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Simulated impedance of diffusion in porous media
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A B S T R A C T

This paper describes the use of a frequency domain, finite-difference scheme to simulate the impedance
spectra of diffusion in porous microstructures. Both open and closed systems are investigated for a range
of ideal geometries, as well as some randomly generated synthetic volumes and tomographically derived
microstructural data. In many cases, the spectra deviate significantly from the conventional Warburg-
type elements typically used to represent diffusion in equivalent circuit analysis. A key finding is that
certain microstructures show multiple peaks in the complex plane, which may be misinterpreted as
separate electrochemical processes in real impedance data. This is relevant to battery electrode design as
the techniques for nano-scale fabrication become more widespread. This simulation tool is provided as
an open-source MatLab application and is freely available online as part of the TauFactor platform.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Electrochemical impedance spectroscopy (EIS) is perhaps the
most widely used technique for characterising electrochemical
devices [1]. Either by fitting equivalent circuit models in the
complex plane or by analysis of the distribution of relaxation times
(DRT), it is possible to investigate and decouple the relative
contributions to the impedance made by the various physical and
electrochemical processes occurring in a cell [2].

Although cell electrodes are inherently three dimensional
objects, the majority of elements in equivalent circuits (such as
resistors, inductors and capacitors) are zero dimensional. Warburg
elements are commonly used to model idealised one dimensional
diffusion under a variety of boundary constraints. It is possible to
find analytical solutions, or reasonable approximations, to many
combinations of these boundary scenarios, such as Dirichlet (i.e.,
specified concentration), Neumann (i.e., specified flux) and semi-
infinite [3]. This allows conventional fitting algorithms to
incorporate Warburg elements, without the additional computa-
tional cost incurred by solving these domains numerically for each
set of parameters.
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However, the pseudo-1D nature of Warburg elements requires
that the intricate details of real 3D microstructures must be
summarised with only a few bulk parameters, such as the porosity
and tortuosity factor. The tortuosity factor is a measure of the
resistance to diffusive transport caused by convolutions in the flow
paths [4]. As is shown later in this article, structures with very
different morphologies can have identical tortuosity factors and
porosities. However, analysing structures across a range of
stimulation frequencies, as well as the usual steady-state analysis,
enables some additional features of interest to be extracted that
may be relevant to performance. Moreover, when analysing
impedance data, it would be of interest to know whether the
microstructure is responsible for deviations in the spectra away
from the conventional Warburg model [5].

The effect of pore geometry on impedance was first modelled in
detail in a 1976 paper by Keiser et al. [6], following on closely from
the work of De Levie [7], where a pseudo-3D numerical model was
used to generate impedance spectra for a range of closed pore
geometries. The model uses a simplified transmission line
assemblage of series resistors and branching capacitors, with
the coefficients representing spatial distribution and axi-symme-
try. The original paper is in German, but the concept was
summarised for a wider audience in a review of EIS methods by
Barsoukov and Macdonald [2], which also reframes it in the
context of penetration depths. Raistrick [8] points out the
limitations of the pseudo-3D approach and Eloot et al. [9] do
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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question the accuracy and relevance of Keiser’s result; however, as
these concerns are due in part to the assumptions required to make
the calculation computationally feasible under the constraints of
the day, it is reasonable to expect that the general trends would still
be valid. Although over 40 years have passed since the Keiser paper,
the authors of this work were unable to find an instance where the
numerical results were directly used in the analysis of an EIS
spectrum. This is likely due to both the unavailability of
microstructural data and the computational expense of the
simulation.

However, despite the uncertainty surrounding the link between
EIS spectra and the geometry of microstructures, very many papers
have cited Keiser, as well as its subsequent mentions in books and
articles by Lasia [10–12], as a possible explanation for distortions in
impedance spectra. Malko et al. [13] used EIS to investigate PEM
carbon catalyst optimisation and attributed a deviation from the
expected 45� slope to the pore broadening/narrowing phenomena
discussed by Keiser. Noack et al. [14] also cited Keiser to explain
variation in EIS results between samples of graphite felt electrodes.
González-Buch et al. [15] used SEM image data to show that the
templated pores in their metallic cathodes were narrowing cones,
which lead them to conclude that their distorted EIS spectra could
be explained by Keiser’s findings. A study by Cericola and Spahr
[16] analysed the effect of particle size, shape, and orientation on
the performance of graphite electrodes and used Keiser’s results to
interpret a deviation from the expected 90� slope in the low
frequency region of a blocked electrode. The degradation of silicon
electrodes was investigated by Radvanyi et al. [17] and once again,
they associate evolution of features in the EIS data to changes in the
geometry of the system. A study by Wu et al. [18] on supercapacitor
electrodes found an additional “arc-shaped” feature in their EIS
data which they conclude, citing Keiser, to be the result of transport
processes in “orbicular pores”, after they systematically rule out
other potential causes. Hitz and Lasia modelled “pear-shaped”
pores similar to those investigated by Keiser and also observed a
semi-cricle at high frequency, rather than the expected 45� slope
[11]. As a final remark, Zhang et al. [19] highlighted the importance
of the pore geometry for designing advanced supercapacitor
electrodes, acknowledging that capturing non-uniform ion diffu-
sion is crucial for high power performance. To clarify the cause of
variation within the EIS spectra in each of the above cases, the
material microstructures must be mapped in 3D and explored.

Recent advances in computed tomography (CT) have allowed
the details of porous microstructures to be captured at high
resolution [20–23]. This microstructural data is typically stored as
cuboid voxels, each containing a grayscale value related to the local
density or atomic mass of the sample, depending on the technique
used. A segmentation approach must typically then be employed
to convert this grayscale data into a labelled volume (although
segmentation-free transport simulations are also possible [24]),
representing the distribution of the various phases. As demon-
strated in many recent studies [25–28], the segmented geometry
data can then be used to calculate various microstructural
parameters, such as the volume fractions, surface areas, triple
phase boundary densities and tortuosity factors; all of which are of
interest when trying to predict the performance of, for example, a
porous electrochemical electrode

This article presents the implementation of a frequency domain
finite-difference solver, suitable for segmented tomographic data,
applied to calculate the diffusive impedance spectra of porous
materials. First, an investigation of some idealised geometries is
presented to aid the intuitive interpretation of the possible effects
by analysing several simple open and closed systems. Following
this, the method is applied to some real geometries, derived from
tomographic data.
2. Method

2.1. Simulation

The solver used in this study is based on the finite-difference
approach implemented in the open-source TauFactor platform
recently released by the authors [24]. TauFactor was originally
developed for quantifying diffusive tortuosity factors from
segmented tomographic data by solving the steady-state diffusion
equation between a pair of parallel Dirichlet boundaries. Although
it is possible in principle to model a sinusoidal stimulation at one of
the boundaries in the time domain, the computational cost would
be prohibitive. In this study, the system was transformed into the
frequency domain, where a sinusoidal stimulation is once again
represented as a Dirichlet boundary condition. This approach
allows the various optimization techniques already implemented
in the TauFactor platform, such as over-relaxation, checkerboard-
ing and vectorisation, to be used in the frequency domain,
massively accelerating convergence (for more details, see [24]).

The system of equations in sys. (1) captures this steady-state
diffusion problem in the frequency domain, including the fixed
value (Dirichlet) conditions imposed at two parallel boundaries,
where Q = (0, Lx) � (0, Ly) � (0, Lz) is a cuboid in R3 and V � Q is the
region of a porous medium inside Q where diffusion occurs. T, I and
B are two-dimensional subsets of Q (i.e., Top, Interfacial and
Bottom), such that @V = T [ I [ B and @Vjz¼Lz ¼ B, @Vjz¼0 ¼ T,
@Vj0<z<Lz ¼ I. The complex distribution of the diffusing species
through the porous medium V is then modelled by the solution to

r2Ĉ � iv
D
Ĉ ¼ 0; in V;

Ĉ ¼ 0; on T;
rĈ�n ¼ 0; on I;
Ĉ ¼ 1; on B;

8>>>><
>>>>:

ð1Þ

where n is the outward pointing unit normal to V; Ĉ is the
complex concentration of the diffusing species; i is the imaginary
unit; D is the intrinsic diffusivity of transporting phase (set to 1 in
all cases); and v is the frequency of the boundary stimulation,
which is changed to calculate each point in a spectrum.

In the case where the top boundary is closed, the condition at
boundary T simply becomes the same as boundary I. In all cases,
convergence was measured by the stability of the complex
impedance measured at the stimulated boundary, B.

In each simulation, a characteristic frequency, vc, was defined,
around which the frequency range [vc � 2�4, vc � 211] was
investigated.

vc ¼ D

L2
ð2Þ

where, for open systems, L is the length of the control volume (CV)
in the direction normal to the stimulated surface and, for closed
systems, L is equal to the maximum penetration distance from the
stimulated surface to the tip of the longest pore path.

For each frequency, the impedance Z was calculated as the ratio
between the amplitude of the concentration stimulus (1 in all
cases) and the complex diffusion flux at the inlet boundary, and
then normalised to ~Z for ease of comparison by using Eq. (3).

Z
� ¼ Z

AD
L

ð3Þ

where, for open systems, A is the total area of the CV boundary
normal to the direction of flow and, for closed systems, A is the
“mean accessible area”, which is defined as the algebraic mean area
accessible to diffusion at each discrete depth into the pore
network. Using this formulation also means that the low frequency
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intercept of open systems is equal to t=e, which is a useful
characteristic feature for comparison between structures.

In order to initialise the simulation of open systems, the steady-
state time-domain solution was found first and used as the low
frequency intercept (i.e., v = 0). For closed systems, the low
frequency initialisation involved setting all voxels in V to

Ĉ ¼ 1 þ 0i.
The physical interpretation of the transport equation and

boundary conditions described above are those of idealised
diffusion with either applied concentrations or zero fluxes at the
boundaries. This simple system does not reflect the coupled multi-
physics processes occurring in a real electrochemical electrode,
such as contributions to transport from convection and electric
migration, charge separation (i.e., double layers) near the
boundaries or concentrated solution effects, which would require
more general transport models based on the Poisson-Nernst-
Planck equations [29]. However, it is worth considering that these
are the exact assumptions used in the standard Warburg model
[30], which is widely used in EIS today. Furthermore, it is the
simplicity of this system which allows for the system to be solved
so quickly, using the tomography data directly as the nodes.

2.2. Example structures

The closed pore structures investigated in figure 4 of the article
by Keiser et al. [6] were approximately recreated in 2D using MS
Paint. These 2D templates were then used to produce voxelised
axi-symmetric volumes through a simple rotation algorithm.
Simulations were run on both the 2D (i.e., prismatic) and 3D
datasets. Due to the mirror symmetry of each structure in the
direction normal to the stimulating boundary, only half the 2D
structures (128 � 128 voxels) and quarter of the 3D volumes (128 �
128 � 128 voxels) were required for simulation. Straight
(prismatic) closed pore systems are expected to recover the
analytical Finite Space Warburg (FSW) solution and, similarly,
prismatic open pore systems should recreate a Finite Length
Warburg (FLW) solution.

Following this, a set of 6 new idealised 2D geometries were also
created, through trial and error, each of which had the same
volume fraction (e = 0.5) as well as the same tortuosity factor (t =
1.57) in the vertical direction of the white phase. At steady-state,
these structures are indistinguishable in terms of their diffusive
Fig.1. Simulated impedance spectra for 2D (l) and 3D (r) recreations of the 5 simple close
as normalised using Eq. (3), whereas the main axes employ a second normalisation such t
comparison of the shapes.
properties in the direction of interest; however, they would be
expected to have distinct frequency spectra.

The “Sierpinski carpet” and “Pythagoras tree” 2D fractal
structures were also investigated as they are commonly referenced
in the literature as potential models for rough or multi-lengthscale
systems [31–37]. An open boundary (FLW) was given to the
Sierpinski carpets and, in order to converge to grid independent
solutions, 5 � 5 voxel regions were used to represent the smallest
squares, such that the sixth order carpet had the dimensions 3645
� 3645. The Pythagoras trees are closed systems (FSW) and only
required 250 � 250 pixels to resolve their features. Due to the
mirror symmetry of both fractals normal to the diffusion direction,
only half the regions were required for simulation.

