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INTRODUCTION 

Wearable global positioning system (GPS) data, such as from smartphones or dedicated wearable 
data acquisition devices, reflect all travel and activities by an individual who wears or pockets 
the GPS device during the data collection period (1). It encompasses an enormous amount of car 
mode driving cycles (2, 3). Typically, wearable GPS data require two post-processing steps for 
automatic estimation of travel mode: 1) detecting (stationary) activities and (single mode) trips 
between activity locations (1, 4), and 2) identifying unique travel mode trips.  

 The mode identification step recognizes the modes of each single-mode stage based on 
the GPS trajectory characteristics (1, 5-7) and other information through pattern recognition 
methods such as machine learning methods (8-10), probability methods (11, 12), and criterion-
based methods (13, 14). It is straightforward to distinguish non-motorized modes and motorized 
modes according to GPS speed profiles because the speed of the non-motorized mode (walk, 
bike) trip is relatively lower. Within the motorized mode trips (passenger car, bus, etc.), the 
speed profiles (driving cycles) of the passenger vehicle (“car-mode”) GPS trajectories (15, 16) 
are the focus of this research. 

 It is non-trivial to accurately extract car-mode trips or driving cycles from wearable GPS 
data flagged as motorized travel. The biggest challenge is to distinguish bus-mode and car-mode 
trips. Research efforts that have leveraged supplemental reference data include geographic 
information system (GIS) information to support mode detection (11, 17, 18). However, 
dedicated road GIS reference data (19-21) and the associated traffic data (22) are not always 
available for all places, and the quality of the GIS data is not guaranteed.  

 Routing web services, such as Google Maps Directions application programming 
interface (API) (23), which offers quality GIS route information for any given location, are easily 
accessed. However, two key challenges must be overcome to use the web services. First, it is not 
easy to find the car-mode API route best matched to the actual route as drivers do not necessarily 
follow the top API-identified routes. Second, once the best-matched car-mode API route is 
found, the feature differences between the two routes must be chosen and measured. The route 
feature and prediction model selections must maximize car-mode detection accuracy.  

 To address the challenges of applying an API route for mode detection, a novel driving-
cycle detection method using a map service APIs is proposed. The method offers promising 
mode prediction results. The research makes contributions to both theory and practice. The major 
contributions include:  

(1) The method can apply to any markets or cities without maintaining a costly GIS database. 
The method directly detects driving or car mode by considering both the actual route and 
the API route features.  

(2) To apply a web service API, the proposed trajectory segmentation algorithm finds a 
“best-matched” car-mode API route corresponding to the actual route. 

(3) A logistic regression-based travel mode detection model is built by the selected route 
features, which provides an accurate prediction of probability and is flexible for 
applications with various accuracy requirements.  



3 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

METHODOLOGY 

The proposed car-mode detection method detects car-mode trips from the broader set of 
motorized mode trips, including car and bus. The major modules of this approach include 1) 
cleaning and smoothing the trip trajectory data (7, 24), 2) a trajectory segmentation algorithm, 
and 3) a logistic regression model. 

 A trajectory segmentation algorithm guarantees a best-matched API car-mode route will 
be found for the actual route. The flow chart of the algorithm is illustrated in Figure 1. It is a 
recursive procedure, which keeps separating trajectory and scoring path similarity. The algorithm 
ends when the trajectory segmentation scheme does not change through consecutive iterations. 
Each trip is divided into segments by the algorithm, and each segment satisfies the longest 
common subsequence-based similarity score criterion (24)—that for an API call using the same 
origin and destination, a topologically similar API sub-path exists. All API sub-paths constitute 
an API route corresponding to the entire trajectory (i.e., the actual route). After that, the actual 
route and the API route features (i.e., similarity score, distance, and speed) with ground truth 
travel-mode data are used to develop a logistic regression model (25) to estimate the trip mode. 
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Figure 1  Flow chart of trajectory segmentation algorithm. 

 The Caltrans wearable GPS data used in this study were collected during 2010–2012. The 
data are accessible from the National Renewable Energy Laboratory’s Transportation Secure 
Data Center (26, 27). In the data set, the travel mode to each GPS data point is given and 
considered as the ground truth.  

