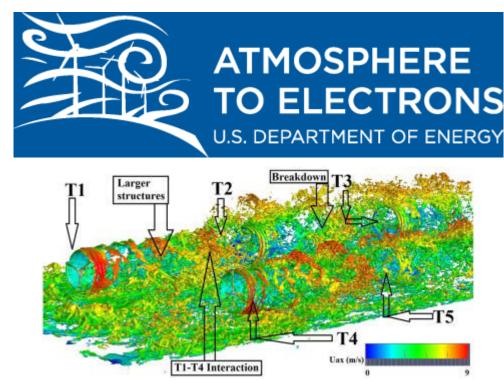
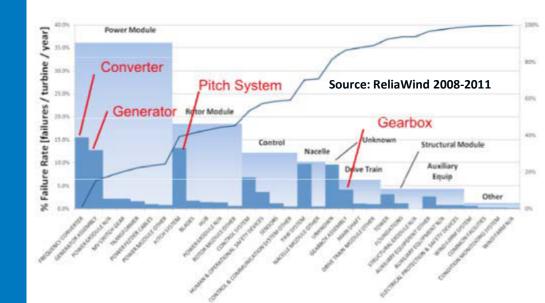


Perceived Uncertainty Sources in Wind Power Plant Design


Rick Damiani

September 13–14, 2017
Fourth Wind Energy Systems Engineering Workshop
Danish Technical University, Roskilde, Denmark


PR-5000-70653

Motivation

- Turbulent wind operation still laden with uncertainties
- Uncertainties affect design and structural reliability
- Failures still occur
- Risk/mitigation >
 levelized cost of
 energy (LCOE)
- Downtime → LCOE.

Source: Jha et al. (2015) "Unraveling the Mysteries of Turbulence Transport in a Wind Farm"

Goal and Methods

 Identify key sources of uncertainty and prioritization for research and development (R&D)

 Analysis of current procedures, industry best practice, standards, and expert opinions

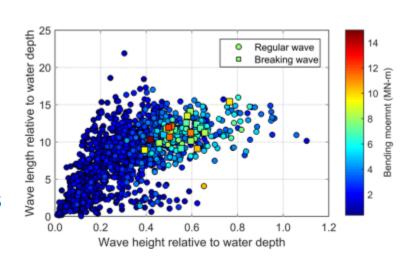
Design Criteria Identification and Ranking Table (DCIRT)

Design Criteria Identification and Ranking Table (DCIRT)

Design Criteria	Level of Un Process Physics	derstanding of the Load Modeling	Uncertainty	Expert Opinion: Impact on System Risk and Reliability
As-Built and Nonconformities	As-built nonconforming to specs Pitch errors Yaw errors Mass/inertia errors Temperature effects on material and system properties Material properties/manufacturing quality and variability Failures 'outside the box'	 Raise QA/QC level vs. design for lower QC → focus on increasing QC Cascading effects of errors (e.g., pitch/yaw) 	Uncertainty, its propagation, and impacts are known, but they do not diminish	Human error filtered by QA/QC, but not covered by PSFs
Standard Design Conditions	Dimensionality of design space Beyond tu, how do you handle other conditions (shear, veer, and so on) How do we improve turbine classes to be more representa- tive of real site conditions? Perhaps develop new design classes to address location- specific issues Offshore DLC 6.2: how can the yaw error be better defined? What is missing?	Extrapolation modeling (methods being used by OEM may be proprietary) Account for time spent under different-thanstandard conditions (stability/shear, and so on)	This ties to site suitability: mapping capacity to particular site	 V_{ref} issue as in site suitability; Current standard not explicit in the intent of goals Expected values of gust factors vs. considering uncertainty PRUF-like exercise for loads Site-suitability standards? Adjustable products are the trend: mix and match components suitable for site-specific design

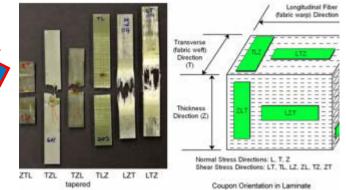
Excerpt

Uncertainty Category I



1. Inflow and Environmental BCs (direct impact on Loads)

- Turbulence spectrum, coherence, shear, veer, stability, wakes, terrain effects, wave field, higher order hydrodynamics, breaking waves
- Deterministic vs. Stochastic Turbulence parameters
- Extreme Events
- Soil-structure interaction
- Load Extrapolation.


Uncertainty Category II

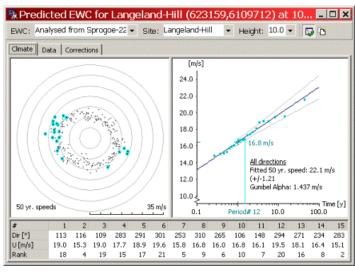
$\gamma_L L \leq \frac{R}{\gamma_R}$

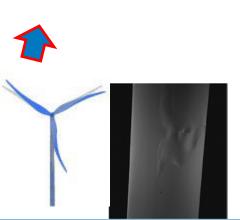
2. Material behavior and strength (direct impact on Resistance)

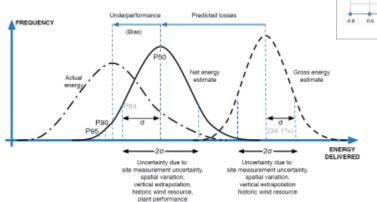
- Quality assurance and control → need codification
- Nonconformities (e.g., pitch settings, surface characteristics)
- Human error (applications outside the envelope)
- Thermal effects and humidity effects on power electronics.

