

Robust PV Degradation Methodology and Application

44th IEEE Photovoltaic Specialist Conference

Washington, DC, 6/27/2017

Dirk Jordan, Chris Deline, Sarah Kurtz – NREL

Greg Kimball and Mike Anderson - Sunpower

NREL/PR-5J00-70481

Outline

❖ Motivation: Why "this the best since sliced bread" (1928)

Method: How we slice the bread.

Common headaches: Works even if the bread has problems.

Findings: Application to different types of bread.

Challenge of field data - low signal/noise ratio

How do we do this?

Method

How to slice the bread

Marriage of 2 ideas: Year-on-year + clear-sky

Year-on-year (YOY)^{1,2}

68%, 95% Confidence interval:

¹Hasselbrink et al., 39th PVSC, Tampa, FL, USA, 2013. ²Jordan et al., 43rd PVSC, Portland, OR, USA, 2016.

Clear sky modeling^{3,4}

- Clear sky irradiance models report the expected solar resource under clear conditions
- Transposition of the data converts to planeof-array (POA) irradiance
- PVLIB provides an open-source clear sky model

Bootstrap distribution

³Holmgren et al., 42nd PVSC, New Orleans, LA,2015. ⁴Stein et al., 43rd PVSC, Portland, OR, 2016.

Model clear-sky temperature

Temperature

Near Earth Observation (NEO) provides average ambient day and night temperature based on climate models

Cell temperature is a function of ambient temperature and irradiance

Final modeling details

Normalize performance ratio (PR)

$$PR = \frac{\left[P_{DC}\left(kW\right)\right]}{P_{P_{STC,rated}*} \frac{\left[Irradiance\ POA\left(\frac{W}{m2}\right)\right]}{1000\left(\frac{W}{m2}\right)} * (1 + \gamma_{tempco}*\left(\left[T_{cell}\right] - T_{ref}\right))}$$

$$PR_{CS} = \frac{\left[P_{DC}\left(kW\right)\right]}{P_{STC,rated} * \frac{\left[Clear\ Sky\ Irradiance\ POA\ \left(\frac{W}{m2}\right)\right]}{1000\left(\frac{W}{m2}\right)} * \left(1 + \gamma_{tempco} * \left(\left[T_{clear\ sky\ cell}\right] - T_{ref}\right)\right)}$$

Minimally filter out data:

- 1. Irradiance <1200 and >200 W/m2
- 2. Clearness index (measured/clear sky Gpoa) <1.1 and >0.9 -> Clear sky
- 3. Power is <99% of capacity
- 4. 3 month rolling median filter with ±30% limits Outages

Eliminate nighttime

Inverter clipping

Clear sky method: trade precision for accuracy

NREL example

precise

Use measured irradiance if sensor is well-calibrated

Common headaches

Will it work if the bread is bad or has problems?

Irradiance sensor: the biggest headache for field data

- ✓ What irradiance (temperature) sensor did you have?
- ✓ Was it calibrated?
- ✓ How often was it calibrated?
- ✓ Can you prove it?

Works even with drifting sensor!

Ratio of listed Gpoa sensor to calibrated pyranometer

Some sensors drift at 1.5 – 2 %/year!

Green interval: ca. 10 more conventional time series analyses and independent tests such as I-V measurements

Works even with data shifts

Data shift options:

- 1. Ignore \rightarrow get in trouble
- 2. Correct the data shift statistically¹
- 3. Remove second peak
- 4. Analyze separately in 2 sections

SLS: standard least square regression

¹Jordan et al., 35th PVSC, Honolulu, HI, 2010.

Works in the presence of soiling

Southern California site

Some of the soiling intervals are pointed by arrows

SLS: standard least square regression

Simple regression overestimates the degradation

Works in cloudier climates too

SLS: standard least square regression

Tradeoff: the cloudier the climate the longer the times series

For nonlinearities break series into subsection

SLS: standard least square regression

Non-linear degradation, dominated by Voc

Findings

Application to different types of bread.

Validation of method against conventional analysis

Field exposure (years)

NREL prepares quarterly reports on PV performance based on time series analyses, outdoor + indoor IV measurements.

Good agreement between new and conventional analysis

Analysis of Sunpower fleet

Divided into 3 different x-Si technologies

Interdigitated back contact (IBC) module systems showed lower median degradation rate.

Hot climate & mounting difference

One interesting example only

Disclaimer: may not be statistically representative

Desert knowledge center – Australia

BP systems, rack and roof mounted

Can achieve relatively low degradation in desert location. Mounting may have substantial impact on degradation.

Software will be free & publicly available

Software written in Python and available on Github

Beta version available later this summer!

Conclusion

- Method:
 - 1. Use YoY approach
 - 2. Use clear sky modeled irradiance (Thank you PVLIB)
 - 3. Use clear sky temperature (Thank you NASA)
- It is accurate even in most common field issues such sensor drift/problems, data shifts, soiling, non-linearities etc.

PRcs prevents poor sensors from looking like AMAZING performance!

Acknowledgments

Thank you for your attention

NREL reliability group
Michael Deceglie
Adam Shinn
Ambarish Nag
Ben Bourne
Kris Davis

National Renewable Energy Laboratory 15013 Denver West Parkway, MS 3411 Golden, CO 80401, USA dirk.jordan@nrel.gov

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory