

Behavior, Energy and Climate Change

Towards Energy Efficient and Shared Mobility Services

Behavior, Energy and Climate Change Conference 2017

Clement Rames

Sacramento, California, October 15-18, 2017

NREL/PR-5400-70305

Session 1D: The Future of Mobility, October 16, 2017

Outline

- Define & introduce shared mobility services
- Zoom in on 3 cities: modal share, urban form
- Energy impacts back of the envelope calculations
- Moving the needle on shared mobility – key takeaways

Motivation

- Environment: fossil-fuel dependence, greenhouse gas emissions
- Public health: air quality issues, stress, road safety
- Equity: access to transit, jobs, education, healthcare
- Cost: traffic congestion, parking, car ownership

Photo credit: Odyssey

Bringing Sharing to the Center Stage

- Electric vehicles taking off
- Self-driving cars on-road testing
- Use TNCs as an analogy to study impacts of self-diving cars (shared, autonomous fleet)
- Look beyond U.S. borders: sharing is much more prevalent in other parts of the world

TNC: transportation network company

Photo credit: CleanTechnica

Shared Mobility: Recent Developments

Late 2000s:

- 1st smartphones:
 maps, mobility apps,
 geo-localization
- Zipcar & Flexcar,
 Avis-Hertz-Enterprise,
 City & eGo CarShare
 - Public, municipal bike-sharing (Vélib')
- Inter-city carpooling (BlaBlaCar)

Early 2010s:

- 4G, NFC, BLE: ubiquitous connectivity
- EV car-sharing(Autolib'), P2P (Turo, Getaround)
- Denver B-cycle,Bay Area Bike-share
- UberX, Lyft, Sidecar

Late 2010s:

- Machine learning, computer vision: automation
- OEM run car-sharing (Car2go, Maven, ReachNow)
- Dockless bikesharing, ebike-sharing
- UberPool, LyftLine, local and non-profit
- Commutes (Waze Carpool, BlaBlaLines)

Modal Share in Three Cities

Urban Form x Mobility Behavior

	Denver	San Francisco	Paris, France
Car-free Households	11 %	30 %	63 %
Daily VMT	25 mi.	21 mi.	16 mi.
Population Density	4,520/sq. mi.	17,240/sq. mi.	55,670/sq. mi.

(1000/sq. mi.)

Congestion, Parking, Ownership, Public Health, Equity

- Empty or "dead-heading" TNC trips add to congestion, while other modes tend to reduce VMT and single-occupancy vehicle trips
- TNCs reduce the need for parking in dense areas
- Impacts on car ownership remain unclear work in progress
- Shared services both substitute and complement active modes – depends on initial modal share
- Synergies with public transit (on-demand, first/last mile)

Energy Impacts: Back of the Envelope Calculations

Overcoming Barriers: Scaling Shared Mobility

- Unified payment system: integrated mobility package with car- and bike-sharing, public transit, etc.
- Need for a user-friendly car-pooling platform enabling both shared commutes and long-distance trips available across the United States

- Incentivize ride-splitting for TNC drivers & passengers
- Urban planning: replace parking with pickup lanes & carshare-only spaces. Multi-modal hubs connecting transit with bike-sharing & first/last mile solutions

Key Takeaways

- Individual ownership → shared, access-based paradigm
- Potential for energy savings and the opposite
- Shared services complement public transit & active modes
- Sharing & electrification should precede automation
- Need to move the needle on policy & urban development

Thank you! Questions?

www.nrel.gov

Backup Slide: Methodology and Data Sources

- Car-pooling: derived using vehicle occupancy data from 2009
 National Household Travel Survey
- Car-sharing: Chen and Kockelman, 2016, "Carsharing's Life-cycle Impacts on Energy Use and Greenhouse Gas Emissions"
- Ride-hailing: derived from Henao, 2017, "Impacts of Ridesourcing -Lyft and Uber- on Transportation including VMT, Model Replacement, Parking, and Travel Behavior"
- Electric vehicles: assumed 28 kWh/100 mi. (120 MPGe) BEV energy consumption and 36-mpg gasoline fuel consumption
- Autonomous vehicles: derived from Stephens et al., 2016, Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles