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Abstract

Under a collaborative interagency agreement between 
the U.S. Environmental Protection Agency and the 
U.S. Department of Energy (DOE), the National 

Renewable Energy Laboratory (NREL) performed a series of 
in-depth analyses to characterize on-road driving behavior 
including distributions of vehicle speed, idle time, accelera-
tions and decelerations, and other driving metrics of medium- 
and heavy-duty vocational vehicles operating within the 
United States. As part of this effort, NREL researchers 
segmented U.S. medium- and heavy-duty vocational vehicle 
driving characteristics into three distinct operating groups 
or clusters using real-world drive cycle data collected at 1 Hz 
and stored in NREL’s Fleet DNA database. The Fleet DNA 
database contains millions of miles of historical drive cycle 
data captured from medium- and heavy-duty vehicles 

operating across the United States. The data encompass 
existing DOE activities as well as contributions from valued 
industry stakeholder participants. For this project, data 
captured from 913 unique vehicles comprising 16,250 days of 
operation were drawn from the Fleet DNA database and 
examined. The Fleet DNA data used as a source for this 
analysis has been collected from a total of 30 unique fleets/
data providers operating across 22 unique geographic loca-
tions spread across the United States. This includes locations 
with topographies ranging from the foothills of Denver, 
Colorado, to the flats of Miami, Florida. This paper includes 
the results of the statistical analysis performed by NREL and 
a discussion and detailed summary of the development of the 
vocational drive cycle weights and representative transient 
drive cycles for testing and simulation. Additional discussion 
of known limitations and potential future work is also included.

Introduction

In August of 2011, the U.S. Environmental Protection 
Agency (EPA) and the National Highway Traffic Safety 
Administration (NHTSA) adopted a set of national stan-

dards to reduce greenhouse gas (GHG) emissions and improve 
fuel efficiency of medium-duty (MD) and heavy-duty (HD) 
trucks [1, 2, 3, 4]. The jointly developed under the Energy 
Independence and Security Act, and the Clean Air Act, the 
GHG standards included the establishment on limits for 
carbon dioxide, nitrous oxide, and methane emissions. These 
limits would be enforced on model year 2014-2018 vehicles 
and have come to be known as Phase 1 of the national GHG 
regulatory program. The development of the Phase 1 standards 
provided EPA, NHTSA, and the state of California with a set 
of fully aligned regulations, allowing manufacturers to build 
a single fleet of vehicles and engines for the U.S. market.

Soon after implementation of the Phase 1 regulations, in 
response to the President’s Climate Action Plan in February 
of 2014, President Obama announced efforts to update existing 
MD/HD vehicle regulations in Phase 2 of EPA’s national GHG
program [5, 6, 7]. As part of the EPA’s proposed Phase 2 rule-
making, the U.S. Department of Energy (DOE) and EPA part-
nered to support a targeted project to refine and evaluate 
appropriate duty cycles for tractor-trailers and vocational 

vehicles to be used as part of MD/HD vehicle certification 
procedures for GHG emission standards. The National 
Renewable Energy Laboratory (NREL) has provided technical 
support utilizing DOE Vehicle Technologies Office-supported 
data, tools, and expertise to assist these efforts.

NREL’s experience with large transportation database 
projects, including Fleet DNA [8] and the Transportation 
Secure Data Center [9], provide the prerequisite capabilities 
for tackling data-intense problems. Additionally, NREL’s data 
analysis tools including the Drive Cycle Rapid Investigation, 
Visualization, and Evaluation tool (DRIVE) [10, 11], are used 
to distill large volumes of on-road vehicle data into statistically 
representative subsets suitable for testing and evaluation 
purposes. While the data contained in both Fleet DNA and 
the Transportation Secure Data Center may not be statistically 
representative of the entire U.S. population of commercial 
vehicles across all vocations, vehicle builds, and applications, 
NREL researchers believe this to be the most extensive 
database used to date to generate representative drive cycles. 
These skill sets combined with NREL’s long-standing efforts 
in evaluating the on-road performance of conventional and 
advanced technology MD/HD vehicles for large commercial 
fleets are valuable tools to provide enhanced information for 
the EPA Phase 2 GHG rulemaking.
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Segmenting the U.S. 
Vocational Vehicle 
Population
NREL researchers utilized a set of eight metrics describing 
each drive cycle to define representative segments through 
cluster analysis. Principal components analysis (PCA) and 
cross-correlation analysis were used to identify which of these 
eight metrics provide the greatest amount of information on 
which to support segmenting vehicle drive patterns. Cluster 
analysis was used to find an optimal grouping of vehicle drive 
cycles given these metrics. Finally, a resampling scheme was 
developed to explore possible impacts of sample bias in the 
Fleet DNA data set on the resulting segmentation.

