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Efficient Optimization of Large Wind Farms for Real-Time Control

Jennifer Annoni,1 Christopher Bay,2,3 Timothy Taylor,2 Lucy Pao,3 Paul Fleming,1 Kathryn Johnson1,2

Abstract— Wind turbines in a wind farm typically operate
individually to maximize their own performance regardless
of the impact of aerodynamic interactions on neighboring
turbines. Properly coordinating turbines, by operating some
turbines suboptimally, within a wind farm has the potential
to improve overall wind farm performance. Computing the
optimal control strategy under varying atmospheric conditions
can be computationally intense for large wind farms. As wind
power farms increase in size and related models become more
complex, computationally efficient algorithms are needed to
perform real-time optimization and control. This study proposes
a distributed optimization framework and computationally
efficient wake steering wind farm control strategy that uses
the yaw angle of a turbine to alter the behavior of a turbine
wake and minimize turbine interactions. This computational
efficiency allows the strategy to be feasible for real-time control.

I. INTRODUCTION

Wind farm control can be used to achieve a number of
objectives including increasing power production in a wind
farm and the lifetime of turbines in a wind farm, and tracking
power reference signals to improve wind integration into
the energy grid. This paper focuses on increasing the power
production of a wind farm by operating some wind turbines
suboptimally to improve the performance of the entire wind
farm [1]–[4]. Many studies have shown that operating all
turbines at their own locally optimal operating point leads to
suboptimal global performance [5], [6]. One common wind
power plant control strategy in literature is known as wake
redirection or wake steering. There has been a significant
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amount of work done on wake redirection that shows this
method has potential to increase power production [2], [3],
[7], [8]. Wake redirection typically uses the yaw drive of the
turbines to redirect the flow around downstream turbines.
Various computational fluid dynamics simulations and wind
tunnel experiments have shown that this method can increase
power without substantially increasing turbine loads [3], [9],
[10]. Standard wind farm control approaches use a look-up
table based on offline optimization results [7]. This approach
breaks down when individual turbines are unavailable due to
maintenance. For small wind farms, an optimization can be
performed in real time and adapt to changing atmospheric
and turbine conditions. However, as wind farms increase
in size, computationally efficient algorithms are needed to
perform real-time optimization and control.

Distributed optimization and control provides a framework
for efficient computation of large systems. For example, these
types of controls have been used for multiagent systems and
can be used to coordinate subsystems to interact with their
larger environment [11]–[13]. This approach has also been
used to evaluate the optimal power flow on the grid [14].
Distributed optimization has also been considered in wind
farm controls literature [15]–[17]. However, the complex
aerodynamic interactions and large timescales make this a
challenging problem. For example, a distributed optimization
framework for wind farm controls has been presented by
[18]. Yet, solving this problem becomes computationally
complex as the system grows because of the number of
turbines and larger flow domains. A limited-communication
distributed model predictive controller is described in [19] to
track a power reference signal, which uses a simplified lin-
earized wake model to describe turbine interactions, allowing
for scalability.

This paper focuses on a distributed optimization frame-
work that enables the real-time optimization that is much
more difficult to achieve using centralized optimization
techniques. In this paper, the wind farm is modeled using
a nonlinear steady-state model described in Section II-A.
Typically, the optimization problem is formulated as a global
optimization, including all of the turbines in a wind farm, as
described in Section II-B. However, this paper demonstrates
that a wind farm can be modeled as a distributed system
by dividing it into subsets based on wake interactions.
This distributed problem is solved using the alternating
direction method of multipliers (ADMM) [20], described in
Section III. Next, this distributed optimization framework
is demonstrated via simulation of the Princess Amalia off-
shore wind farm, consisting of 60 turbines (Section IV)
and presented in previous studies [21]. The results show a
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significant reduction in computation time without sacrificing
the overall power gain of the wind farm when comparing
finite-difference gradient-based techniques, shown in Sec-
tion V. Finally, we conclude by discussing the implications of
increased computational efficiency and propose future work
in Section VI.

II. BACKGROUND

This section briefly describes the wind turbine wake model
used in this paper as well as the full optimization problem
used for wake redirection control.

A. Wind Turbine Wake Model

A wind turbine wake model is used to characterize the
aerodynamic interactions in a wind farm. The model used
for this work was introduced by several recent papers in-
cluding [22]–[26]. This model uses a Gaussian wake shape
to describe the velocity deficit behind a turbine and includes
the effects of turbulence in the wake and local atmospheric
conditions. The Gaussian wake is based on self-similarity
theory used in free shear flows [27]. An analytical expression
for the three-dimensional velocity deficit behind the turbine
in the far wake can be derived from the simplified Navier-
Stokes equations:

u(x, y, z)

U∞
= 1− Ce−(y−δ)2/2σ2

ye−(z−zh)2/2σ2
z (1)

where u is the velocity in the wake, U∞ is the free-stream
velocity, x is the streamwise direction, y is the spanwise
direction, δ is the wake centerline, z is the vertical direction,
zh is the hub height, σy is the wake expansion in the y
direction, σz is the wake expansion in the z direction, and
C is the velocity deficit at the wake center. These parameters
are further defined in [23].

A wake deflection model used to describe the turbine
behavior in misaligned conditions is also implemented based
on [23]. The wake deflection angle at the rotor is defined as:

α ≈ 0.3γ

cos γ

(
1−

√
1− CT cos γ

)
(2)

where γ is the yaw angle of the turbine and CT is the thrust
coefficient determined by turbine operating parameters, such
as blade pitch and generator torque. The initial wake deflec-
tion, δ0, is then defined as:

δ0 = x0 tanα (3)

where x0 indicates the length of the near wake, which is
typically on the order of 3 rotor diameters. A full description
of the wake deflection can be found in [23].

Lastly, a turbine model is used in this wake model to
provide a realistic description of turbine interactions in a
wind farm. The turbine model consists of a power coefficient,
CP , and thrust coefficient, CT , based on wind speed and
constant blade pitch angle. The coupling between CP and
CT is critical in understanding the benefits of wind farm
controls. In other words, each turbine is free to operate at its
own CP and CT based on local conditions.

𝛾 

𝛼 
𝛿 

𝑈∞ 

𝑥 

𝑦 

Fig. 1: Two-turbine example of wake redirection control,
where γ denotes the yaw angle of the upstream turbine,
α denotes the deflection angle, and δ denotes the wake
deflection. The black dashed lines represent the wake of
the upstream turbine under nonyawed conditions and the red
lines denote the wake of the upstream turbine under yawed
conditions.

The steady-state power of each turbine under yaw mis-
alignment conditions is given by [28]:

P =
1

2
ρACP (cos γ)pu3 (4)

where ρ is the air density, A is the rotor area, cos γp is a
correction factor added to account for the effects of yaw
misalignment, and p is a tuneable parameter that matches
the power loss caused by the yaw misalignment seen in
simulations. In actuator disk theory [28], p = 3. However,
based on large-eddy simulations, the turbine power in yaw
misalignment has been shown to match the output with
p = 1.88 when using the National Renewable Energy
Laboratory’s 5-MW wind turbine [2].

B. Optimal Wind Farm Control

As stated previously, wake steering or wake redirection
control uses the yaw drive of a turbine to deflect a turbine’s
wake away from the downstream turbine. This section de-
scribes the centralized yaw optimization problem for a two-
turbine array, shown in Fig. 1. In practice, this is extended
to many turbines in a wind farm.
P1 and P2 denote the power from the upstream turbine

and downstream turbine, respectively. In this study, the
blade pitch and generator torque of the turbines operate
at the optimal operating point of the individual turbine
[29]. The power generated by the upstream turbine depends
on the local inflow wind speed, U∞, and its yaw angle,
γ1. The power generated can be expressed using Eq. (4).
Therefore, the power generated by the upstream turbine
can be expressed as a function of the inflow velocity and
the yaw angle, P1(γ1, U∞). Because the yaw angle of the
upstream turbine can be used to steer the wake into or
away from the downstream turbine, the power of the second
turbine is now a function of the yaw angle of the upstream
turbine, γ1. The power generated by the downstream turbine
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is now expressed as P2(γ1, γ2, u), where u is the disturbed
local incoming velocity to the downstream turbine. The total
power generated by the two-turbine array is given by:

Ptot(γ, U∞, u) = P1 (γ1, U∞) + P2 (γ, u) (5)

where the vector γ := [γ1 γ2]T . A similar approach can
be applied for an N -turbine array, where the power of each
turbine can be written as Pi (γ, U∞, u), where γ consists
of yaw angles of all upstream turbines. The main objective
of wake redirection is to maximize the total average power
output:

minimize
γ

f(γ) = −Ptot (γ, u) (6)

where γ includes all N turbines. This optimization problem
assumes a constant, free-stream velocity, U∞, which is a
steady-state formulation. Future work will include a more
realistic inflow velocity in which the free-stream velocity
is unsteady and turbulent. In this paper, the objective is
to maximize the steady-state power generated by the wind
farm. However, yaw misalignment can cause significant
structural loads to the turbines, thereby the optimization
problem presented in this section can be extended to include
constraints on the loads. The inclusion of loads is considered
outside the scope of this paper.

It should be noted that, for small wind farms, this opti-
mization can be computed in real time and adapt to changing
atmospheric conditions. However, as wind farms increase
in size, computationally efficient algorithms are needed to
perform real-time optimization and control.

III. DISTRIBUTED OPTIMIZATION OF WIND FARMS

In this section, we describe a distributed optimization
framework that can significantly reduce computation time
by taking advantage of the spatial distribution of the turbines
within a wind farm. This section describes the procedure for
setting up and solving this distributed optimization problem.

A. Wind Farm Network

A wind energy farm can be represented as a directed net-
work, wherein each turbine represents a node in the network
and the aerodynamic interactions between turbines can be
represented as edges of this directed network. The wind
farm is a directed network because actions of the upstream
turbines affect the downstream turbines, but downstream
turbine actions do not affect upstream turbines. A weight
is typically assigned to each edge indicating the strength of
interactions between nodes [30]. For the wind farm problem,
the weight of each edge is assigned based on the strength
of the wake impacting the downstream turbine. The weights
are determined by three factors: (1) distance downstream,
(2) area overlap based on thresholding, and (3) operating
points of the upstream turbines. The operating point of an
upstream turbine determines the wake characteristics and can
significantly affect the strength and size of the wake. The
edge weights are defined as:

wi,j =
Aoverlap
x/D

(7)

where i denotes the upstream turbine, j denotes the down-
stream turbine, Aoverlap represents the overlap of the wake
of turbine i to the rotor disk of turbine j, x is the downstream
distance between turbines i and j, and D is the rotor diameter
assumed to be the same for all turbines. Depending on
turbine operation, the wake can expand faster or slower,
which affects the area overlap of the wake at the downstream
turbine. Future work will consider the strength of the wake
as a part of the weighting definition.

Based on these weights, a wind farm can be divided
into subsets. Subsets can be determined by many different
approaches including nearest neighbor, connectivity, hierar-
chical, or k-means algorithms [31]. To define the members
of each subset, the magnitude of the interactions between
turbines, wij , is considered. Specifically, a lead turbine of
a subset is identified as a turbine experiencing free-stream
velocity, U∞. The turbines that are impacted by the lead
turbine are combined into a subset based on their weights.
A turbine can belong to multiple subsets depending on
the strength of the interaction between wind turbines. By
defining smaller subsets, large optimization problems can be
solved in a distributed, tractable way.

B. Distributed Optimal Wind Farm Control Problem

Once the turbines are grouped into subsets, a distributed
optimization algorithm is used to solve the optimization
problem. In this study, the power throughout the wind farm
is maximized among subsets:

minimize
γ

Ns∑
n

f(γn) = −Pn(γ, u) (8)

where n refers to different subsets in the wind farm, Ns
represents the total number of subsets identified in the wind
farm, and γn denotes the yaw angles of all of the turbines
in the n-th subset. Each subset of turbines has a fraction of
the number of turbines in the wind farm and each subset
can solve their own optimization problem independently in
significantly less time than it takes to run a full optimization
of the large wind farm. In addition, each subset optimization
can be solved in parallel, further reducing computational
cost. If the subsets share a node, as is likely in the wind farm
example, then an iterative approach that takes into account
these shared nodes is implemented. This approach is detailed
in the next section.

C. Alternating Direction Method of Multipliers Algorithm

ADMM is a popular technique used in literature to solve
distributed optimization problems [20]. This algorithm is
particularly useful in this case, as each individual subset
solves its own optimization, communicates the solution to
neighboring subsets, and iterates this process until the wind
farm has converged and each shared node has reached
a single value. For example, if two subsets contain the
same turbine, this algorithm converges to one yaw angle
for that turbine. This algorithm was adopted from [32],
where ADMM is used to solve a network optimization with
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connecting nodes to determine a consensus between the
shared nodes.

Equation (8) does not account for shared nodes between
subsets. This section extends Eq. (8) to include a penalty term
on the shared nodes such that the shared nodes eventually
agree on a value and the network as a whole converges. Thus,
the distributed wind farm optimization problem is posed as:

minimize
Ns∑
n

fn(γn) + λ

Ns∑
p

∑
k∈Ωnp

‖γk − zk‖2

 (9)

subject to γk = zk, where Ωnp = {Tn|Tn ∈ Ωn ∩ Ωp}
(10)

where f(γn) is the power of each cluster, Ns is the number
of subsets, γn are the yaw angles of all the turbines each
subset n, λ is the user-defined constant that penalizes shared
nodes, p defines a subset that shares a node with subset n,
and k denotes the individual turbine that is shared between
subset n and p. Ωnj describes the nodes that are shared
between each subset and Ti represents the turbine number
in the wind farm. Lastly, z is a copy of γ, such that we can
ensure that the duplicate nodes converge to the same value.

The distributed optimization problem in Eq. (9) is solved
iteratively using ADMM by minimizing the augmented La-
grangian:

Lρ(γ, z, u) =

Ns∑
n

fn(γn) + λ

Ns∑
p

∑
k∈Ωnj

‖γk − zk‖2


(11)

+

Ns∑
n

(
(ρ/2)‖ψn‖22 + (ρ/2)‖γn − zn +ψn‖22

)
(12)

separately with respect to γ and z followed by an update of
the scaled dual variable, ψ:

γm+1 = argmin
γ

Lρ(γ, zm, ψm) (13)

zm+1 = argmin
z

Lρ(γm+1, z, ψm) (14)

ψm+1 = ψm + (γm+1 − zm+1) (15)

In this formulation, each update/iteration, denoted by m, is
separable and can be performed in parallel where:
γ-update

γm+1
n = argmin

γ
fn(γn)+(ρ/2)‖γn−zmn +ψmn ‖22 (16)

z-update:

zm+1
n = argmin

z
λ

Ns∑
p

∑
k∈Ωnj

‖γk − zk‖2 (17)

+(ρ/2)‖γm+1
n − zkn +ψmn ‖22 (18)

ψ-update:

ψm+1
n = ψmn + (γm+1

n − zm+1
n ) (19)

(a) Wind direction = 270◦

(b) Wind direction = 315◦

Fig. 2: Steady-state flow field of the Princess Amalia wind
farm computed using the wind turbine wake model described
in Section II-A.

It is important to note that this is a nonconvex problem
and each individual γ and z update is solved using standard
gradient-based optimization algorithms. This paper uses the
finite-difference gradient-based sequential least squares pro-
gramming technique, commonly referred to as SLSQP [33].

IV. SIMULATION SETUP

To demonstrate the distributed optimization framework
described above, we use the Princess Amalia wind farm
[34]. This wind farm has 60 turbines that are simulated as
the National Renewable Energy Laboratory’s 5-MW turbine
[35] encountering a wind speed of U∞ = 7 m/s. We show
results using two different wind directions to demonstrate the
changing turbine interactions throughout the farm.

First, the wind direction is simulated from 270◦ (west); see
Fig. 2a. Here, the upstream turbines are heavily impacting
downstream turbines. Subsets are easily defined in this case,
with few interactions between subsets as shown in Fig. 3.
The dark black lines indicate strong interactions between
turbines. The lighter lines indicate weaker interactions. Only
turbine 47 belongs to two subsets in this wind direction.

Second, the wind direction is simulated from 315◦ (north-
west), where the turbines have a smaller effect on down-
stream turbines, but each turbine affects more turbines. As a
result, the subsets are larger and have more interconnections
that must be taken into account when solving the distributed
optimization problem.

V. OPTIMIZATION RESULTS

The distributed optimization algorithm was implemented
on a desktop computer and run in serial. The distributed
results presented in this section can be significantly sped up
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Fig. 3: Turbine interactions in a wind farm when the wind
direction is 270◦. The darker lines represent stronger inter-
actions.

Lead Turbines in Subset
0 9, 22, 36, 50, 58
1 10, 23, 37, 51, 59
2 11, 24, 38, 52
3 15, 28, 42, 55
4 16, 29, 43, 56
5 17, 30, 44, 57
6 18, 31, 45
7 19, 32, 46
8 21, 35, 49
12 25, 39, 53
13 26, 40, 47
14 27, 41, 54
20 33, 47
34 48

TABLE I: Subsets of turbines in the Princess Amalia wind
farm when wind direction = 270◦. Bold numbers indicate
that that particular node is shared with another subset.