 Google API inputs such as origin and destination locations are directly obtained from the 
actual route start and end locations. The trajectory segmentation algorithm helps to find the 
“best-matched” API route from all API returned routes for each actual route. The Google API 
provides the “route duration in traffic” when a future departure time is assigned. In addition, the 
API route distance and duration in traffic are extracted, and the route polylines are decoded as a 
link endpoint coordinate sequence and are fed into the longest common subsequence-based 
similarity score calculation procedure to obtain the similarity score (denoted as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) of the 
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API route. Thus, the API route average speed, 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴 , can be computed as the route distance 
divided by the route duration. The actual route distance, 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,  and average speed, 
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, are directly obtained from the actual route trajectory. Thus, the maximum distance 
ratio of the actual and API route, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (distance ratio) and the maximum speed ratio of the 
actual and API route, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠 , (speed ratio) are calculated as well. 

 Therefore, the five input variables of the logistic regression model are 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠 ,  𝑠𝑠𝑠𝑠𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . The logistic regression classifier provides the 
prediction probabilities of two dependent variables, car mode or non-car mode for an actual 
route.  

FINDINGS 

The precision accuracy and recall accuracy measure the model accuracy. Precision accuracy is 
the number of correctly detected car (or non-car) trip segments divided by the total number of 
estimated car (or non-car) mode trip segments. Recall accuracy is the number of correctly 
detected car (or non-car) trip segments divided by the total number of ground truth car (or non-
car) mode segments. Table 1 illustrates that the overall accuracy of the mode estimation is about 
89%. For car-mode detection, the precision accuracy is about 90%, and the recall accuracy rate is 
roughly 95%.  

A prediction performance comparison between the raw GPS data-based fuzzy logic 
model (12) and the proposed method on the same data set is also illustrated. The comparison 
shows the proposed method significantly outperforms the raw GPS data-based fuzzy logic 
method. 
Table 1  Comparison of Mode Detection Accuracy Performance 

 Proposed method Fuzzy logic 
Mode Precision  Recall Precision  Recall 
Car 90.35% 94.93% 71.75% 85.81% 
Non-car 86.73% 76.56% 40.00% 21.88% 
Total  89.39% - 66.51% - 

 Since the logistic regression model provides a car-mode detection probability for each 
trip, it gives an opportunity to further refine car-mode detection and to boost the accuracy by 
analyzing the car-mode detection probability values. The cumulative precision accuracy at 
threshold 𝑝𝑝 is defined as the ratio of the number of correctly estimated car-mode trips within the 
total number of car-mode estimated trips under the condition that car-mode probability values for 
all estimated trips are greater than 𝑝𝑝. The cumulative precision accuracy against the probability 
threshold of car mode is plotted in Figure 2. At the high-probability portion (left-hand side), the 
curve fluctuates dramatically because of the small total number of car-mode estimates with high 
probabilities, and the cumulative precision accuracy value is sensitive to the total number of 
those trips. As the probability threshold value of car mode is reduced, the cumulative precision 
accuracy decreases. 
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Figure 2  Car mode cumulative precision accuracy. 

 In Figure 2, when the probability is greater than 0.897, the precision accuracy reaches 
99%. Based on that, the trips are categorized as a high-probability group (probability value > 
0.897) and a low-probability group (0.5 < probability value ≤ 0.897). Table 2 illustrates the detail 
accuracy performance result for high and low probability groups. The high-probability group has 
a cumulative precision accuracy of 99%, while the cumulative precision accuracy of the low 
probability group is 78.46%. Most of the route attribute variables follow the car-mode estimation 
observations introduced previously. 
Table 2  Cumulative Precision Accuracy Result for High and Low Probability Groups 
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Avg. Score 0.813 0.751 
Avg. distance ratio 1.039 1.091 
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CONCLUSION 

By using a ubiquitous and easily accessible map service API, the proposed driving-mode 
detection method uses reliable API routing information to accurately detect driving travel modes 
and derive driving cycles. The features of the API route and the actual route are used for 
developing a logistic regression classifier to predict the trip mode with high probability. The 
proposed trajectory segmentation algorithm finding a matched car-mode API route for the actual 
route is the key to leveraging the map service API. 

 The numerical experiment results demonstrate that the proposed driving-cycle detection 
method is accurate and promising. The overall mode detection accuracy rate reaches about 89%. 
The correct detection rate of car-mode trips reaches about 95%, and the detection precision 
accuracy is about 90%. Those significantly outperform the estimation results of a fuzzy logic 
method. Furthermore, a cumulative precision accuracy curve method is proposed for various 
driving-mode detection applications to help determine the best probability threshold value.  

 In addition to drive-cycle detection, the proposed car mode trip or drive-cycle detection 
method can also be applied to other travel modes (bus, rail, etc.) to improve detection accuracy 
due to the flexibility of the map service API approach to provide route information on other 
modes.  
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