Source: Sandia National Laboratories (SNL)

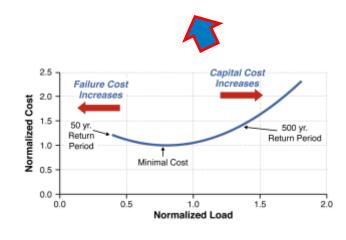
Source: Forte Renewables

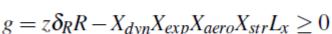

Uncertainty Category III

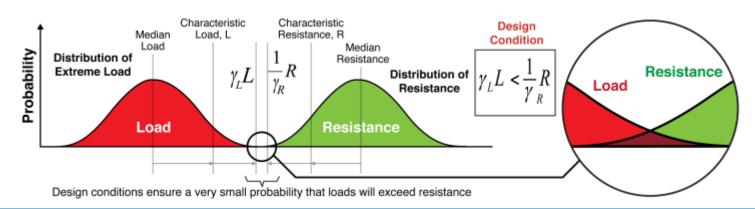

3. Site Suitability and Due Diligence


- Lack of transparency between manufacturer and independent engineer (e.g., controller algorithms, site assessment)
- New failure modes (e.g., edgewise vibrations and chordwise cracking)
- Suitability lags design progress
- Variable vs. averaged shear
- Plant underperformance
 - No correlation between predicted uncertainty and AEP predicted error.

Source: WaspEngineering

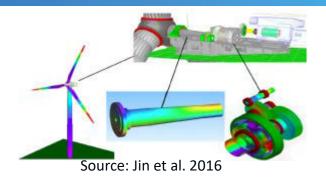

7 de 1 de		
02 0 0.2 0.4 0.6 0.8 1 Wardcal shear time	m	% increase in loads resulting from Variable method relativ to Standard method
Blade root Mx	4	0.10%
	10	0.10%
Blade root My	4	6.40%
	10	2.40%
Blade root Mz	4	1.90%
	10	3.30%
Blade root Fx	4	6.30%
	10	2.90%
Blade root Fy	4	0.00%
	10	0.00%
Blade root Fz	4	0.30%
	10	3.60%

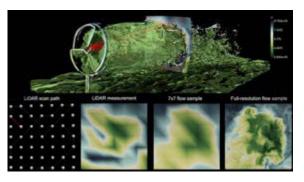

Uncertainty Category IV



4. Partial Safety Factors and Reliability Target

- Limit State Approach
- Moderate Consequence of Failure and Mid-High Cost of Safety Measures
- Partial Safety Factors Not Adequately Representing Actual Uncertainty
- Reliability-Based Design
 - Requires knowledge of uncertainty distributions and effects on design parameters
- Load Factors could be reduced if COV(X_{aero}-X_{str}) can be reduced.




Uncertainty Category V

$\gamma_L L \leq \frac{R}{\gamma_R}$

5. Computational Modeling

- Multi-fidelity Requires Risk & Uncertainty Assessment
 - Uncertainty quantification (UQ) and verification and validation (V&V)
- UQ→ Efficient and Robust Design Optimization
- Codified V&V→Prioritize Gaps and Needs for Model Improvement
- Surrogate Models
- System Management of Atmospheric Resources through Technology (SMART) Wind Plants
 - Improved load mitigation and performance.

Higher Priority Recommended Actions from DCIRT

Modeling

- → HPC + UQ + V&V → renewed basis for standards development
- Improve engineering models for "ultra-large" composite structures
- Design event definition
- Design time scale reassessment (10-min, 3-s enough?).

Site Suitability

- Account for non-mean shear and site actual conditions
- Evaluate reference wind speed and its impacts on survivability and number of shutdowns (U.S. vs. non-U.S.)
- Increase transparency OEM-IE (surrogate modeling, control strategy informed exchanges)
- Include manufacturing tolerances in the verification and certification process
- Improve understanding of damping levels.

Standards & Standard Classes

- Improve class description to reflect site-specific conditions
- Revisit partial safety factors through systems engineering of socio-techno-economic risk analyses
- o Improve definitions and modeling of shear, veer, stability
- "Load Extrapolation" assessment
- Assess soil temporal variability.

Thank you!

Acknowledgments

Attendees of the Mini-Workshop on Uncertainty in Design for Wind (July 2016):

Jomaa Ben-Hassine, Res Americas; John Bosche, Chinook Wind; John Dalsgaard Sørensen, Aalborg University/Technical University of Denmark; Katherine Dykes, NREL; Jason Fields, NREL; D.V. Griffiths, Colorado School of Mines; William Holley, former GE; Nick Johnson, U.S. Department of Energy; Mike Robinson, U.S. Department of Energy; Jason Jonkman, NREL; Lance Manuel, University of Texas; Frank Lombardo, University of Illinois; Julie Lundquist, University of Colorado; Dave Maniaci, Sandia National Laboratories; Emil Moroz, AWS Truepower; Juan Pablo Murcia, Technical University of Denmark; Walter Musial, NREL; Amy Robertson, NREL; Michael Sprague, NREL; Peter Vickery, Applied Research Associates; Rochelle Worsnop, University of Colorado at Boulder.

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for the work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office.

