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Introduction/Background

*»* Production of cellulosic transportation liquid fuels can make

a significant contribution to:
O Improving energy diversity (resource consumption)
O Reducing GHG emissions (environmental impact)

It may be beneficial from economic,
environmental, and societal standpoints
to develop a more sustainable biofuel
production process.

% Co-processing renewable biomass with
fossil NG can potentially be a feasible
approach to improve economic viability ) s
while still achieving an economic-
environment sustainability balance.

http://www1.eere.energy.gov/biomass/pdfs/mypp_november_2012.pdf
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Potential Synergistic Roles of Natural Gas

¢ Increasing availability and low cost

» U.S. daily NG production rate has increased nearly 50% in 10 years.

» NG price has decreased: $8.86/MMBtu (2008) — $2.88/MMBtu (Sep
17). Source: U.S. Energy Information Administration (EIA)

¢ Providing contingency and complement biomass feedstock supply

» BT16 estimated combined biomass resources 0.34 (2017) to 1.5
billion tons per year (2040).

» Sophisticated feedstock logistic supply system is critical, including
pre-processing operations, moisture and ash mitigation, and
storage.

» Regional supply dependency and the inability to actively manage
feedstock stability and quality, provide operational risks to the
biorefinery, which translate into higher investment risk.

¢ Potential of increasing yield
» Higher carbon conversion efficiency
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Objectives/Scope

Objectives

s Determine the biomass-NG synergistic impacts
and sustainability trade-offs associated with the
production of high-octane gasoline blendstock via
indirect liquefaction (gasification) of biomass
through methanol/dimethyl intermediates.

Scope
*¢* Focus on techno-economic analysis and

sustainability assessment.
¢ Exclude policy considerations (such as RIN).
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g Abstract: This work describes in detail one potential conversion process for the production of high-
aclana gasoline via indirect of biomass. The staps of this pathway

include the conversion of biomass to synthesis gas via Indirect gasification, gas clean-up via reforming
of tars and other hydrocarbons, catalylic conversion of syngas to methanol, methancl dehydration to
dimethyl ather (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-
range hydrocarbon products. The current process configuration has similarities to ntional metha-
nol-to-gasoline (MTG) technologies, but there are key i regardi prod
slate, catalysts, and reactor conditions. A techno-economic analysis is performed to Investigate the
production of high-oclane gasoline blendstock. The design features a processing daily capacity of
2000 tennas (2205 short tons) of dry biomass. The process yields 271 Iiters of liquid fuel per dry tonne
of blomass (85 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90%
on-stream time, The estimatad tolal capital investment for an n™-plant is $438 million, The resulting
minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous
sensitivity analysis captures uncertainties in costs and plant performance. Sustainabllity metrics for the

conversion procaess are quantified and assessed. The potential premium value of the high-octane
gasoline blendstock is examined and found to be at least as i@ as fossil ad
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Biomass-to-High-Octane Gasoline Process Flow Diagram
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High-Octane Gasoline Pathway vs. MTG

Process Attribute

Molecularstructures
favored in synthesis
reactions

Example Compound
Specific Gravity

Hydrocarbon synthesis
catalyst

Octane number of
gasoline-range product

Selectivity of Cs+product

Severity of synthesis
operating conditions

Coke formation

High-Octane Gasoline
Pathway Target

Branched paraffins
CH,

CH,
H.C

CH,
CH,
Triptane
0.70

Beta-Zeolite
(12-membered rings)

RON: 95+
MON: 90+

Cs+ product only
(~65 Gal / Ton)

350 =450 Deg. F
130 PSIA

Coke formation is minimized by
hydrogen addition and selectivity to

branched paraffinsratherthan
aromatics.

Methanol to Gasoline
(MTG) Pathway

Aromatics
CH,

Toluene
0.87

ZSM-5
(10-membered rings)

RON: 92
MON: 83
~ 85% Cs+

(~55 Gal / Ton)

650 —950 Deg. F
315 PSIA

High propensity for coke formation
due to aromaticcoke pre-cursors.

Impact on Techno-EconomicAnalysis

High octane productrich in branched paraffins,
similartoa refinery alkylate. H-saturation
decreasesdensity, increasing product volume.

Different pore sizesand structuresresultin
different compound selectivities.

Octane numberincreasesvalue of productasa
finished fuel blendstock.

High selectivity to primary (premium quality)
product maximizes overall product value.

The lowerseverity operating conditions result
inlower capital and operating costs relative to
MTG.

Minimizing coke formation helpsto maximize
productyield /carbon efficiency and maximizes
catalyst regeneration and re placement cycles.
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. Approach / Methodology

NREL
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JEDI
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LIFE-CYCLE MODEL

LCA System Boundary
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Life Cycle Energy Consumption GREET

LIFE-CYCLE MODEL

Modeled impact of increased NG input on energy consumption.
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Life Cycle Water Consumption GREET

LIFE-CYCLE MODEL

Modeled impact of increased NG input on water consumption.
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Life Cycle GHGs GREET

LIFE-CYCLE MODEL

Modeled impact of increased NG input on GHGs.
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Minimum Fuel Selling Price (MFSP)

Increasing NG input leads to lower MFSP (primarily due to higher yield).
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MFSPs and GHGs As A Function of NG Supplement
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Economic Impact Analysis

Jobs and Economic Development Impact (JEDI) model

CONSTRUCTION RELATED JOBS
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The construction of a new biorefinery yields
about 2389 to 2440 jobs/year (combining
direct, indirect and induced jobs), during the
three year construction period.