The fourth geometric category investigated was a 3D pseudo-
random packing of spheres, which is a common model system for
battery and fuel cell electrodes [38]. Although homogenisation
approaches have been developed to represent these systems in 1D
[39,40,30], extending this approach to 3D expands the design space
for advanced electrodes by allowing for in-plane heterogeneity.
The diffusion impedance from real battery systems typically comes
from the solid phase diffusion in the radial direction within
particles, rather than through the pore network [41,42]; however,
anode-supported SOFCs can show losses from the extended,
tortuous transport paths in the gas phase. The 3D packing of
spheres was generated to have a linearly increasing porosity in the
direction normal to the stimulated surface and it was analysed to
develop a better understanding of what may be possible in reality.

Finally, two real tomographic datasets were also investigated,
which were taken from a previous article by the authors on battery
separator materials (Celgard 2325 and Celgard 2500) [43]. These
structures where chosen because they have been manufactured to
show a pronounced variation in porosity in the through-plane
direction.

3. Results

Figure 1 shows the results of the simulated impedance
calculations for the 2D and 3D creation of the 5 simple closed-
pore geometries investigated by Keiser et al. [6].

The spectra of the seven 2D open-systems are shown in Fig. 2 .
Each geometry has the same volume fraction of the white phase, as
well as the same steady-state response in the time domain when
an open boundary condition is used (i.e., the same tortuosity
d-pore geometries investigated by Keiser et al. [6]. The inset graphs show the spectra
hat all spectra converge to the same value as the straight pore (1), to allow for clearer



Fig. 2. Simulated impedance spectra of 7 simple open-pore geometries, each
designed to have the same pore volume fraction and tortuosity factor in the
direction normal to the stimulated boundary (vertical). The transport is occurring
through the white phase of each geometry, with a constant zero concentration at
the top surface and an applied sinusoidal concentration at the bottom.
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factor). This means that based on current electrode equivalent
circuit models, they would each be treated identically in terms of
transport. However, simulated impedance reveals significant
differences in their spectra.

Although geometry 1 in Fig. 2 has a straight diffusion path, its
tortuosity factor is the same as the other geometries due to the
region of isolated pore volume. However, the isolated volume
simply has the effect of linearly scaling the spectra, so it will still be
the same shape as the FLW solution, which is useful as a reference
for interpreting the other shapes. The tortuosity factors of the other
six geometries, although numerically identical, originate from a
Fig. 3. Simulated impedance spectra of two 2D fractals, as the fractal order increases for (a
closed ends.
variety of combinations of constriction and path length convolu-
tion.

Figure 3 shows impedance plots for the first 6 orders of the two
2D fractal systems considered. The inset of the Sierpinski carpet
graph shows the high frequency region in greater detail for the first
and last geometries only.

The four impedance spectra resulting from the analysis of two
tomographic datasets of battery separator materials are shown in
Fig. 4 . The separators where imaged in a previous study by the
authors [43], which showed them to have variable porosity in the
through-plane direction. The axes of these two plots have been
scaled such that the low frequency intercept of both samples
aligns. Representative slices from the segmented tomographic
images of the two samples are shown in the top right corner of
each axis. Analytical spectra of FLW with the same low frequency
intercepts are also plotted for comparison. Circles have been used
to highlight the characteristic frequency of each spectrum.

Figure 5 shows the spectra obtained in a synthetic structure,
generated by Monte Carlo algorithm [44], representing a 3D
random packing of spherical particles linearly distributed along
the vertical direction. The four simulations are obtained by flipping
the packing, in order to have a linearly increasing or decreasing
porosity along the diffusion direction, and considering either open
or closed boundary condition at the top. The distribution of
relaxation times for the two open structures, performed by using
the DRTtools toolbox [45], is shown in the inset of Fig. 5.

4. Discussion

4.1. Comparison with pseudo-3D models

The results in the two plots in Fig. 1 show the same general
trends as those described by Keiser et al., despite the fact that the
physics being modelled in the two studies is not identical. The
Keiser et al. pseudo-3D model, as well as the models presented by
de Levie [7] and Eloot et al. [9], consider the impedance generated
by a pore filled with an electrolyte with finite ohmic resistivity
surrounded by electrode walls having a specific surface capaci-
tance. The diffusion impedance modelled in this study refers to a
) Sierpinski Carpet fractal with open boundaries and (b) Pythagoras Tree fractal with



Fig. 4. Simulated impedance spectra through two tomographic datasets of battery
separator materials from a paper by the authors [43]. The axes of these two plots
have been scaled such that the low frequency intercept of both samples align. Each
plot contains an inset showing a small region of the segmented tomographic data,
where transport is in the vertical direction. Analytical spectra of FLW with the same
low frequency intercepts are also plotted for comparison.
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chemical species that diffuses within a pore having insulating
walls. Despite these differences, the mathematical description of
the two systems is remarkably similar, although the parameters
governing the behaviour are clearly very different (see
Appendix for more details). In particular, for straight cylindrical
pores, these physical systems produce identical Warburg imped-
ance spectra [3,46]. However, if the pore cross-section varies along
the diffusion direction, minor differences in the two impedances
occur. This is expected because in the case of the pseudo-3D model
Fig. 5. Simulated impedance spectra for a synthetic packing of spherical particles
with porosity linearly increasing (blue lines) or decreasing (red lines) from bottom
to top. The top boundary can be either open (solid lines) or closed (dashed lines).
The inset shows the DRT for the cases with open boundaries.
presented by Keiser et al., the capacitance scales with the pore
surface, while in the case presented here, the capacitance scales
with the pore volume. Nevertheless, irrespective of the details of
the transport model, Fig. 1 shows that the pore geometry has a
measurable effect on the observed spectra, as further discussed in
the next section.

Pseudo-3D models, such as those proposed by Keiser et al. or
Eloot et al., are expected to be less accurate than a full 2D/3D
model, as presented in this study. In fact, pseudo-3D models
neglect the curvature of equiconcentration planes in the direction
normal to the macroscopic diffusion direction [8,47], thus
assuming an infinite diffusion rate along such a normal direction.
However, especially when the pore cross section broadens rapidly,
equiconcentration planes are not perpendicular to the diffusion
direction. Thus, while pseudo-3D models are limited by such a
geometric simplification, which eventually leads to an underesti-
mation of the impedance, the approach presented in this study
improves the accuracy of impedance calculation without imposing
a prohibitive computational cost. It is interesting to note that the
results of Keiser et al. lie somewhere between the 2D and 3D cases
simulated here, which is in keeping with the logic described above.

4.2. Effect of pore shape on diffusion impedance

The open systems investigated in Fig. 2 show a similarly marked
deviation from the standard Warburg model, although, as these
seven geometries were designed to have the same volume fraction
and tortuosity factor, the spectra must all necessarily converge at
both ends of the frequency range. As well as distorting the shape of
the spectra, the geometry also had the effect of translating the
characteristic frequency relative to that predicted by the analytical
FLW solution.

The main difference in the shape of the spectra appears in the
medium-high frequency range (centre-left of the complex plane).
Geometries with a narrowing cross section along the diffusion
direction (that is, moving away from the stimulated boundary),
such as case 6, show an imaginary component of impedance larger
than that expected from a conventional Warburg element. In other
words, the phase is larger than 45�. On the other hand, geometries
with a broadening diffusion path, such as case 7, show a phase
always smaller than 45�. Such a behaviour at medium-high
frequency, also reported by Keiser et al., is present in the closed
pore geometries analysed in Fig. 1, although there the impedance
approaches a vertical asymptotic limit at low frequency due to the
blocking boundary condition.

In order to explain such a behaviour, it is convenient to define
the penetration depth [7,9,2], as follows:

ld ¼
ffiffiffiffi
D
v

r
ð4Þ

The penetration depth ld represents the characteristic length
sampled by the alternating signal for a given frequency v: as ld
increases (that is, as the frequency decreases), the complex

concentration Ĉ of the diffusing species penetrates deeper into the
pore, sampling the volume further from the pore mouth (i.e., the
stimulated inlet boundary). When ld � L the concentration
perturbation reaches the end of the pore, thus the boundary
condition starts to affect the impedance: if the pore is open to an

ideal reservoir (i.e., boundary condition Ĉ ¼ 0), as in Fig. 2, then the
impedance ~Z approaches a finite real value and the phase becomes

0; if the pore end is blocking (i.e., boundary condition rĈ�n ¼ 0), as

in Fig. 1, the imaginary component of the impedance ~Z
00
goes to �1ffiffiffiffiffi

2v
p

and the phase approaches 90�, as shown by Song and Bazant [41].
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These two opposite behaviours can be used to explain the
impedance response at medium-high frequency in Fig. 2 for pores
with a narrowing or broadening cross section. When the pore cross
section narrows the diffusion flux is hindered, thus resembling the
blocking wall boundary condition: as a consequence, the negative
imaginary component of the diffusion impedance rises and the
phase is larger than 45� (e.g., Fig. 2, case 6). On the other hand, if the
pore cross section broadens, the diffusion flux enters into a larger
region, which resembles a reservoir, thus the imaginary compo-
nent of diffusion impedance decreases and the phase becomes
smaller than 45� (e.g., Fig. 2, case 7). Therefore, the shape of the
diffusion impedance in the complex plane can be related to the
pore geometry, as similarly reported by Keiser et al. for a different
physics.

The concept of penetration depth is also useful to explain the
difference between the impedance response of cases 4, 5 and 7 in
Fig. 2. All the pore shapes show a broadening cross section for the
diffusing species, thus leading to a decrease in phase <45�. Since
the broadening in case 7 is closer to the pore mouth than in cases 4
and 5, the departure from the 45� slope occurs for a smaller
penetration depth ld in case 7, that is, for a larger frequency
according to Eq. (4), as shown in Fig. 2. As the broadening is further
from the pore mouth, as in cases 4 and 5, the frequency
corresponding to the shift in phase becomes smaller.

Thus, since a change in pore cross section at a distance ld from
the pore mouth is captured by a shift in phase in the complex plane,
Eq. (4) can be used to estimate the expected frequency range where
a distortion in diffusion impedance will be revealed given the
diffusivity D and the feature size ld. For example, a sharp variation
in pore geometry at a distance ld = 1, 10, 1000 mm from the pore
inlet will be detected by diffusion impedance in the frequency
range v � 103, 10, 10�3 Hz in a liquid (D = 10�9 m s�2) or v � 107,
105, 10 Hz in a gas (D = 10�5 m s�2), respectively.

The sequence of spectra in Fig. 3 a shows that as the order of the
fractal increases, not only does its general resistance to transport
increase (low frequency intercept) due to the more tortuous
diffusion path, but there is also a change in shape of the high
frequency region. In line with the results in Fig. 2, the approach
towards the expected 45� line becomes increasingly steep as the
severity of the path narrowing increases near the stimulated
surface. Conversely, in Fig. 3 b as the fractal order increases, a larger
area is available per unit penetration depth, increasing the extent
to which the spectra stay below the 45� line in the medium-high
frequency range, being in qualitative agreement with the
depressed impedance arcs produced by hierarchical microstruc-
tures [31], systems with distributed pore sizes [48] or those with
“secondary” pore networks [36,37].

4.3. Application to real 3D structures and some practical
considerations

The spectra shown in Fig. 4, generated from tomographic
volumes of battery separator materials, show that these kind of
distortions can even be detected in real materials that are fairly
homogeneous. Although the distortions observed are relatively
modest compared to some of the synthetic geometries discussed
earlier in the paper (in agreement with what has been previously
reported by Candy et al. [49] for homogeneous spherical packings)
they may still be noticeable in real EIS data. Beyond simply the
distortion to the shape, the most pronounced difference between
the spectra are the locations of the characteristic frequencies
compared to the analytical FLW solution. One potential explana-
tion for this is the relative contribution of extended path length
and path constriction in the observed tortuosity factor. This would
suggest that the Celgard 2325 structure has more convoluted flow
paths, meaning that the frequency at which the full thickness of the
system is probed is lower than the calculated value of vc. It is
important to offer a cautionary note here that if the impedance
spectrum of a tomographic dataset differs from the Warburg
solution, but there is no reason to expect a variable porosity in the
direction measured for the material as a whole, then the most
likely explanation is that the volume analysed is too small and is
not a representative sample. TauFactor already offers several
methods to evaluate the minimum representative volume for a
diffusion simulation.