Optimization Performance Gain Computation Time
Centralized 17.8% 4900 s
Distributed 17.7% 102 s

TABLE II: Distributed algorithm performance with a wind
direction of 270◦.

by running the optimization in parallel. Future work will
address this issue.

First, the Princess Amalia wind farm was optimized with
a wind direction of 270◦. Using Eq. (7), the weights between
turbines, indicating the overall impact of each upstream tur-
bine on a downstream turbine, were computed. The weights
are shown in Fig. 3 for a wind direction of 270◦ (top). Darker
lines indicate that the interactions are strong. Lighter lines
indicate that the interactions are weaker. Once the weights
are determined, the wind farm is grouped into subsets. Table I
shows the resulting subsets when the wind direction is 270◦.
The lead turbine indicates the turbine in the front of the
subset relative to the wind direction. As shown in Table I,
no subset contains more than six turbines (including the
lead turbine). Optimizing each individual group is compu-
tationally inexpensive and significantly decreases the overall
computation time. Table II shows the power gain computed
using the distributed optimization algorithm compared with
the centralized optimization problem described in Section II-
B. The centralized system was solved using the same finite-

Fig. 4: Turbine interactions in a wind farm when the wind
direction is 315◦. The darker lines represent stronger inter-
actions.

Lead Turbines in Subsets
0 3, 8, 14
1 4, 8, 9, 14, 15, 21, 27, 34
2 5, 9, 10, 15, 16, 21, 22, 27, 28, 34, 35, 41, 48
6 11, 16, 17, 22, 23, 27, 28, 29, 34, 35, 36, 41, 42, 48, 49, 54
7 12, 18, 23, 24, 29, 30, 35, 36, 37, 41, 42, 43, 48, 49, 50, 54, 55
13 19, 25, 30, 31, 37, 38, 42, 43, 44, 49, 50, 51, 54, 55, 56, 58
20 26, 32, 38, 39, 44, 45, 50, 51, 52, 55, 56, 57, 58, 59
33 40, 46, 52, 53, 57, 58, 59
47 None

TABLE III: Subsets of turbines in the Princess Amalia wind
farm when the wind direction = 315◦. Bold numbers indicate
that that particular node is shared with another subset.

Optimization Performance Gain Computation Time
Centralized 0.78% 2950 s
Distributed 0.52% 257 s

TABLE IV: Distributed algorithm performance with a wind
direction of 315◦.

difference gradient-based optimization technique, SLSQP, as
the distributed system. It can be seen that the distributed
optimization produced similar results; however, the time
to compute those results was 40 times less than in the
centralized case. At a wind direction of 270◦, there is sig-
nificant potential for power gain—up to 17% by redirecting
wakes using the yaw drive of the upstream turbines. It is
important to note that the distributed results converge to the
centralized results with a sufficient number of m iterations
of the ADMM algorithm described in Section III.

Next, simulations were run with a wind direction of 315◦.
Fig. 4 shows that there are numerous interactions between
many different turbines. Further, the subsets defined in this
case have many more overlapping turbines. The results of
the subset groupings are shown in Table III. Again, the bold
numbers indicate the overlapping turbines in each subset. The
computational cost of the distributed algorithm is higher in
the 315◦ wind direction case because of the larger subsets
and number of overlapping members of each subset. The
larger number of iterations are required to ensure that the
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overlapping members converge to the same solution. The
centralized system took less time than the previous case
because there were weaker wake interactions that could not
be controlled by wake redirection. In most cases, the wakes
were sufficiently far to one side of the turbine. This relatively
small amount of wake interaction is further demonstrated in
the overall power gained in this scenario (i.e., less than 1%).
As with the previous case, the distributed algorithm results
in similar performance gains as compared to the centralized
system, again, at a fraction of the computational cost as
indicated in Table IV.

VI. CONCLUSIONS

This paper describes a computationally efficient distributed
algorithm to maximize the power within a wind farm us-
ing wake redirection control. The results indicate that this
algorithm can provide similar power gain results, but at a
fraction of the computational cost when compared to solving
a fully centralized optimization. Reducing the computational
cost of the overall optimization allows for these wind farm
control strategies to be deployed in real time. Future work
will include moving toward dynamic modeling and closed
loop control using this type of approach. In addition, we
will be incorporating the trade-offs between increasing power
and reducing loads in this framework to improve the overall
performance of a wind farm.
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