

Potential Size of and Value Proposition for H2@Scale Concept

Mark F. Ruth, Paige Jadun,
Amgad Elgowainy,* Bryan Pivovar
2017 AIChE Annual Meeting
November 1-3, 2017
Minneapolis, Minnesota

NREL/PR-6A20-70457

^{*} Amgad Elgowainy is an employee of Argonne National Laboratory

H2@Scale Energy System

Technical Potential: Definition

Technical potential is the subset of the available resource potential that is constrained by real-world geography and system performance but not economics

Brown, A., P. Beiter, D. Heimiller, C. Davidson, P. Denholm, J. Melius, A. Lopez, D. Hettinger, D. Mulcahy, and G. Porro. 2015. *Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results.* Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-64503

Technical Potential Hydrogen Demand

Total market potential: 60 MMT/yr

ו ני	Use Minary te	Market potential (million metric tonne H ₂ / year)		
Industrial Use				
	Refineries & CPI§	8*		
	Metals	5		
	Ammonia	5		
	Natural Gas	7		
	Biofuels	4		
	Light Duty Vehicles	28		
	Other Transport	3		
	Total	60		

Current U.S. market: ≈ 10 MMT/yr

Near-term Outlook for Hydrogen Production Volume: 5% CAGR (2014-2019)¹

Light duty vehicle calculation basis: 190,000,000 light-duty FCEVs from http://www.nap.edu/catalog/18264/transitions-to-alternative-vehicles-and-fuels
1. Global hydrogen Generation Market by Merchant & Captive Type, Distributed & Centralized Generation, Application & Technology- Trends & Forecasts (2011-2016)

[§] CPI: Chemical Processing Industry not including metals, biofuels, or ammonia

^{*} Current potential used due to lack of consistent future projections

Technical Potential: Impact on Renewable Resources

	EIA 2015 current consumption (quads/yr)	Required to meet demand of 60 MMT / yr (quads/yr)	Technical Potential (quads/yr)
Solid Biomass	4.7	15	20
Wind Electrolysis	0.7	9	170
Solar Electrolysis	0.1	9	1,364

Total demand including hydrogen is satisfied by ≈6% of wind, <1% of solar, and ≈100% of biomass technical potential

Technical Potential: Impact on Fossil & Nuclear Resources

Hydrogen can be produced from diverse domestic resources to meet aggressive growth in demand

^{*} Based on estimated recoverable reserves

Technical Potential: Impacts on Resources

Use	H ₂ Consumed	Resource Savings		Emissions Reduction
	MMT / yr	Petroleum (bbl/yr)	Natural Gas (quad btu/yr)	CO2 (million metric ton/yr)
Refineries	8	900,000	1.332	87
Metals	5	0	0.365	78
Ammonia	5	500,000	0.833	54
Natural Gas System	7	700,000	0.923	63
Biofuels [§]	4	77,500,000	-0.026*	28
Light Duty Vehicles	28	1,017,600,000	0.629	469
Other Transport	3	113,400,000	0.051	50
Total	60	1.2 Billion bbl	4.1 Quads	830 Million MT
Prelimin Result	ary ~17% o consu		.4% of U.S. natural gas ensumption in 2016	~16% of U.S. energy- related emissions in 2016

Growth in electrolytic hydrogen using renewable electricity can reduce petroleum and natural gas utilization by ≥15%

^{*}Negative values represent increase in use due to fertilizer production § 12% of the benefits of hydrogenated biofuels are credited to hydrogen

Economic Potential: Definition

Economic potential is the **subset of the technical potential** where the **cost required** to produce hydrogen **is below** the **revenue available**

Brown, A., P. Beiter, D. Heimiller, C. Davidson, P. Denholm, J. Melius, A. Lopez, D. Hettinger, D. Mulcahy, and G. Porro. 2015. *Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results.* Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-64503

Improvements Enabling Use of Low-Cost Electricity

Leveraging of intermittent low-cost electricity can enable low-cost hydrogen production and also support grid stability.

