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DYNAMIC ADMM FOR REAL-TIME OPTIMAL POWER FLOW

Yijian Zhang1, Emiliano Dall’Anese2, and Mingyi Hong1

1Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
2National Renewable Energy Laboratory, Golden, CO 80401, USA

ABSTRACT
This paper considers distribution networks featuring distributed
energy resources (DERs), and develops a dynamic optimization
method to maximize given operational objectives in real time while
adhering to relevant network constraints. The design of the dy-
namic algorithm is based on suitable linearization of the AC power
flow equations, and it leverages the so-called alternating direction
method of multipliers (ADMM). The steps of the ADMM, however,
are suitably modified to accommodate appropriate measurements
from the distribution network and the DERs. With the aid of these
measurements, the resultant algorithm can enforce given operational
constraints in spite of inaccuracies in the representation of the AC
power flows, and it avoids ubiquitous metering to gather the state of
noncontrollable resources. Optimality and convergence of the pro-
posed algorithm are established in terms of tracking of the solution
of a convex surrogate of the AC optimal power flow problem.

1. INTRODUCTION

This paper focuses on real-time management of distributed energy
resources (DERs) in distribution systems. Notwithstanding the vari-
ability of ambient conditions and noncontrollable energy assets [1],
real-time optimization methods can adjust the power setpoints of the
DERs on a second or subsecond level to maximize the performance
objectives and systematically enforce operational constraints. Chal-
lenges in this context are related to computational and logistic con-
siderations, which render infeasible solution of optimization prob-
lems such as the AC optimal power flow (OPF) on a second or sub-
second timescale [2].

In lieu of a batch solution approach, dynamic (sometimes also
referred to as “online”) algorithms for real-time optimization of
power systems are proposed in [3–6], where measurements of the
output powers of given devices were used as a proxy for optimiza-
tion variables in primal-dual-type methods. A similar approach was
explored in [7], where a centralized controller was developed based
on projected-gradient methods, and in [8], where the alternating
direction method of multipliers (ADMM) [9, 10] was utilized for
the design of a distributed online algorithm. Recently, a projected-
gradient method on the (static) power flow manifold was proposed
in [11],a projected-gradient method on the power flow manifold was
proposed in [11,12], while a real-time algorithm for relaxed AC OPF
problems based on quasi-Newton methods was developed in [13].
A distributed dynamic algorithm based on primal-dual methods
and double-smoothing techniques [14] was developed in [15]; volt-
age measurements were embedded in the primal and dual steps to

This work was supported by the Laboratory Directed Research and De-
velopment Program at the National Renewable Energy Laboratory. The work
of E. Dall’Anese was also supported by the Advanced Research Projects
Agency-Energy (ARPA-E) under the Network Optimized Distributed Energy
Systems (NODES) program.

enforce voltage constraints in spite of inaccuracies in the represen-
tation of the AC power flows. Convergence was established in terms
of tracking of solutions of a time-varying linearized AC OPF.

In this paper, we start from the formulation of a time-varying
linearized AC OPF problem capturing a variety of DER-oriented ob-
jectives as well as voltage constraints. We also consider constraints
on the active power at the point of coupling, in line with the emerg-
ing vision of feeders providing ancillary services to the grid [16–18].
We then design a dynamic algorithm by leveraging the ADMM. The
steps of the ADMM, however, are suitably modified to accommo-
date appropriate measurements from the distribution network and
the DERs. With the aid of these measurements, the resultant al-
gorithm can enforce operational constraints in spite of inaccuracies
in the representation of the AC power flows, and it avoids pervasive
metering to collect measurements of the state of non-controllable as-
sets. Convergence of the propose algorithm are established in terms
of tracking of the solution of a linearized AC OPF problem.

Overall, we extend our previous work [8] by i) incorporating
voltage and power flow measurements into the ADMM iterations,
and ii) providing convergence results in terms of tracking of the so-
lution of a time-varying optimization problem. Relative to [15], the
proposed approach enables one to establish convergence without as-
suming Lipschitz continuity of the gradient of the objective function.

2. PROBLEM FORMULATION

Consider a (portion of a) distribution network with N + 1 nodes
collected in the set N ∪ {0}, where 0 denotes the point of coupling
with the rest of the grid. Assume that temporal domain is discretized
as t = kτ , k ∈ N and τ > 0. At time kτ , define the vector ik :=
[Ik1 , . . . , I

k
N ]> ∈ CN , where Ikn denotes the phasor of the current

injected at node n. Let vk := [V k1 , . . . , V
k
N ]> ∈ CN , where V ki =

|V ki |∠θi ∈ C denotes the voltage phasor at node i, where V k0 ejθ0
is the slack-bus voltage with V k0 denoting the voltage magnitude.
Let P ki + jQki denote the setpoints of DER i ∈ ND , and define
uki := [P ki , Q

k
i ]> for brevity. Similarly, let P kl,i + jQkl,i denote the

(non-controllable) net power demanded at node i ∈ N and dki :=
[P kl,i, Q

k
l,i]
>. Based on Kirchhoff’s Current Law and Ohm’s Law we

can establish the following linear relationship:[
Ik0
ik

]
=

[
yk00 (ȳk)>

ȳk Yk

] [
V k0 e

jθ0

vk

]
, (1)

where submatrices Yk ∈ CN×N , ȳk ∈ CN×1, yk00 ∈ C are formed
based on the system topology and π-equivalent model of the distri-
bution lines (see e.g. [19]).

At time kτ a prototypical AC OPF formulation is given as fol-
lows:
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min
{v,i,Pi,Qi}

∑
i∈ND

fki (Pi, Qi) (2a)

s.t. i = Ykv, (2b)

ViI
∗
i = Pi − P kl,i + j(Qi −Qkl,i), ∀i ∈ ND, (2c)

ViI
∗
i = −P kl,i − jQkl,i, ∀i ∈ NO, (2d)

V min ≤ |Vn| ≤ V max, ∀n ∈M, (2e)

(Pi, Qi) ∈ Yki , ∀i ∈ ND, (2f)

where ND and NO denote a subset of nodes with or without DER
inverters, respectively;M denotes a subset of nodes where measure-
ments of the voltage magnitudes can be obtained, Yki is a convex
compact set modeling the operational constraints of the DER i; and,
V min and V max denote the minimum and maximum voltage service
limits. Finally, the time-varying function fki (Pi, Qi) is assumed to
be strongly convex and it specifies customer-oriented performance
objectives (e.g. cost or reward for ancillary service provisioning).
Problem (2) will be modified in Section 3.2 to account for additional
operational objectives.

Problem (2) is a time-varying nonconvex optimization problem.
Solving (P1)(k) in batch fashion at each time k is impractical because
of the following two main challenges:
c1) For real-time implementations (e.g., when τ is on the order of a
second or subsecond), it might be unfeasible to solve (2) to conver-
gence.
c2) Solving (2) requires collecting measurements of the noncontrol-
lable loads at all locations in real time.

To address these challenges, we first leverage appropriate lin-
earizations of the AC power-flow equations [20–22] to formulate a
convex surrogate of (2). We will then design a feedback-based dy-
namic ADMM method that produces provably-optimal setpoints for
DERs, while coping with approximation errors and avoiding ubiqui-
tous monitoring.

3. ADMM-BASED REAL-TIME OPF

We leverage the following approximate linear relationship between
voltage magnitudes and net injected power:

|V kn | ≈
∑
i∈ND

[rkn,i(Pi − P kl,i) + bkn,i(Qi −Qkl,i)] + ākn (3a)

ākn := akn −
∑
i∈N

(rkn,iP
k
l,i + bkn,iQ

k
l,i), (3b)

where the model parameters R = [rn,i] ∈ RN×N ,B = [bn,i] ∈
RN×N , and ak = [akn] ∈ RN can be derived as shown in e.g., [20–
22]. Using (3), a convex surrogate of (2) can be formulated as fol-
lows:

min
p,q

∑
i∈ND

fki (ui) (4a)

s.t. gkn({ui}i∈ND ) ≤ 0, ∀n ∈M, (4b)

ḡkn({ui}i∈ND ) ≤ 0,∀n ∈M, (4c)

ui ∈ Yki , (4d)

where the inequality constraints (4b)–(4c) are given by:

gkn({ui}i∈ND ) = V min − ākn −
∑
i∈ND

(rkn,iPi + bkn,iQi) ≤ 0,

ḡkn({ui}i∈ND ) = ākn +
∑
i∈ND

(rkn,iPi + bkn,iQi)− V max ≤ 0.

To facilitate the development of a dynamic ADMM-based algo-
rithm, it is convenient to find a reformulation (or relaxation) of (4)
in the following form

min
x∈X ,y∈Y

h(x) + g(y) (5)

s.t. Ax+By = 0,

where h(·) and g(·) are strongly convex functions; the gradient ∇f
is Lipschitz continuous; and, the matrix A is full row rank. To this
end, one can utilize the following steps:
i) Add slack variables zn ≥ 0, yn ≥ 0 for (4b) and (4c);
ii) Transfer the nonnegative constraints zn ≥ 0 and yn ≥ 0 to the
objective using a max function;
iii) Use a smooth function h(·) to approximate the max function;
iv) Add a small term strongly convex w.r.t. z,y.
Using steps i)-iv), a relaxed version of (4) can be stated as follows:

min
p,q,z,y

ε(‖z‖2 + ‖y‖2) + γ(h(z) + h(y)) +
∑
i∈ND

fki (ui) (6a)

s.t. gkn({ui}i∈ND ) + zn = 0, ∀n ∈M, (6b)

ḡkn({ui}i∈ND ) + yn = 0, ∀n ∈M, (6c)

ui ∈ Yki , ∀i ∈ ND

where ε > 0 is set to be a very small constant, γ > 0 is set to be a
large constant so as to enforce nonnegativity of the slack variables,
and the smooth approximation h(x) = (. . . ;h(xn); . . . ) can take
the following form (a > 0 is a given constant that close to 0)

h(xn) =


−xn, xn ∈ (−∞,−a],
−1
4a

(xn − a)2, xn ∈ [−a, a],

0, xn ∈ [a,+∞) .

Problem (6) is a time-varying convex optimization problem. In
the following section, we will develop a feedback-based dynamic
ADMM method to track the optimal solution of (6) over time. With
the aid of appropriate measurements, voltage constraints will be en-
forced even if we rely on an approximate power flow model.

3.1. Algorithm

Consider the following augmented Lagrangian function

L(u, z,y;λ, µ) = ε
∑
n∈M

(‖zn‖2 + ‖yn‖2)

+ γ
∑
n∈M

(h(zn) + h(yn)) +
∑
i∈ND

fki (ui)

+
ρ

2

∑
n∈M

(gkn({ui}i∈ND ) + zn +
λn
ρ

)2

+
ρ

2

∑
n∈M

(ḡkn({ui}i∈ND ) + yn +
µn
ρ

)2,

where λn, µn are the Lagrangian multipliers associated with (6b)–
(6c) and ρ > 0 is a given constants. Assume, for now, that functions
fki (ui), i ∈ ND are differentiable. Relative to standard ADMM im-
plementations [9, 10], the proposed approach involves the following
three modifications in order to enable a distributed implementation,
avoid pervasive metering to collect measurements of {P kl,i, Qkl,i} at
each time k, and cope with approximation errors:
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(m1) Let |V̂ kn | denote a measurement of the voltage magnitude |V kn |.
Then, in the steps of the ADMM, replace gkn and ḡkn with the follow-
ing measurement:

gkn({ui}i∈ND )↔ V min − |V̂ kn |,

ḡkn({ui}i∈ND )↔ |V̂ kn | − V max.

(m2) Since the optimization variables pertaining to different DERs
are coupled in the augmented Lagrangian, it is not possible to dis-
tributed the update {P ki , Qki } across DERs. This, we propose to
update {P ki , Qki } based on the following projected-gradient step:

(
P ki
Qki

)
= projYk

i

(
P k−1
i − α ∂L

∂Pi
|
Pk−1
i ,Qk−1

i

Qk−1
i − α ∂L

∂Qi
|
Pk−1
i ,Qk−1

i

)
(7)

where projY(x) := arg miny∈Y ‖y − x‖2 denotes projection onto
the convex set Y and:

∂L
∂Pi

=
∂fk−1

i

∂Pi
+ ρ

∑
n∈M

(−rk−1
n,i )(V min − |V̂ k−1

n |+ zn +
λn
ρ

)

+ ρ
∑
n∈M

rk−1
n,i (|V̂ k−1

n | − V max + yn +
µn
ρ

) (8)

∂L
∂Qi

=
∂fk−1

i

∂Qi
+ ρ

∑
n∈M

(−bk−1
n,i )(V min − |V̂ k−1

n |+ zn +
λn
ρ

)

+ ρ
∑
n∈M

bk−1
n,i (|V̂ k−1

n | − V max + yn +
µn
ρ

) . (9)

Notice that, based on (m1), the update (7) includes voltage measure-
ments instead of functions gkn and ḡkn.
(m3) Variables z,y are updated by setting the gradients of the aug-
mented Lagrangian with respect to zk,yk to 0:

∂L
∂zk

= 2εzk + γ∇h(zk) + ρ(V min1−|v̂k|+ zk +
λk−1

ρ
) = 0

∂L
∂yk

= 2εyk + γ∇h(yk) + ρ(|v̂k| − V max1 + yk +
µk−1

ρ
) = 0 .

Based on the specific choice of the parameters in h(·), a closed-form
solution can be derived.

With these modifications in place, the resultant algorithm is
summarized below.

Algorithm 1 Dynamic ADMM with feedback

At each time k = 1, 2, . . .:
[S1] For each i ∈ ND , update P ki , Q

k
i via (7) based on the most

up to date measurements.
[S2] Collect voltage measurements |V̂ kn |, n ∈M.
[S3] For each n ∈M, update auxiliary variables zkn, ykn.
[S4] For each n ∈M, update dual variables λkn, µkn as

λkn = λk−1
n + ρ(V min − |V̂ kn |+ zkn), n ∈M (10a)

µkn = µk−1
n + ρ(|V̂ kn | − V max + ykn), n ∈M. (10b)

Notice that the Algorithm 1 does not require one to collect in-
formation regarding the noncontrollable loads {P kl,i, Qkl,i, i ∈ N} at
each time k.

3.2. Adding operational constraints

As an illustrative example to show how to include additional op-
erational constraints, consider the case where setpoints for the real
power withdrawn from the point of coupling with the main grid are
specified and must be tracked over time [16, 17]. The active power
at the point of coupling can be expressed as P k0 = <{|V k0 |2(y∗01 +
y∗0) − V k0 (y∗01(V k1 )∗)} and it is nonlinearly related to the net pow-
ers injected in the rest of the network. However, we can utilize the
linear approximation of the AC power-flow equations of [22], e.g.,
P k0 (u) ≈

∑
i∈ND

(mk
i P

k
i + nkiQ

k
i ) + ck (see [22] for a detailed

derivation of mk
i , nki , and ck) to synthesize the ADMM-based algo-

rithm.
Denote as P k0,set the setpoint for P0 at time k, and consider the

following constraints:

h̄k(P0(u)− P0,set) ≤ Ek, h̄k(P0,set − P0(u)) ≤ Ek, (11)

where h̄k = 1 if the network is requested to follow the setpoint and
h̄tk = 0 otherwise, while Ek > 0 is a given tracking error. Con-
sider then adding slack variables τ and κ, and consider the following
problem formulation:

min
p,q,z,y

ε(‖z‖2+‖y‖2+ τ2+ κ2) + γ(h(z)+ h(y)+ h(τ) + h(κ))

+
∑
i∈ND

fki (ui) (12a)

s.t. gkn({ui}i∈ND ) + zn = 0,∀n ∈M, (12b)

ḡkn({ui}i∈ND ) + yn = 0, ∀n ∈M, (12c)

h̄k(P k0 (u)− P k0,set) + τ = Ek, (12d)

h̄tk (P k0,set − P k0 (u)) + κ = Ek, (12e)

ui ∈ Yki . (12f)

Based on (12), a dynamic ADMM-based algorithm can then be de-
rived by following the procedure outlined in Section 3.1. In par with
(m1), in the resultant algorithm the algorithmic quantity P k0 (uk) is
replaced with a measurement P̂ k0 of the power at the point of cou-
pling at time k. The algorithm is not presented for space limitations.

4. CONVERGENCE ANALYSIS

In this section, we provide analytical results for the convergence and
tracking capabilities of the dynamic algorithm. We focus our analy-
sis on the problem (12).

Since (12) is a time-varying problem, it is appropriate to intro-
duce the bounds ‖u∗,k+1−u∗,k‖ ≤ σu and ‖ηηη∗,k+1−ηηη∗,k‖ ≤ ση ,
where ηηη = (z,y, τ, κ), which capture the temporal variability of the
optimal solution of (12) (σu, ση are some constants). Further, we
indroduce the following assumptions to capture the temporal vari-
ability of the dual variables and to bound the measurement and ap-
proximation errors.

Assumption 1. There exists a constant 0 ≤ e ≤ +∞ so that the
measurement and approximation errors can be bounded for every n
and k as: ∣∣∣|V̂ kn | − gkn(uk)

∣∣∣ ≤ e, ∣∣∣|V̂ kn | − ḡkn(uk)
∣∣∣ ≤ e, (13)∣∣∣∣∣∣P̂ k0 −

∑
i∈ND

(mk
i P

k
i + nkiQ

k
i ) + ck

∣∣∣∣∣∣ ≤ e. (14)
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Assumption 2. There exists a constant σψ ≥ 0 such that

‖ψψψ∗,k+1 −ψψψ∗,k‖ ≤ σψ, (15)

where ψψψ = (λ, µ, ν1, ν2), and ν1, ν2 are the dual variables associ-
ated with (12d)–(12e).

In the spirit of [14], future efforts will establish conditions on
the variability of the primal problem that imply (15). Based on these
assumptions, the following result holds (the proof is omitted due to
space limitations).

Theorem 1. Define w := (ηηη;u;ψψψ) and let {wk} be the sequence
generated by Algorithm 1. Further, let w∗,k be an optimal solution
of (12) at time k. Then,

lim sup
k→∞

‖wk −w∗,k‖2 =
α(e)

1− r +
rβ(σ)

1− r , (16)

where 0 < r < 1, α(e) = ρe
ε

+ 4ρe + αρe
∑
i,n(rn,i + bn,i) and

β(σ) = σu + ση + σψ .

The result (16) bounds the maximum discrepancy between the
setpoints produced by Algorithm 1 and the time-varying optimizer
of (12) at any time k.

One of the advantages of ADMM compared to the double-
smoothing-based scheme in [15] (see also [14]) is that the conver-
gence claims are still valid when the functions fki (Pi, Qi), i ∈ ND ,
are nonsmooth. In this case, step (7) is replaced by a proximal
gradient step. For example, is function fi(Pi, Qi) takes the form
fi(Pi, Qi) = cqQ

2
i + c̄q|Qi| + cpP

2
i , the proximal-gradient step

boils down to:(
P k+1
i

Qk+1
i

)
= projYi

(
P ki − tk ∂L∂Pi

|Pk
i ,Q

k
i

softc̄q (Qki − lk ∂L
∂Qi
|Pk

i ,Q
k
i
)

)
,

where softx(y) = sign(y) · max(|y| − x, 0) is the soft-threshold
operator.

5. NUMERICAL EXPERIMENTS

As an illustrative example, we test the proposed algorithm on the
test system considered in [15]. Particularly, the test cases utilizes a
modified IEEE 37-node test feeder, where the network is obtained
by considering a single phase equivalent, and by replacing the loads
on phase “c" specified in the original dataset with real load data mea-
sured from feeders in a neighborhood called Anatolia in California
during a week in August 2012 [23]. It is assumed that aggregations
of photovoltaic (PV) systems are located at nodes 4, 7, 10, 13, 17,
20, 22, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, and 36 (see [15] for
the numbering). The rating of these inverters are 300 kVA for i = 3,
350 kVA for i = 15, 16, and 200 kVA for the remaining ones.

The optimization objective is chosen to be fi(Pi, Qi) =
cp(Pav,i − Pi)

2 + cq(Qi)
2 + c̄q|Qi|, where Pav,i is the maxi-

mum real power available from the PV system i, and cp = 3, cq =
1, c̄q = 0.1. The voltage limits are set to be V min = 0.95pu,
V max = 1.05pu. The generation profiles are simulated based on real
solar irradiance data and have a granularity of 1 second.

We specify a given trajectory for the power at the common cou-
pling, which is color-coded in red in Fig. 1 (negative power indicates
reverse power flows). It can be seen that our algorithm is able to reg-
ulate P k0 close to P k0,set in real time. Figure 2 illustrates the voltage
profiles for selected nodes. It can be seen that voltage regulation is

enforced and a flat voltage profile is obtained. A comparison with
double smoothing algorithm [15] is presented in Figure 3. The pro-
posed strategy has potentially better voltage regulation ability, espe-
cially for extreme cases e.g. the two spikes from 10:00 to 12:00.

12:00 12:05 12:10 12:15 12:20 12:25 12:30

Time

-0.115
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-0.105
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-0.09
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-0.08

P
0
 (

p
u

)

P
0

k

P
0,set

Fig. 1: Real power at the feeder head for time period 12:00-12:30.
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Fig. 2: Voltage profile achieved (only some nodes are considered).
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Fig. 3: Index for the overall voltage violation across the system∑
n

(
max(|V kn | − V max, 0) + max(V min − |V kn |, 0)

)
6. CONCLUSIONS AND FUTURE WORK

This paper proposed a feedback-based dynamic algorithm to opti-
mize the performance of a distribution system in real time and sys-
tematically enforce operational constraints. For the synthesis of the
algorithm, the steps of the ADMM were suitably modified to accom-
modate appropriate measurements from the distribution network and
the DERs. With the aid of these measurements, the resultant algo-
rithm can enforce operational constraints in spite of inaccuracies in
the representation of the AC power flows. Future research efforts
will focus on the application of similar techniques to time-varying
nonconvex OPF problems.
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