume (y axis) and the alloy con-
centration (x axis), calculated using the Murnaghan equation of
state. We find that the evolution of the minimum enthalpy DHmin as
a function of composition and volume is largely governed by the
difference in bowing DHW of the alloy mixing enthalpies DHmix, rather
than the small differences from the compound polymorph enthal-
pies DHpoly (table S1), which is consistent with Fig. 1. TheWZ struc-
ture shows a much smaller bowing DHW, which is caused by the
lower steric interactions of the substituents in the higher-volume
structure; that is, the WZ structure has smaller alloy interaction
parameters W than RS and NC structures. For intermediate alloying
concentrations, the high–atomic volumeWZ-typeMnSe1−xTex poly-
morph [WWZ = 81 meV/f.u. (formula unit)] becomes energetically
favorable compared to the two low–atomic volume structures of
the parent RS-type MnSe and NC-type MnTe compounds (WRS =
173 meV/f.u., WNC = 166 meV/f.u.), similar to the situation concep-
tualized in Fig. 1B. In the case of Mn(Se,Te), an enthalpy difference
DH of 10meV per atom is observed for an alloying concentration of x =
0.5. This enthalpy difference creates a thermodynamic driving force
toward the lower-density, high–atomic volumeWZ-type polymorph,
which should facilitate its synthesis.
Siol et al., Sci. Adv. 2018;4 : eaaq1442 20 April 2018
To synthesize the predicted WZ-Mn(Se,Te) polymorph, high-
throughput combinatorial thin-film experiments (26) were carried
out. Figure 2B shows the resulting structure-composition relation-
ship for thin films deposited at 320°C on glass substrates and cooled
to room temperature at a rate of ~30°C/min. According to x-ray dif-
fraction (XRD), the MnSe films crystallize in an RS structure, the
MnTe films crystallize in an NC structure, and the respective peaks
shift with increasing alloying concentration x. For intermediate com-
positions, a strong additional peak is observed at 2q = 26°, whereas
theNC and the RS peaks decrease in intensity. Extrapolating the sim-
ulated (002) peak of the calculated hypothetical MnSe (2q = 27°) and
MnTe (2q = 25°)WZ structures according to Vegard’s law and using
the disappearing phase method (27), it can be concluded that the
WZ-Mn(Se,Te) structure is present for 0.31 < x < 0.75 compositions.
High-resolution XRD measurements in a broad range of polar (or c)
angles performed at the Stanford Synchrotron Radiation Lightsource
(SSRL) (Fig. 3A) show all characteristic peaks of the WZ structure
and confirm that the low-density polymorphs were stabilized at the
MnSe0.5Te0.5 composition.

Figure 3B shows the fraction of theWZ phase as a function of sub-
strate temperature and alloying composition x, calculated by integrating
the area under the WZ, NC, and RS peaks in the 2q = 23.25° to 34.25°
range. At high temperature (500°C), a binodal decomposition of WZ-
typeMn(Se,Te) into RS-typeMnSe andNC-typeMnTe is observed (see
fig. S1), with phase boundaries that are in agreement with previous
results in the literature (28). At a lower synthesis temperature (300°
to 400°C), this decomposition must be kinetically hindered, because
the majorityWZ phase with minority RS and NC impurity peaks is ob-
served. Thus, it appears that at these lower synthesis temperatures and
relatively slow cooling rates (~30°C/min), theWZ-Mn(Se,Te) negative-
pressure polymorph is stabilized by both thermodynamic driving force
Fig. 2. Stabilization of the WZ polymorph of the Mn(Se,Te) alloy. (A) Calculated
minimum enthalpy DHmin of MnSe1−xTex alloys on the color scale as a function of
volume V and composition x. For intermediate compositions, the higher-volume
WZ structure becomes energetically favorable compared to lower-volume RS and
NC structures, like under negative-pressure conditions. (B) Measured false-color plot
of XRD intensities as a function of composition for the MnSe1−xTex films deposited
at 320°C. For intermediate compositions, the Mn(Se,Te) films crystallize mostly in
the WZ structure, whereas the MnSe and MnTe parent compounds crystallize in
RS and NC structures.
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http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

D

toward its low-density structure and kinetic barriers that prevent its
decomposition into constituent RS-MnSe andNC-MnTe phases, as hy-
pothesized in Fig. 1B. To achieve thermodynamic stability of the WZ-
Mn(Se,Te) negative-pressure polymorph with respect to RS-MnSe and
NC-MnTe, by both enthalpic and entropic contributions to the Gibbs
free energy, higher synthesis temperatures and faster quenching rates
would be needed.

