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Overview of Today’s Presentations @

What fuels do What fuels ) What will work
engines should we make? | in the real world?
really want?




(

Fuel and Engine
Co-Optimization

o What fuel properties maximize
engine performance?

How do engine parameters affect
efficiency?

o What fuel and engine
combinations are sustainable,

affordable, and scalable?




Two Parallel R&D Projects
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High-level goals and outcomes  ®
Light-duty Fuels

10% fuel economy (FE) improvement* from Diversifying resource base
boosted SI and multi-mode SI/ACI

Providing economic options to fuel providers
to accommodate changing global fuel demands

Heavy-duty
Up to 4% FE improvement (worth $5B/year)*

Potential lower cost path to meeting next tier
of criteria emissions regulations

Increasing supply of domestically sourced
fuel by up to 25 billion gallons/year

Cross-cutting goals
Stimulate domestic economy

Adding up to 500,000 new jobs

Providing clean-energy options

* Beyond projected results of current R&D efforts; 2030 target. The team is actively engaging with OEMs, fuel providers,

and other key stakeholders to refine goals and approaches to measuring fuel economy improvements



Co-Optima Team
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> 100 researchers,
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Approach

Objective: identify fuel
properties that optimize engine
performance, independent of
composition,™ allowing the
market to define the best
means to blend and provide
these fuels

* We are not going to recommend that
any specific blendstocks be included in
future fuels

Aromatics
Paraffins

Alkenes
Alcohols
Fatty esters
Ketones
Furans




Research Approach to Maximizing Bioblendstock Value

e Determine fuel properties most effective
at improving the efficiency of advanced
LD and HD engines

e Establish fundamental understanding of
how properties are governed by
molecular structure

e Outline pathways for producing these
blendstocks from domestic cellulosic
biomass and similar renewable, non-food,
and surplus waste resources

e |dentify key research challenges that
must be overcome to address economic,
environmental, technology, and
market barriers



Foundational Technical Questions ®

/What fuels do What fuels What will work
engines should we make? | inthe real world?
really want?




Question 1: What fuels do engines really want? @)

Approach:

Conduct engine experiments
and simulations that
delineate fuel property
Impacts on engine
performance

Focus: boosted S| engines




Fuel Properties Impacting Boosted SlI Efficiency @)
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Foundational Technical Questions ®

What fuels do What fuels What will work
engines should we make? | in the real world?
really want?




Fuel-Property Based Approach @

Rigorous Blendstock Generate Establish Inform
Screening Evaluation Insight Bio Pathways G ELYALES

Rapidly identify Measure Develop Target properties Provide
viable candidates properties blending models to generate improved data
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Current Boosted Sl Blendstock Evaluation

©
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Properties provided by
chemical families:
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Alcohols v v 7
Furans ¢ ¢/
Alkenes v v
Aromatics v ¢
Ketones ¢ v
Cycloalkanes ¢ v
Esters v
Alkanes ¢
Ethers ¢

Blendstocks from 5 chemical
families selected for
more detailed evaluation
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RON = Research octane number ; S = Sensitivity (S = RON — MON) ; HOV = heat of vaporization



Tool Highlight: Feature Creature

Question: How do you make a given blendstock from biomass?

Approach:

Retrosynthetic analysis: reverse engineering
process to synthesize a desired product

- 15t systematic fuel property-based approach

Identified one or more biochemical and
thermochemical pathways for more than 40
high-potential blendstocks

Provides basis to evaluate conversion
pathways, identify gaps, and inform analysis
efforts

Provides pathways for evaluation, and basis
for determining whether additional pathway
development is necessary




Tool Highlight: Retrosynth

Question: How do you make a given
blendstock from biomass?

Approach:

* Retrosynthetic analysis: reverse engineer
process to synthesize a desired product

- 1t systematic property-based approach

* Have identified one or more biochemical
and thermochemical pathways for more
than 40 high-potential blendstocks

* Provides basis to evaluate conversion
pathways, identify gaps, & inform analysis

* Provides pathways for evaluation, and basis
for determining whether additional pathway
development is necessary
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Understanding Blending Effects

* Many blendstocks exhibit beneficial non-

linear blending behavior 110 : ,
Blending data

o “Effective” blending number is 106 —
higher than pure component’s N
g P P _ 102 -
* Value proposition: o —
“ 98-

o Determine molecular basis for non- | Linear blend line
linear RON and S blending 94

o ldentify bioblendstocks with greatest 90
T T T T T T T T

potential to impart advantageous
properties

Ethanol Content (v/v)



Bioblendstocks — RON Blending Behavior

®
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Non-linear blending is norm

o May be either synergistic (furans) or antagonistic (esters)



Ester Sensitivity Enhanced with Ethanol @)

isopropyl acetate

e Esters are high-RON, low S 6

blendstocks N (blendedin E10) 8
, , butyl acetate e
* Esters blended into EO impart no 4 — (blended in E10) -
octane sensitivity — \ L
m "“' *
* Blending into E10 “turns on” S < 2 Ex"

e Value proposition:

0
o ldentify mechanism behind
ethanol enhancement D iﬁ?ﬁ;ﬁgﬁl i?‘czga)\te \_)butyl cetate
o ldentify bioblendstocks that | | | | (blende in EO)|
synergistically blend with
ynergistically 0 10 20 30

ethanol to yield high S
Acetate Content (v/v)



Beneficial Properties & O @S
S &
Readily produced from biomass ¢ v v
High blending RON ¢ (145) v/ (144) ¢ (117-129)
High octane sensitivity ¢ (15) v (12) v (12-15)
High lower heating value (MJ/liter) ¢ 322) 202) 7 (24-27)
Low water solubility (g/liter) ¢ (22 (c0) 7 (0.9 - o)
Minimal impact on fuel volatility ¢ Z

* 40:60 blend of MF:DMF (by weight) ** jso-propanol, n-propanol, iso-butanol

2-methylfuran (MF)

O
H3C\U/CH3

2,5-dimethylfuran (DMF)




Readily produced from biomass
High blending RON

High octane sensitivity

High lower heating value (MJ/liter)
Low water solubility (g/liter)
Minimal impact on fuel volatility

o (145)
v (15)
v (322
v (22
v

v (144)
v (12)
(20.2)

(o)

¢ (117-129)
v (12-15)
 (24-27)
¢ (0.9- o)
4

* 40:60 blend of MF:DMF (by weight) ** jso-propanol, n-propanol, iso-butanol

Furan blends with gasoline show poor oxidative
lssues stability, high levels of gum formation, high engine

deposits, and peroxide formation

=> Conventional antioxidants perform poorly

2-methylfuran (MF)

O
H3C\U/CH3

2,5-dimethylfuran (DMF)
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Key insights: poor performance with standard antioxidants:
® Higher dose of furans vs “standard” gum-formers (diolefins)

® Fundamentally different oxidation chemistry - new antioxidants
required to interrupt key pathways

Mechanistic understanding provides opportunity to target
development of antioxidants specifically to furan reactivity
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INT1_1 INT2_
ey

G4 energies in kcal/mol relative to DMF. DAE



|dentifying Suitable HD Diesel Bioblendstocks

Accomplishment: Identified chemical families
readily derived from biomass with properties
beneficial for advanced HD diesel engines:

A A K A K A "
f”‘ssrvr¥r*

‘r’r"\-‘ et r; e

e Low soot formation, high CN,
good cold flow properties

Systematic assessment identified chemical
families with advantageous properties:

cyclic esters
cyclic alkanes

e Esters, alkanes, alkenes, and i
normal alcohols

polyethers

Relevance: Results help narrow search
space for high-value MCCI bioblendstocks




Predicting Soot to Guide Bioblendstock Identification @
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Predicting Soot to Guide Bioblendstock Identification

Predictive machine learning tool developed 10°
to rapidly estimate sooting propensity of
oxygenated blendstocks

—5
o
w

Quantitative structure—activity relationship
(QSAR) model of sooting tendency based
on the experimental yield sooting index (YSI)

YSI (Predicted)
S

Molecules poorly predicted by model indicate

presence of complex sooting mechanisms 10'
which have been interrogated with quantum
chemistry calculations

10°

Relevance: Tool allows for rapid screening of
new blendstocks on basis of sooting tendency

BN R | AR
10’ 10? 10° 10°
YSI (Measured)

27



Foundational Technical Questions ®

What fuels do What fuels What will work\
engines should we make? | in the real world?
really want?




The Role of Analysis in Co-Optima ©)

Bioblendstock Level

What are the scalability, cost, and
environmental drivers?

Is a given bio-blendstock viable

- P\ in the near term?

A What are the key research
challenges that must be overcome?

\

Transportation Sector Level

What will be the influence on fleet:
e Energy consumption
e Emissions - air pollutants, GHG
e Water consumption

What are potential impacts on
infrastructure?

Feedstock Supply

How can companion markets
build feedstock supply and
¥ what will be price impact?

Refinery Integration

What would the value proposition
be to a refiner for integrating
a certain bioblendstock?



Goal: Identify Key Bioblendstock Research Challenges

®

s

\.

Technology
Readiness

S

State of technology:
Fuel production

State of technology:
Vehicle use

Conversion technology
readiness level

Feedstock sensitivity
Process robustness
Feedstock quality

# of viable pathways

@ Environmental

Carbon efficiency
Target yield

Life cycle greenhouse
gas emissions

Life cycle water

Life cycle fossil
energy use

9 Economics

Target cost

Needed cost reduction
Co-product economics
Feedstock cost

Alternative high-value
use

J

@ Other Factors

Regulatory requirements
Geographic factors
Vehicle compatibility

Infrastructure
compatibility

Assessed only for blendstocks
produced from biomass

A

A

Assessed for both fossil
and renewable blendstocks®



Summary

* Co-Optima research and analysis have
identified fuel properties that enable
advanced LD and HD engines

e There are a large number of blendstocks
readily derived from biomass that possess
beneficial properties

e Key research needs have been identified
for performance, technology, economic,
and environmental metrics



Thank You!
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