More pronounced distortions are revealed in the synthetic
packing structures with linearly distributed porosity as in Fig. 5.
Functionally graded or multi-layered structures have been
increasingly used for advanced electrodes in solid oxide fuel cells
[50–53] and Li-ion batteries [54,55], although this approach has
received some criticism [56]. For such highly heterogeneous
structures, the impedance response of diffusing species differs
remarkably from the conventional Warburg behaviour, as in Fig. 5.
For example, the open structure with linearly increasing porosity
(solid blue line) appears to have two distinct peaks, reflective of
two different time constants. It is worth restating here, to avoid any
confusion, that this model does not consider any electrochemistry
and that the two observed peaks are both from a purely diffusive
process. Figure 5 also contains an inset showing the distribution of
relaxation times (DRT) for the two open systems. Although the DRT
spectrum for a FLW is expected to have many peaks, the secondary
peak is especially pronounced in this structure. Since DRT analysis
is increasingly used as a screening tool to identify the number of
physical/electrochemical processes to be associated with equiva-
lent circuit elements [57], such a pronounced peak due merely to
the diffusion in an anisotropic microstructure might be misinter-
preted for an additional electrochemical process, thus leading to a
misuse of extra equivalent circuit elements as already discussed by
Bertei et al. [58].

Hence, once the electrode microstructure is known, for example
through computed tomography as in Fig. 4, the impedance
response due to the diffusion phenomena can be evaluated and
subtracted from the experimental spectra to focus on the other
electrochemical phenomena of interest. Notably, the approach can
be reversed: provided that diffusion be the main phenomenon
taking place in the electrode, diffusion impedance can be used as a
tool to infer microstructural information, similar to what is
currently done with electrochemical porosimetry [59,60]. This is
certainly possible to some extent, as shown in the previous section
regarding the shift in phase for narrowing or broadening cross
sections, yet with some limitations. In fact, any heterogeneity in
the porous structure does produce a feature in the complex plane
at a frequency roughly equal to the corresponding penetration
depth (Eq. (4)), but different signals become more convoluted as ld
increases and are eventually affected by the pore-end boundary
condition for ld � L: beyond this penetration depth, that is, for
frequencies v < vc, the quality of microstructural information that
can be inferred from diffusion impedance worsens dramatically.
This means that heterogeneous features in the pore structure are
better resolved when closer to the pore inlet at high frequency (i.e.,
for v > vc). Moreover, the same diffusion impedance fingerprint
can be produced by different families of microstructures, thus the
reconstruction of the porous structure from diffusion impedance is
not unequivocally determined. On the other hand, relevant
microstructural metrics regarding the pore geometry can be
distinguished, such as the narrowing/broadening of cross section
or decrease/increase in porosity as shown in Figs. 2 and 5.

This paper is intended to showcase the simulated impedance
technique, but future studies will aim to analyse representative
volumes of tomographic data and compare these to measured EIS
spectra.



Fig. 6. Simulated phase angle against log frequency for three simple micro-
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5. Conclusions

The simulation approach presented in this paper allows the
effect of geometry on diffusion to be calculated and compared to
the conventional Warburg elements commonly used in equivalent
circuit models. The results for simple closed pore geometries agree
well with those presented by Keiser et al. . This study extends the
work of Keiser et al. to include open systems, for which similar
deviations from the spectra of the simple 1D case were also
observed. The simulation tool has been integrated into the
TauFactor platform, which is specifically designed for the analysis
of tomographic data.

Analysis of battery separator material tomography datasets
showed minor deviations from the standard Warburg solution,
depending on the direction analysed, while larger deviations are
revealed in synthetic electrodes with graded porosity or with fractal
geometry. The tool presented in this study is thus essential for the
understanding, deconvolution and prediction of the diffusion
impedance response in heterogeneous porous media, especially
for advanced electrodes with engineered microstructure.
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Appendix A.

The three-dimensional diffusion problem can be reduced to a
pseudo-3D model in order to show the similarities with the models
presented by Keiser et al. and Eloot et al. .

Let us call x the main direction of diffusion flux in the porous
domain. Assuming that the pore is axisymmetric and equiconcen-
tration planes are normal to the diffusion direction x, the governing
equation can be reduced to an ordinary differential equation as
follows:

ivĈpr2dx ¼ � d
dx

�D
dĈ
dx
pr2

  !
dx; in 0 < x < L;

Ĉ ¼ 1; at x ¼ 0;( ðFLWÞ : Ĉ ¼ 0;

ðFSWÞ : � D
dĈ
dx

¼ 0;
at x ¼ L;

8>>>>>>><
>>>>>>>:

ðA:1Þ

where r represents the local pore radius, which is a function of x.
System (A.1) can be recast in dimensionless form after defining

the dimensionless coordinate ~x ¼ x=L, the dimensionless radius
~r ¼ r=r0 (where r0 is the pore radius at x = 0), and the characteristic
frequency vc ¼ D

L2
as follows:

d2Ĉ

d~x2
þ 2

~r
d~r
d~x

dĈ
d~x

� i
v
vc

Ĉ ¼ 0; in 0 < ~x < 1;

Ĉ ¼ 1; at ~x ¼ 0;( ðFLWÞ : Ĉ ¼ 0;

ðFSWÞ :
dĈ
d~x

¼ 0;
at ~x ¼ 1:

8>>>>>>>>><
>>>>>>>>>:

ðA:2Þ
Let us now consider the impedance of an axisymmetric pore
filled with an electrolyte, having constant conductivity s,
surrounded by electrode walls with specific surface capacitance
c, which is the same physics studied by Keiser et al. and Eloot et al..

The pseudo-3D model of such a system is as follows:

ivcV̂ 2prdx ¼ � d
dx

�sdV̂
dx
pr2

  !
dx; in 0 < x < L;

V̂ ¼ 1; at x ¼ 0;( ðFLWÞ : V̂ ¼ 0;

ðFSWÞ : � s
dV̂
dx

¼ 0;
at x ¼ L;

8>>>>>>><
>>>>>>>:

ðA:3Þ

where V̂ is the complex electric potential.
By considering the same dimensionless groups already defined

in Eq. (A.2), with the only exception for the characteristic
frequency vc ¼ sro

2cL2
, Eq. (A.3) becomes:

d2V̂

d~x2
þ 2

~r
d~r
d~x

dV̂
d~x

� i
v
vc

V̂
~r
¼ 0; in 0 < ~x < 1;

V̂ ¼ 1; at ~x ¼ 0;( ðFLWÞ : V̂ ¼ 0;

ðFSWÞ :
dV̂
d~x

¼ 0;
at ~x ¼ 1:

8>>>>>>><
>>>>>>>:

ðA:4Þ

Equation (A.4) is very similar to the reduced diffusion model

reported in Eq. (A.2), where V̂ ¼ Ĉ; s = D and 2c
r0
¼ 1. The only

difference is in the 1
~r factor in the rightmost term of Eq. (A.4). Such a

factor comes from the fact that in this system the capacitance
scales with the pore surface while in the diffusion problem the
mass-capacitance scales with the pore volume. However, when the
pore radius is constant (~r ¼ 1), eqs. (A.2) and (A.4) are identical,
thus they produce the same Warburg impedance response
irrespective of the different physics, except for a few dimensional
scaling factors, which do not affect the impedance shape in the
complex plane.

The accuracy of the pseudo-3D model becomes questionable as
the assumption of equiconcentration planes perpendicular to
diffusion direction no longer holds, such as for ratios of top to
bottom cross section (AT/AB) much different from 1 as reported in
Fig. 6 . In such a case, the pseudo-3D model i) underestimates the
diffusion resistance Z0(v = 0) and ii) overestimates the frequency
dependence (i.e., ’(v) shifts slightly on the right towards larger
structures each with a different ratio of the inlet to outlet area.
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frequencies) in comparison with the 3D model. This is due to the
fact that, in 3D and in reality, the diffusion flux perpendicular to x is
finite (that is, not infinite as assumed in pseudo-3D), thus resulting
in a larger resistance and larger timescale than what predicted by
the pseudo-3D model.
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