Properties and potential applications
Next, we show that the nonmonotonic changes in physical properties
of the resultingWZ-MnSe0.5Te0.5 heterostructural alloys (Table 1) are
distinct from the conventional case of isostructural alloying (for exam-
ple, zincblendeZnS1−xSex). Themost remarkable change in theproperties
is the emergence of the piezoelectric response in the WZ-MnSe0.5Te0.5
alloy that is not present in either of the RS-MnSe or NC-MnTe parent
compounds. Our theoretical calculations predict an effective piezo-
electric coefficient d33 of 9.54 pm/V for the WZ-MnSe0.5Te0.5 alloys,
and no piezoelectric response for the end-member compounds with
Siol et al., Sci. Adv. 2018;4 : eaaq1442 20 April 2018
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NC and RS crystal structures. Qualitative piezo force microscopy
(PFM) imaging onWZ-MnSe0.5Te0.5 thin films shows an abrupt change
in the polarity of the film across the domain boundaries, confirming
the piezoelectric response of the material (fig. S2). Quantitative PFM
measurements of the WZ-MnSe0.5Te0.5 samples as a function of bias
voltage calibrated by the BiFeO3 reference samples place the esti-
mated d33 in the range from 1.5 to 11 pm/V, consistent with the value
obtained from the theoretical calculations. These values are in the same
order of magnitude as the piezoelectric coefficients for x-cut quartz
(2.2 pm/V), and c-axis–oriented AlN (4.9 pm/V) or ZnO (9.9 pm/V),
placing WZ-MnSe0.5Te0.5 alloys among the few simple lead-free piezo-
electric materials known to date. These materials are of importance for
sensors and actuators in telecommunication components and formany
other industrial applications.

In addition to piezoelectric response, theWZ-MnSe0.5Te0.5 alloys al-
so have different optoelectronic properties compared to RS-type MnSe
and NC-type MnTe parent compounds (Fig. 4). Theoretically, density-
of-states (DOS) calculations show that the electron effectivemassme* is
reduced by 2×–4× from 0.78–1.26 m0 to 0.30 m0, whereas the hole
effective massmh* for the alloy remains approximately unaltered (1.5
to 1.8 m0). Materials with low effective masses and high mobilities are
important formany electronic applications, such as transistors. In addi-
tion, the calculated optical band gap of WZ-type MnSe0.5Te0.5 alloys
(2.70 eV) is wider than that for both NC-type MnTe (1.45 eV) and RS-
typeMnSe (2.50 eV), consistent with optical and electrical experimental
measurements (fig. S3). These band gaps and effective masses make
WZ-MnSe0.5Te0.5 alloys interesting as contact material for thin-film
solar cells. Good semiconductor properties of the negative-pressure
polymorphs also might be of interest in thermoelectric energy conver-
sion, where low thermal conductivities of low-density structures are
desirable. MnTe-SnTe alloys in RS structures have been recently de-
monstrated to have large thermoelectric figures of merit (29), which
may be further enhanced in WZ-based alloys with lower thermal
conductivities.

To explain the differences in electronic properties with the changes
in crystal structure, we turn to the DOS calculations (Fig. 4). The sixfold
coordination in RS andNC structures causes stronger hybridization be-
tween the Mn d-states and the Se or Te p-states than in the fourfold
coordinatedWZ structure. These stronger interactions of theMn states
with eg symmetry create bonding and antibonding energy shoulders
around the main t2g peaks, thereby increasing effective masses, both
Fig. 3. Experimental crystal structure analysis of MnSe1−xTex alloys. (A) Synchro-
tron XRD measurements of MnSe0.5Te0.5 thin films grown on glass at 320°C substrate
temperature [black circle with white boarder in (B)] confirm the stabilization of the
high-enthalpy, low-density WZ polymorph. Trace amounts of MnTe NC (*) and MnSe
RS (#) could be present in the film. The top and the bottom panels show the simu-
lated XRD patterns of MnSe and MnTe in WZ and other structures, and the dashed
lines are extrapolations of the WZ peaks. (B) Color-scale map of the WZ phase frac-
tion for the sputter-deposited MnSe1−xTex thin films on glass. For intermediate com-
positions and lower deposition temperatures, the MnSe1−xTex films crystallize
predominantly in the WZ structure with some RS- and NC-type impurities. Shaded
areas represent single-phase regions of RS-MnSe and NC-MnTe determined by the
disappearing phase method.
Table 1. Properties for the WZ-type MnSe0.5Te0.5 alloys compared to the
RS-type MnSe and NC-type MnTe parent compounds. Listed are the
calculated direct (d) or indirect (i) electronic band gaps (Eg

el), the hole and
electron effective masses (me* and mh*), the calculated and measured
piezoelectric coefficient (d33), and experimentally determined values for the
optical band gaps (Eg

opt). The results of experimental measurements of
piezoelectric response and electrical resistivity are provided in figs. S2 and S3.
Materials

d33

(pm/V)

d33

(pm/V)
m
e*/m0
 mh*/m0
Eg
el

(eV)

Eg

opt

(eV)
Polymorph
 Theory E
xperiment
 Theory
 Theory
 Theory E
xperiment
RS-MnSe
 —
 —
 0.78
 1.57
 2.52 (i)
 2.50
WZ-MnSe0.5Te0.5
 9.54
 1.5–11
 0.30
 1.80
 2.71 (d)
 2.70
NC-MnTe
 —
 —
 1.26
 1.54
 0.98 (i)
 1.45
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in the valence band (VB) and in the conduction band, and reducing the
band gaps. The increase in hole effective masses is counteracted by
increased dispersion close to the VBmaximum (~0.2 eV) due to strong
p-d interaction, similar to MnO (30). The net result of these two com-
peting effects is the wider band gap and the smaller electron effective
mass in the tetrahedrally bonded WZ-Mn(Se,Te) alloy, compared to
those in the octahedrally bonded RS-MnSe and NC parent compounds
(Table 1). This coordination and symmetry analysis of the electronic
structure provides a useful insight into the design of transition metal
compounds with favorable semiconductor properties. Besides opto-
electronic and piezoelectric applications, WZ-Mn(Se,Te) alloys may
also be of interest for magnetic memory applications, where NC-
MnTe has been recently studied (31).
DISCUSSION
We have shown how negative-pressure polymorphs can be made using
heterostructural alloying. These low-density structures can be stabi-
lized at intermediate alloy composition due to a lower bowing of the
mixing enthalpy compared to high-density structures (Fig. 1), which
should work equally well for both low-temperature thin films and
high-temperature bulkmaterials. The low bowing of themixing enthalpy
results from less competition for space between the atoms in the low-
density structures. As a proof of principle, we have calculated and syn-
thesized metastable WZ-type Mn(Se,Te) polymorph with high atomic
Siol et al., Sci. Adv. 2018;4 : eaaq1442 20 April 2018
volumes (Fig. 2) by alloying RS-type MnSe and NC-type MnTe com-
pounds with low atomic volumes in thin-film form (Fig. 3). The change
in structure from RS/NC type toWZ type led to the emergence of the
piezoelectric effect that does not exist in the parent compounds (Table 1)
and to a combination of optical band gaps and effective masses suitable
for photovoltaic contact applications (Fig. 4). In addition to optoelec-
tronics and piezoelectrics, the new WZ-Mn(Se,Te) material may be
used in magnetic memory and thermoelectric applications.

Mixing two materials with different crystal structures remains a
rather unexplored area in ceramic conductor (32) and semiconductor
(16) alloys, where the energy scale of polymorph energies andmixing en-
thalpies are usually much higher than those in metal alloys (33). The
results of this work go well beyond the previously published studies on
semiconductor heterostructural alloying (16–18) because, here, an
entirely new third material [WZ-Mn(Se,Te)] has been discovered
at intermediate alloy compositions, under conditions equivalent to
effective negative pressure. The nonmonotonic changes of properties
discussed here also make these heterostructural semiconductor al-
loys distinct from isostructural semiconductor alloys used to contin-
uously tune properties for optoelectronic applications (for example,
III-V alloys for light-emitting diodes and solid-state lasers).

It is likely that the heterostructural alloying approach can be ex-
tended tomany other material systems, where high-enthalpy structures
with desired functionalities are predicted to be stable at negative pres-
sures, opening a virgin phase space to design newmaterials for electronic
applications. For example, high-throughput computational databases
[for example, NRELMatDB (https://materials.nrel.gov/) or Materials
Project (https://materialsproject.org/)] could be screened for other II-VI
and III-V material combinations, where a crossover of polymorph
mixing enthalpies is predicted because of a specific polymorph ordering
(Fig. 1B). As shown in this study, it is also likely that such crossovers can
occur because of the large differences in the bowings of mixing enthal-
pies for different polymorphs, even in the absence of substantial poly-
morph enthalpydifferences.Abroadmaterial screening studyusing these
selection criteriawould likely allow access to useful properties in numer-
ous other negative-pressure polymorphs that are otherwise nearly im-
possible to make.
MATERIALS AND METHODS
Experiments
High-throughput combinatorial experiments (26) were used as a time-
efficient way to investigate the composition-temperature synthesis phase
space of theMnSe-MnTematerials system. By applying intentionalmu-
tually orthogonal gradients in deposition temperature and chemical
composition across the substrates during thin-film synthesis (34), many
values of these deposition parameterswere covered in a single experiment.
Several thin-film combinatorial libraries were deposited on amorphous
glass substrates using radio-frequency co-sputtering from ceramic MnSe
and MnTe targets to cover a broad range of deposition temperatures
and alloy compositions, ruling out potential effects from lattice mis-
match and thermal stress on WZ phase stabilization. Each library was
analyzed at 44 sample positions via spatially resolved x-ray fluorescence
and XRD for their chemical composition and crystal structure. The op-
toelectronic properties were mapped using ultraviolet-visible optical
transmission, four-point probe sheet resistance, and Seebeck measure-
ments (35). A more detailed description of these combinatorial exper-
imental methods, as well as single-point synchrotron XRD and PFM
analysis, can be found in the Supplementary Materials.
Fig. 4. Theoretical electronic and crystal structures of the Mn(Se,Te) materials.
(A) MnSe in the RS crystal structure, (B) MnSe0.5Te0.5 in the WZ crystal structure, and
(C) MnTe in the NC crystal structure. The larger band gap and smaller electron effective
mass of the WZ-Mn(Se,Te) alloy result from weaker p-d hybridization of the Mn d-states
of eg symmetry with the Se,Te p-states. In turn, the weaker hybridization is caused by
tetrahedral coordination of the lower–atomic density WZ structure compared to the
octahedral coordination of the RS-MnSe and NC-MnTe structures.
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Computations
To computationally model the alloys, the special quasi-random struc-
ture (SQS) method (36) was used to generate ideally random alloy
structures for each phase and composition. The alloy mixing enthalpy,
bowings, and interaction parameter calculations were performed using
128-atom SQSmodels. These energies, as well as piezoelectric and elas-
tic properties, were calculated in DFT + U with U = 3 eV for Mn-d or-
bitals, using theVASP (ViennaAb initio Simulation Package) code (37).
Calculations of the elastic tensors (Ckj) were performed using the stress-
strain method (38), and the piezoelectric responses (eij) were computed
within the density-functional perturbation theory formalism (39); the
reported piezoelectric tensor component (d33) was determined from
the tensor relationeij ¼ ∑k dikCkj. The polymorph enthalpies of the par-
ent compounds were computed using the RPA (24) with a variational
optimization of the wave function that correctly recovers the Mn-d/
anion-p hybridization (25) of eachMnSe andMnTe polymorph, taking
into account zero-point energy corrections. The Green’s Function
(GW) based calculations were performed as described by Peng and
Lany (30). Additional details of the computational methods used in
this work are available in the Supplementary Materials.
http://advances.science
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Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/eaaq1442/DC1
Supplementary Methods
Supplementary Additional Results
table S1. Polymorph energies from DFT and RPA calculations and the magnitude of zero-point
energies from the QHA.
fig. S1. Detailed XRD study performed on MnSe0.5Te0.5 grown on indium tin oxide (ITO)–coated
Eagle XG glass.
fig. S2. PFM measurements of a WZ-MnSe0.5Te0.5 film grown on conductive ITO substrate.
fig. S3. Optoelectronical characterization of Mn(Se,Te) alloys.
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