The number of construction related jobs
depends primarily on capital investment and
expenditure categories (e.g., equipment
manufacturing, engineering design, finance).

Ongoing operating of the biorefinery is not
labor intensive, and requires only about 62
on-site jobs.

Most jobs associated with biorefinery
operation are supply-chain related indirect
jobs such as workers in the forestry and
transportation sectors, which harvest, collect
and ship feedstocks to the biorefinery.

All operation-related jobs are permanent jobs,
which are different from the temporary jobs
supported by biorefinery construction.




Relative Impacts and Trade-off of Max NG Co-Feed (i.e., at 50%
GHGs Reduction) on Sustainability Metrics

Negative impact < > Positive imﬂact
Cost of GHGs Avoidance _ 27%
Water Consumption - 13%
Carbon Conversion Efficiency - 13%
MFSP o 7%
Construction Related Jobs I 2%
Operation Related Jobs 1%
GHGs Reduction -30% _
GHGs 7oz [
| -94%

-100%  -80% -60% -40% -20% 0% 20% 40% 60% 80%
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Relative Impacts and Trade-off of Max NG Co-Feed and Import
Electricity (Biomass Only) on Sustainability Metrics

Neaative i I > Positive i !
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Water Consumption -4%
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Summary

s Co-feeding NG improves MFSP, cost of GHGs avoidance, life cycle water
consumption, and the overall carbon conversion efficiency. It can
potentially create slightly more jobs.

s Co-feeding NG increases life cycle GHGs and consumes more fossil
energy.

** The import electricity case exhibits positive impact on all indicators
(except life cycle water and fossil consumption) evaluated in this study.

¢ In comparison with the NG co-feed case, the import electricity case has
similar impact on MFSP but significantly better impact on life cycle GHGs
and fossil energy usage.
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The U.S. NG Production and Price Trends
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nth-Plant TEA Assumptions

Description of Economic Parameter Analysis Value / Basis
Delivered Feedstock Cost $84.45/ US Dry Ton
Internal Rate of Return (IRR) 10.0%
Plant Financing by Equity / Debt 40% / 60% of Total Capital Investment
Plant Life 30 Years
Income Tax Rate 35.0%
Interest Rate for Debt Financing 8.0 % Annually
Term for Debt Financing 30 Years
Working Capital Cost 5.0% of Fixed Capital Investment
Depreciation Schedule Total Plant: 7-Year MACRS
Construction Period (Spending Schedule) 3 Years (8% Y1, 60% Y2, 32% Y3)
Start-Up Time 6 Months
Revenue = 50% of Normal Operation

Revenue and Costs During Start-Up Variable Costs = 75% of Normal Operation
Fixed Costs = 100% of Normal Operation

On-Stream Percentage After Start-Up 90% (7,884 Operating Hours per Year)
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Relative Sustainability Impact Summary

Relative Imported Relative
Sustainability Indicators Ib/hr Base Max NG Impact Electricity Impact
MFSP S/GGE 3.47 3.24 7% 3.26 6%
GHGs g CO2e/MJ 28.11 47.73 -70% 26.26 7%
GHGs Reduction % 70.57 49.45 -30% 72.50 3%
Fossil Energy MJ/MJ 0.40 0.79 -94% 0.44 -8%
Water Consumption gal/MMBtu 51.01 44.40 13% 53.18 -4%
Carbon Conversion Efficiency % 31.16 35.14 13% 33.36 7%
Construction Related Jobs FTE 2389 2440 2% 2389 NA
Operation Related Jobs FTE 1205 1213 1% 1205 NA
Cost of GHGs Avoidance S/kg CO2e 0.06 0.04 27% 0.03 46%
Feed Input and Product Qutput Summary
Import

Base Max NG Electricity
Biomass Feed LHV, MMBtu/hr 1467 1467 1467
NG to Reformer LHV, MMBtu/hr 0.00 321 0.00
Total LHV, MMBtu/hr 1467 1788 1467
HOG GGE/hr 5689 7061 6092
HOG/Total Feed GGE/MMBtu 3.88 3.95 4.15
Capacity MMGGE/yr 44.9 55.7 48.0
Capacity Change % 24% 7%
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Economic Impact Analysis
Jobs and Economic Development Impact (JEDI) model

+* Onsite (or direct) effect — immediate effect created by an expenditure.
For example, during the construction of a biorefinery, the direct effect on jobs
results from hiring contractors and workers to install process equipment and
construct other parts of the plant. Similarly, during the operation, the direct effect
on jobs refers to workers directly hired to operate the facility.

+* Revenue and supply chain (or indirect) effect — occurs when contractors,
vendors, or manufacturers receive payment from the biorefinery to provide
goods and services required for the construction or operation of the facility

and, in turn, also purchase goods and services from their suppliers.
For instance, the supply chain effect includes farmers who produce the biomass
feedstock, bankers who finance the project and farming operations, and equipment
manufacturers who make process or farming equipment, among others.

*** Induced effect — measures the impacts resulting from the changes in
household spending of workers directly and indirectly employed by the
construction companies, manufacturers, and service industries, as well as
the biorefinery itself and farmers who produce and supply feedstocks to the
biorefinery, among others.
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