The metrics in this study were chosen given their role in 
previous NREL research to characterize impacts of drive cycle 
on vehicle fuel economy and emissions production. The 
metrics used in the analysis were:

•• Aerodynamic Speed (ft/s) (AS) - Describes the positive 
tractive energy required to overcome aerodynamic drag 
per unit distance over a given drive cycle. It is defined as:

	
AS

pos velocity velocity g h h

D
i

N

i i i i

=
´ -( ) + ´ -( )

=

-

+ +å 1

1

1 1
1

2
(

	

•• Where: D = drive cycle cumulative distance (ft)

•• g = gravitational constant (ft/s2)

•• h = height of vehicle indexed from start of drive cycle in 
time by i (ft)

•• velocity = speed of vehicle indexed from start of drive 
cycle in time by i (ft/s)

•• pos = positive only values

•• Characteristic Acceleration (ft/s2) (CA) - Describes the 
positive tractive energy required to accelerate/raise a 
vehicle per unit distance over a given drive cycle. It is 
defined as:
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•• Where: D = drive cycle cumulative distance (ft)

•• t = drive cycle time indexed from start of drive cycle in 
time by i (s)

•• v = speed of vehicle indexed from start of drive cycle in 
time by i (ft/s)

•• Percent of total cycle distance accumulated at speeds 
below 55 mph

•• Percent of total cycle time duration accumulated at 
vehicle speeds of 0 mph

•• Number of vehicle stops per mile

•• Mean (nonzero) driving speed (mph)

•• Maximum driving speed (mph)

•• Standard deviation of (nonzero) driving speed (mph).

For this analysis, NREL utilized a collection 16,250 daily 
drive cycles from 913 vehicles. Among those vehicles, 108 
(5,071 cycles) are long-haul trucks with sleeper, and 754 (10,765) 
are vocational vehicles as shown in Figure 1. Also contained 
in the database are 51 vehicles (414 cycles) classified as unknown 
vocation but possessing drive cycle data. Results for the entire 
sample population, as well as detailed results for the vocational 
segment, will be presented in the following subsections. 
Additionally, for the vocational segment, resampling of the 
database based on reliable estimates of the true vehicle popula-
tion in the United States was performed to ensure the sample 
data set possessed a composition that is representative.

Performing Statistical 
Analysis
To explore the variability in the eight-metric data set, NREL 
researchers performed a pairwise correlation and a PCA on 
the Fleet DNA data set.

Linear Dependence and 
Correlation
A correlogram (Figure 2) gives a visual indication of the 
degree of linear correlation (dependence) between each 
combination of variables and can be used to select an inde-
pendent subset among a large number of potential variables. 
The variables examined include average driving speed (mean 
speed), aerodynamic speed (AS Std), maximum driving speed 
(max speed), standard deviation of driving speed (Speed SD), 
percentage of total cycle time at zero speed (% Zero), number 
of stops per mile (Stop/Mile), characteristic acceleration (CA 
Std), and percentage of total drive cycle mileage accumulated 
below 55 mph (% < 55). For instance, one can see from this 
plot that mean speed and percentage below 55 mph are 
strongly inversely correlated as shown by the dark red box 
and pie chart, while the mean speed and the aerodynamic 
speed (AS Std) are highly positively correlated as shown by 
the dark blue box and pie chart.

 FIGURE 1  Sample composition
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Principal Component Analysis
The PCA is a dimensionality reduction process that allows us 
to describe a higher dimensional data set with a smaller 
number of dimensions that can be easily visualized (e.g., in 
two dimensions). In PCA, each observation can be described 
by a weighted sum of orthogonal loadings (Eigen vectors; 
principal components). As its focus is dimensionality reduc-
tion, the orthogonal loadings are always fewer than the 
number of starting dimensions.

A PCA on the eight metric drive cycle data set suggests 
that two components are able to describe 75% of the variance 
in the complete data set. The first four components are able 
to describe 91% of the variance, and the first six components 
describe 99%. As each component is a weighted sum of the 
eight metrics, each component contains information from 
some combination of the metrics and some are weighted more 
heavily than others. All eight components together would 
reproduce the original eight-dimensional data exactly.

Tables 1 and 2 give the PCA loadings (rotation) for all 
vehicles and for vocational vehicles, respectively. The first prin-
cipal component (PC1) describes the greatest amount of 
variance in the data using primarily driving speed and standard 
deviation. The second principal component (PC2) most heavily 
weights the percentage of time spent at zero mph. These metrics 
are heavily weighted in the first two components because they 
account for the greatest degree of variance among the samples. 
Figures 3 and 4 show how the population of drive cycle char-
acteristics is distributed in a two-dimensional PCA space for 
all vehicles and for vocational vehicles, respectively. Each point 
describes the position in the feature space and hence describes 
the driving characteristics for one day of driving for one vehicle. 
In this figure, some vocational categories are more distinct in 
their characteristics than others-Transit (which includes school 
buses) and Haul vehicles are most similar within their catego-
ries (i.e., are most tightly and consistently clustered) although 
the variance within those groups is relatively high. Refuse and 
transit vocations stand out in their usage as compared to the 

rest of the sample. In both plots the rotation of a subset of 
underlying variables is given at the center of the plot. Note that 
with vocational vehicles, the optimal PCA loadings are slightly 
different and the second component (PC2) changes sign, which 
causes the resulting plots to appear flipped relative to one 
another. In both plots, there are two modalities visible in this 
data set that appear to be largely differentiated by maximum 
speed and variability in speed, with a large cluster of mixed-
mode driving somewhere in between.

Drive Cycle Clustering
NREL researchers aimed to group similar drive cycles and 
derive representative drive cycle characteristics based on 

 FIGURE 2  A correlogram for the eight metrics
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TABLE 1 Principal component loadings (all vehicles)

Variable PC1 PC2 PC3 PC4 PC5 PC6
AS Std 0.44 −0.1 0.13 −0.09 −0.02 −0.26

CA Std −0.34 −0.12 0.54 0.37 0.54 −0.4

Percent 
below 55 
mph

−0.42 −0.04 −0.21 0.19 0.07 0.39

Percent at 
0 mph

−0.24 −0.57 −0.11 −0.72 0.29 −0.04

Stops per 
mile

−0.34 0 0.58 −0.25 −0.68 −0.07

Mean 
driving 
speed 
(mph)

0.43 0.13 0.1 −0.2 0.11 −0.29

Max driving 
speed 
(mph)

0.36 −0.21 0.53 0 0.19 0.71

Driving 
speed SD 
(mph)

0.17 −0.76 −0.14 0.45 −0.34 −0.13
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TABLE 2 Principal component loadings (vocational vehicles)

Variable PC1 PC2 PC3 PC4 PC5 PC6
AS Std 0.44 0.1 0.1 0.06 −0.02 0.24

CA Std −0.33 0.13 0.53 −0.55 0.36 0.41

Percent 
below 55 
mph

−0.42 0.01 −0.26 −0.22 −0.02 −0.39

Percent 
at 0 mph

−0.2 0.72 −0.22 0.43 0.44 0.1

Stops per 
mile

−0.32 0.1 0.59 0.49 −0.51 0.04

Mean 
driving 
speed 
(mph)

0.43 −0.15 0.07 0.19 0.23 0.3

Max 
driving 
speed 
(mph)

0.35 0.23 0.48 −0.07 0.25 −0.72

Driving 
speed SD 
(mph)

0.27 0.6 −0.13 −0.42 −0.55 0.1
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the central tendency of each cluster using a variety of data 
clustering methods. After some work evaluating various 
clustering methods for the data (K-means, hierarchical, 
etc.), the K-medoids algorithm was selected as the best 
candidate. K-medoids functions well on large data sets by 
optionally clustering random subsamples. This algorithm 
works by first randomly selecting a number of cluster 
centers specified a priori. It then assigns all points to the 
closest cluster. New cluster centers are chosen, and the 
operation repeats until a convergent set of optimal clusters 
is found. Unlike K-means that provide metric averages 
for  each cluster, the K-medoids algorithm selects a 

most-representative data point that improves the interpret-
ability of the results [12, 13]. To determine an optimal 
number of clusters in the data, we utilize the silhouette 
method described in [14] where clustering is performed 
sequentially starting with two clusters and iterating with 
additional clusters. At each iteration, the silhouette analysis 
describes the ratio between tightness (within cluster 
variance) and separation (between cluster variance). The 
optimal clustering is one that provides the greatest separa-
tion between clusters while being robust to small numbers 
of outlier points and keeping the number of clusters as small 
as possible. Based on this analysis, we select two clusters as 
the optimal clustering in the metric space. Figure 6 shows 

 FIGURE 3  All drive cycles for all vehicles visualized in the 
space defined by the first two principal components. Long-
haul vehicles are present in a high-speed grouping. Color 
indicates vocation.
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 FIGURE 4  Scatter plot of all vocational drive cycles. Refuse 
and transit vocations stand out in their usage as compared to 
the rest of the sample. Note that PC2 changes signs in this plot, 
which makes it appear inverted relative to Figure 3.
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 FIGURE 5  Two clusters using k-medoids algorithm with 
cluster centers marked in black. Only vocational vehicles are 
drawn in this plot.
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 FIGURE 6  Three clustering using k-medoids algorithm with 
cluster centers marked in black. Only vocational vehicles are 
shown in this plot.
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the resulting two clustering for vocational vehicles, which 
finds the underlying bimodal structure and splits the space 
logically. A small section of detached vehicles at the bottom 
of the left cluster are school buses with higher percentage 
of time at zero speed compared to the other vehicles in the 
cluster. Figure 8 focuses on school buses specifically with a 
sub-cluster analysis. Here it can be seen that there is addi-
tional structure present: school buses fall into two separate 
clusters within their own data. The first cluster is typified 
by its center point with 36.6% of time spent at zero speed 
while the center point of the lower cluster spends 3.3% 
of time at zero speed. As the vehicles in these two groups 
do not seem characteristically different, more investigation 
is needed to understand why school bus driving character-
istics are partitioned this way. The balance of vocations 
appears relatively homogenous within the two dominant  
modalities.

For the sake of clarity, in the following sections we will 
refer to the left cluster, which contains slower speed cycles 
with more stops, as the “Slow” cluster and the right cluster, 
which contains higher speed cycles with fewer stops, as the 
“Fast” cluster. In this plot, as in the prior plots, each point 
represents one day of driving in the entire data set. Points 
are colored according to their optimized cluster placement. 
A single vehicle may have any number of drive cycles, which 
may over- or under-represent individual vehicles in 
these plots.

For regulatory purposes where it may be useful to 
consider three classes of vehicles, an optimal solution with 
three clusters was calculated for the vocational vehicle drive 
cycle sample. Figure 7 shows this data. The first two clusters 
are joined in this plot by a middle cluster that contains those 
traces that do not clearly fall into either the left (slower) or 
right (faster) cluster. Tables 4 and 5 contain the drive cycle 
characteristics for the center point of each cluster along with 
the vocation of the vehicle located at the medoid center.

To utilize cluster centers to define a representative drive 
cycle for testing/modeling purposes, the drive cycle charac-
teristics from the top 50 days of data closest to these centers 
as ranked by multivariate least squares distance from the 
centroid were combined to determine the cluster averages for 
each metric.

Resampling Data - 
Comparison to Existing 
Models
Although the Fleet DNA database provides detailed data for 
a large number of vehicles, to draw broad conclusions about 
how vehicles behave we must address sources of potential bias 

 FIGURE 7  Sub-cluster analysis for school buses, which 
themselves fall into two clusters.
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TABLE 3 Vocational drive cycles - 2-clustering centers

Left (Slow) 
Cluster

Right (Fast) 
Cluster

AS Std (ft/s) 54.59 81.21

CA Std (ft/s2) 0.48 0.28

Percent mileage below 55 
mph

91.08 26.62

Percent time at 0 mph 50.62 22.11

Mean stops/mile 2.68 0.24

Mean driving speed (mph) 21.26 43.76

Max driving speed (mph) 59.22 65.01

Driving speed Std Dev. (mph) 16.28 21.06
a	Note: The medoid vehicle may be representative for the overall cluster, 
while being abnormal for its own vocation. For instance, in the three-cluster 
solution the school bus that is selected as the medoid vehicle spends far less 
time at zero mph than other school buses. Nevertheless, this one vehicle is 
most representative of the entire class of vehicles irrespective of normality 
or abnormality for its own vocation.
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TABLE 4 Vocational drive cycles - 3-clustering centers

Left (Slow) 
Cluster Middle Cluster

Right (Fast) 
Cluster

Medoid Cycle 
Vocation

School Bus Towing Freight

AS Std (ft/s) 48.88 69.27 84.85

CA Std (ft/s2) 0.5 0.68 0.2

Percent 
mileage below 
55 mph

97.85 64.46 25.38

Percent time 
at 0 mph

47.87 52.68 25.43

Mean stops/
mile

1.22 0.98 0.26

Mean driving 
speed (mph)

24.12 34.5 47.7

Max driving 
speed (mph)

62.61 67.86 70.79

Driving speed 
Std Dev. 
(mph)

13.03 18.75 20.48
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TABLE 5 Vocational resampling by MOVES categories

Vocation
Entire Fleet DNA 
Sample Population

MOVES Resampled 
Fleet DNA 
Population

Short Haul 441 (58.9%) 441 (84.1%)

School Bus 240 (23.6%) 57 (10.9%)

Refuse 50 (5.3%) 20 (3.9%)

Transit Bus 23 (2.1%) 6 (1.1%)©
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in this data set. This bias may arise simply because those fleets 
most willing to contribute data to Fleet DNA may not be 
perfectly representative of the entire population of vehicles in 
the United States. As shown in Figure 8, in this section we 
perform resampling based on EPA’s MOtor Vehicle Emission 
Simulator (MOVES) study categorization, compute new 
clusters based on the new vehicle population, and then 
measure the difference in cluster center [15].

Using this analysis, it is possible to determine the degree 
to which the entire Fleet DNA sample population differs from 
the population of vehicles proportioned according to esti-
mated U.S. population statistics. It is important to note that 
due to differences in vehicle classification systems between 
the Fleet DNA and MOVES databases, it was necessary for 
NREL researchers to aggregate Fleet DNA vehicle types into 
broader categorical groupings to match those of the MOVES 
and MOVES subcategory designations for resampling. In the 
case of a global MOVES resampling, the detailed list of vehicle 
types and vocations discussed in Section 1 were aggregated 
into four major vehicle categories as shown in Table 5.

Table 5 gives the MOVES-equivalent vehicle counts and 
proportions for resampling as compared to the entire Fleet 
DNA data. The four classes listed here are common to both the 
Fleet DNA data and the MOVES data. The Fleet DNA data 
appear to have a smaller fraction of short-haul vocational 
vehicles while having relatively more school buses, refuse 
trucks, and transit buses. The resulting resampled population 
would contain 230 fewer vehicles if resampled according to 
these proportions. A MOVES-equivalent sub-category resam-
pling, which includes vehicle weight class, is given in Table 6. 
To match proportions of each category within weight classes, 
the total population of vehicles must be decreased by 306 
(nearly half of all vocational vehicles).

To evaluate the impact of resampling the underlying data 
on the extant drive cycle clusters, a 10-fold evaluation was 
performed, where 10 random subsamples of daily driving 
cycles that are consistent with the MOVES proportions were 
selected and used for cluster analysis. For instance, starting 
by selecting a random sample of vehicles from the Fleet DNA 
database that has the same categorical and fractional break-
down as given in Table 6, cluster analysis and statistical char-
acterization were then performed. This process was repeated 
10 times (folds) to obtain a notion of how much variability 
there was among random subsamples.

Figures 9 and 10 show the center value of each of the eight 
metrics both with and without resampling for MOVES catego-
ries and subcategories. Figures 11 and 12 illustrate how quickly 
the values stabilize when averaging results from iterative resa-
mplings for both MOVES categories and subcategories. These 
plots show that after just five resamplings there is not a mean-
ingful degree of additional variability.

Development of a 
Representative Transient
Drive cycle has been shown to dramatically impact fuel 
consumption and emissions production for MD and HD 
vehicles [16, 17, 18, 19, 20, 21]. As such, controlled laboratory 
test procedures representative of real-world operating 

 FIGURE 8  Resampling flow for vocational vehicles
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TABLE 6 Vocational resampling by MOVES sub-categories

Vocation
Entire Fleet DNA 
Sample Population

MOVES Fleet  
DNA Resampled 
Population

Short Haul - Class 4/5 68 (6.3%) 53 (34.6%)

Short Haul - Class 6/7 155 (14.4%) 29 (19.0%)

Short Haul - Class 8 224 (20.9%) 21 (12.4%)

Refuse - Class 6/7 2 (0.2%) 0 (0%)

Refuse - Class 8 55 (5.1%) 4 (2.6%)

School Bus - Class 6/7 212 (19.8%) 12 (7.8%)

School Bus - Class 8 27 (25.2%) 1 (0.7%)

Transit Bus - Class 6/7 3 (0.3%) 0 (0%)

Transit Bus - Class 8 20 (1.9%) 1 (0.6%)

N/A 306 (28.5%)
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 FIGURE 9  Difference between resampled cluster center 
statistics and original Fleet DNA (entire population) statistics 
for two clusters. The left pane shows the median value for the 
slow (cluster 1) population for each metric as a maroon dot. 
The right pane shows the same for the fast (cluster 2) 
population. In each pane, the boxplots give the distribution of 
median values with random MOVES-based resampling. Black 
dots represent outliers.
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conditions are necessary to accurately quantify these param-
eters. Numerous approaches have been developed to generate 
representative drive cycles from real-world driving data [22, 
23, 24, 25, 26], including NREL’s DRIVE tool. Having already 
completed segmentation of the U.S. MD and HD commercial 
vehicle data into a collection of three distinct clusters based 
on a multivariate drive cycle clustering analysis and 

development of a logistic model to predict cluster participa-
tion, NREL researchers then applied the results of the clus-
tering analysis towards the development of both a representa-
tive low- and high-speed transient drive cycle representative 
of MD and HD vocational vehicle use. Deploying NREL’s 
DRIVE tool within its high-performance computing environ-
ment, researchers condensed thousands of hours of on-road 
driving data down into representative speed-time drive cycles 
approximately 12 and 20 minutes in duration.

Applying DRIVE™
To develop the representative low-speed transient cycle, an 
iterative method was deployed where drive cycles from each 
of the three clusters described in section 3 were ranked by 
root mean squared distance from the medoid calculated using 
the eight key metrics and then fed through DRIVE to generate 
candidate representative cycles which were then compared to 
the statistics for the low-speed cluster to identify an ideal 
representative cycle. The procedure was as follows:

	 1.	 The top 50 cycles from each of the three clusters were 
fed into DRIVE Space to generate candidate 
representative cycles. The top 50 cycles were chosen as 
a means of limiting overall computation time while 
still capturing the overall representative behavior of 
the cluster. This decision also allowed researchers to 
explore and optimize the generated drive cycles by 
adjusting final drive cycle duration.

	 2.	 Having identified the top 150 total drive cycles most 
representative of their respective clusters, a variety of 
input parameters such as the desired and minimum 
cycle durations were then adjusted to generate over 
100 unique cycles.

	 3.	 The representative cycles were then compared to the 
average values for the top 50 cycles in the low speed 
cluster using a non-weighted least squares approach 
using the eight drive cycle metrics from the clustering 

 FIGURE 10  Difference between resampled cluster center 
statistics and original Fleet DNA (entire population) statistics 
for two clusters. This plot uses MOVES subcategory 
resampling. The left pane shows the median value for the slow 
(cluster 1) population for each metric as a red dot. The right 
pane shows the same for the fast (cluster 2) population. In 
each pane, the boxplots give the distribution of median values 
with random MOVES-based resamplings. The subcategory 
resampling has smaller variance in the metrics because of a 
smaller sample size.
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 FIGURE 11  Convergence on final cluster center metrics as a 
function of successive resamplings
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 FIGURE 12  Convergence on final cluster center metrics as a 
function of successive MOVES subcategory resamplings
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analysis described in section 3. The low-speed cluster 
was chosen as the ideal target due to its inherent low-
speed transient behavior. This is especially true when 
compared to the mixed mode and high-speed clusters.

Several additional constraints were applied when running 
the DRIVE tool including:

•• A cycle duration of 668 seconds was targeted to match the 
duration of the California Air Resources Board Heavy 
Heavy-Duty Diesel Truck (HHDDT) Transient Cycle.

•• A minimum allowable cycle duration of 300 seconds was 
established to ensure sufficient test duration.

•• Any drive cycles with a maximum speed in excess of 55 
mph were excluded to ensure the generated drive cycle is 
representative of low-speed transient operation only.

To examine the effects of population makeup on the resul-
tant transient cycle, the drive cycle generation process was 
repeated a total of three times: one for each of the unique 
populations explored in the cluster analysis. The full Fleet 
DNA drive cycle population, the MOVES resampled drive 
cycle population, and the MOVES subcategory resampled 
drive cycle data were all examined - see section 3 for more 
details on each sample set. This was done to examine the sensi-
tivity of representative transient cycle generation to source 
population and minimize the impact of any potential biasing 
as a result of source data composition (i.e., more school bus 
data than nationally representative). It was found that there 
were minimal differences between the weighting, and the 
MOVES resampled population was chosen because it produced 
the most representative drive cycle of the three populations. 
Additional detailed information regarding resampling and 
its impact on cycle generation can be found in the appendix.

The transient cycle shown in Figure 13 was developed 
using 150 drive cycles drawn from the MOVES resampled Fleet 
DNA database following the procedure described previously.

Key statistics for the final low-speed transient cycle  
include:

•• 724 seconds in duration

•• Total of 10 microtrips
•• Maximum speed of ~52 mph
•• Average driving speed of ~21 mph

•• ~22% of total cycle duration is at zero speed.

The target zero speed duration for the representative tran-
sient cycle was less than 24.5%. This value was chosen as it repre-
sents the percentage of zero speed time observed from the high-
speed cluster identified in section 3 (cluster 3-3). The high-speed 
cluster possesses the lowest amount of zero speed time of all the 
clusters; thus, it was used as a lower bound when developing the 
low speed transient cycle because for any of the other driving 
conditions one can simply add an additional idle time segment 
to achieve an appropriate overall idle time weighting.

Known Limitations and 
Ongoing Work
The analysis presented here investigates the dynamics and 
modalities of common drive cycle characteristics within U.S. 
commercial fleets. While this analysis was performed with an 
extensive data set and care was taken to analyze potential 
impacts of sample/selection bias, there are some limitations 
and opportunities for future work that should be discussed.

Beyond the population of vehicles, these results are also 
dependent on the metrics or features used in clustering. We 
observe two strong modalities in drive patterns, but cluster 
separation is not strong between these two modalities. This 
result belies the difficulty in performing a cut between the 
two segments. One possible solution discussed here is the 
introduction of a third cluster that better represents the 
dynamics of those vehicles “between” the two clusters. 
However, an open question remains as to whether a different 
set of metrics may produce a result with greater separation.

To understand the effect of the choice of metrics on the 
resulting categorization, we have begun to investigate “domain-
agnostic” feature extraction as a method for determining the 
best features for partitioning the vehicle drive dynamics. Using 
the approach, hundreds of candidate statistical features are 
extracted from the underlying time series data and are used 
as the basis of clustering [26, 27, 28]. These features are generic 
statistical descriptors and may not relate to industry notions 
of driving behavior. Figure 14 shows the result of one of these 
clustering methods when applied to the same subset of data 
shown in our results. These preliminary results show this 
method appears to segment the data with more separation. We 

 FIGURE 13  Speed-time trace for representative low-speed 
EPA transient cycle
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 FIGURE 14  All vehicles visualized by the first two principal 
components in a space of domain agnostic parameters
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believe this approach may hold promise for future clustering 
applications with massive data sets. However, this may come 
at the cost of direct interpretability. Approaching this chal-
lenge, among others, is an area of ongoing work.

During this study, the Fleet DNA database has continued 
to grow. Performing analyses like those presented here in a 
way that scales to arbitrary quantities of data requires some 
care. To support future analyses, we have begun development 
of the Fleet DNA Big Data application programming interface, 
which provides streamlined storage, aggregation, and analysis 
functions using an industry standard big data framework that 
utilized distributed processing libraries Spark and Hadoop 
distributed filesystem.

Conclusion
In this study we demonstrated a new method for analyzing 
the structure and modalities of drive cycle dynamics. In doing 
so, we have leveraged a scalable data framework and a large 
and diverse data set of 913 unique commercial vehicles’ drive 
cycle data comprising 16,250 days of operation. Our method 
utilizes aggregate feature extraction, k-medoids clustering, 
and the NREL DRIVE tool to find the fundamental modalities 
within the driving characteristics of this population of 
vehicles. Our results describe representative drive cycles for 
vocational vehicles in two (or three) classes that can be used 
for regulatory and testing applications.
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