Methodology for Estimating Otherwise Curtailed Electricity

Value of Otherwise Curtailed Electricity

Key Assumptions

- ReEDS input
 parameters to achieve
 high renewable
 energy penetration:
 - Lower renewable energy technology costs
 - Higher natural gas prices

ReEDS

- Capacity expansion model
- Competes conventional, renewable, and storage technologies
- Projects capacity, generation, and transmission portfolio for 136 U.S. balancing areas out to 2050

Supply Curve

- Value of otherwise curtailed electricity vs. amount of curtailed electricity calculated by ReEDS
- Converted to a lowtemperature electrolysis hydrogen supply curve using H2A

Economic Potential: Supply Curves

Developed supply curves using three resources

- Steam methane reforming (SMR)
- Nuclear generation
- Otherwise curtailed electricity with high penetrations of variable renewable generators on the grid and no transmission costs

Economic Potential: Demand Curves

Developed demand curves under three paradigms

Demand	Base Case (High)	H2@Scale Success (High Tech.)	Traditional Energy Focus (Low)
Metals Reshoring	Economically competitive	Willingness to pay for H2 for metals	Economically competitive
LDV	Economically competitive	Full potential at \$2.50/kg	Economically competitive
Synthetic Fuels	Economically competitive	Full potential at \$2.00/kg	Economically competitive

Economic Potential: Scenario Summary

Preliminary

	Base Case	H2@Scale Success	Traditional Energy Focus
H ₂ Use	21 MMT/yr	38 MMT/yr	17 MMT/yr
H ₂ Price	\$1.80/kg	\$1.70/kg	\$1.49/kg
Demand (MMT/yr)	Refining (8),Ammonia (3),Synthetic fuel (1),LDVs (9)	 Refining (8), Ammonia (3), Synthetic fuel (9), Metals (6), LDVs (13) 	 Refining (8), Ammonia (3), Synthetic fuel (1), LDVs (5)
Supply (MMT/yr)	 Low-temperature electrolysis (11), Existing nuclear plants (5), Existing NG reforming (5) 	 Low-temperature electrolysis (33), Existing nuclear plants (5) 	 Existing nuclear plants (5) NG reforming (8 MMT/yr from existing and 4 MMT/yr from new)
Electrolysis	10% curtailment, \$19/MWh wholesale price	25% curtailment, \$26/MWh wholesale price	No grid electrolysis

Economic Potential: Energy Use and Emissions Summary

H2@Scale can reduce emissions by up to 20% on top of baseline electricity sector emission reductions

Preliminary

Reduction Metric	Base Case	H2@Scale Success	Traditional Energy Focus
NO _x (Thousand MT)	130 (1%)	230 (2%)	61 (1%)
SO _x (Thousand MT)	33 (1%)	170 (5%)	13 (0%)
PM ₁₀ (Thousand MT)	10 (0%)	59 (2%)	4.0 (0%)
Crude Oil (Million Barrels)	470 (7%)	800 (12%)	280 (4%)
CO ₂ (Million MT)	280 (9%)	590 (19%)	110 (4%)

Conclusions and Future Work

H2@Scale can transform our energy system by providing value for otherwise-curtailed electricity and a clean feedstock for numerous industries

- Technical potential:
 60MMT H₂/yr can reduce emissions by 15%
- Economic potential:
 17-38 MMT H₂ / yr can be produced, given R&D advancements and access to low-cost intermittent power

Further analysis into regional issues and temporal issues is warranted to better quantify H2@Scale potential

www.nrel.gov

Economic Potential Analysis Caveats

- Ideal markets
- Hydrogen storage and transportation requirements and costs are negligible
- Technology improvement and market assumptions in ReEDS result in a high VRE penetration and quantity of curtailed electricity
- Electrolyzer capacity factors are estimated using coarse temporal resolution of ReEDS (16 time slices representative of entire year)
- Low-temperature electrolyzer system costs achieve a target of \$100/kW
- Nuclear-generated hydrogen costs do not include potential value to the grid in capacity and/or flexibility
- Economic rebound effects are negligible
- Additional hydrogen markets outside of our analysis may develop