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Probabilistic Short-Term Wind Forecasting Based
on Pinball Loss Optimization

Mucun Sun, Cong Feng, Jie Zhang
The University of Texas at Dallas

Richardson, TX 75080, USA

Erol Kevin Chartan, Bri-Mathias Hodge
National Renewable Energy Laboratory

Golden, CO 80401, USA

Abstract—Probabilistic wind power forecasts quantify uncer-
tainty and have the potential to aid in the economic grid
integration of wind power at large penetration levels. In this
paper, a probabilistic wind forecasting approach based on pinball
loss optimization is proposed, in conjunction with a multi-
model machine learning-based ensemble deterministic forecasting
framework. By assuming the point-forecasted value as the mean
at each point, one unknown parameter (i.e., standard deviation)
of a predictive distribution at each forecasting point is determined
by minimizing the pinball loss. A surrogate model is developed
to represent the unknown distribution parameter as a function
of deterministic forecasts. This surrogate model can be used
together with deterministic forecasts to predict the unknown dis-
tribution parameter and thereby generate probabilistic forecasts.
Numerical results of case studies show that the proposed method
has improved the pinball loss by up to 35% compared to a
baseline quantile regression forecasting model.

Index Terms—probabilistic wind forecasting, optimization, sur-
rogate model, machine learning, pinball loss.

I. INTRODUCTION

The uncertain and variable nature of wind imposes chal-
lenges to integrate wind power, particularly at large penetration
levels. Improved wind forecasts are needed to assist power
system planning and operations.

A number of wind forecasting technologies have been
developed in the literature and have also been applied to a
variety of power system operation and planning problems. For
example, Lee et al. [1] used improved wind power forecasts
to reduce the cost of system ancillary services and to conduct
a system risk analysis. Botterud et al. [2] applied wind
power forecasts in unit commitment and economic dispatch
decision-making to provide dynamic operating reserves, which
benefits system operators and electricity traders. In electricity
markets for energy, conventional deterministic forecasts are
not sufficient to describe the inherent unpredictability of wind
power, which is compensated by operating reserves. As a
result, probabilistic forecasts that provide quantitative uncer-
tainty information associated with wind power are expected
to better assist power system operations better. Methods of
constructing predictive distributions can be mainly classified
into parametric and nonparametric approaches in terms of
distribution shape assumptions [3]. A prior assumption of the
predictive distribution shape is made via parametric methods.
Once an analytical form of the predictive distribution is
defined, parameters describing this distribution can be deter-
mined from data, which generally requires low computational

cost. Distribution parameters can be estimated through dif-
ferent methods, and nonlinear time series is one of the most
popular. For example, Pinson et al. [4] proposed a conditional
parametric autoregression model to estimate the parameters of
a Generalized Logit-Normal (GL-normal) distribution, which
is a discrete-continuous mixture of GL-normal distribution and
two probability masses.

For distribution-free nonparametric approaches, the pre-
dictive distribution is estimated through a finite number of
observations. Quantile regression (QR) and kernel density
estimation (KDE) are traditional nonparametric probabilistic
forecasting methods [5]. Haben et al. [6] proposed a non-
parametric hybrid method, which combines the KDE and
QR to generate probabilistic load forecasts. Ordiano et al.
[7] conducted probabilistic solar power forecasting using a
nearest-neighbor-based nonparametric method.

Pinball loss is one of most popular metrics for evaluating
the performance of probabilistic forecasting [8]. In this paper,
a novel two-step probabilistic wind forecasting method is de-
veloped based on pinball loss optimization. First, deterministic
forecasts are generated (with any deterministic forecasting
methods). Second, a set of unknown parameters in the predic-
tive distribution are optimized determined by minimizing the
pinball loss. The optimal prediction distribution parameters are
first determined in the training data set. A surrogate model is
developed to represent the unknown distribution parameter as
a function of deterministic forecasts. At the forecasting state,
the surrogate model is then used with deterministic forecasts
to predict the unknown distribution parameter and thereby
generate probabilistic forecasts.

The remainder of the paper is organized as follows. Section
II describes the proposed probabilistic forecasting method,
including a multi-distribution model and pinball loss-based
optimization process and a deterministic forecasting method.
Section III applies the developed pinball loss-based probabilis-
tic forecasting method to multiple wind data set and compares
the forecasting performance with benchmark models. Conclud-
ing remarks and future work are discussed in Section IV.

II. METHODOLOGY

An optimal pinball loss-based short-term probabilistic fore-
casting method is developed in this paper, and the overall
framework is illustrated in Fig. 1. This is a two-step prob-
abilistic forecasting method, consisting of deterministic fore-
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Fig. 1: Overall framework of the pinball loss-based probabilistic wind forecasting framework

casts generation and predictive distribution (type and param-
eters) determination. A machine learning-based multi-model
forecasting framework (MMFF) is first adopted to generate
short-term deterministic wind forecasts (i.e., 1-hour-ahead).
To generate probabilistic forecasts, deterministic forecasts are
considered as a means of predictive distributions, as illustrated
in Fig. 2, and unknown parameters of the predictive distribu-
tions are solved by minimizing pinball loss. The distribution
with the minimum pinball loss in conjuction with a surrogate
model are used to generate probabilistic forecasts.
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Fig. 2: Deterministic wind speed forecasts and predictive
distribution

A. MMFF deterministic forecasting

The proposed pinball loss-based probabilistic forecasting
methodology is a two-step method, which can be applied with
any deterministic wind forecasts. In this paper, an MMFF
system consisting of an ensemble of four single machine
learning algorithms with various kernels is adopted to generate
deterministic forecasts. Details of the MMFF method can be
found in [9].

B. Multi-distribution model

A multi-distribution database is formulated to model the
possible shapes of the predictive distribution. Four distribution
types are considered: Gaussian, Gamma, Laplace, and non-
central t distributions. Probability density functions (PDFs) of
the four distributions are listed in [10]. Parameters used to
describe the four predictive PDFs are all related to their mean
and standard deviation values. Therefore, all of the PDFs can
be represented in the form of mean µ and standard deviation σ,
namely f(x|µ, σ). A cumulative distribution function (CDF),
F (x|µ, σ), can be deduced through the integration of a PDF.

C. Pinball loss-based optimization

Pinball loss is one of the most popular metrics for evaluating
probabilistic forecasts [8], and it is a function of observations
and quantiles of a forecast distribution. A smaller pinball loss
value indicates a better probabilistic forecast.

L(qm, xi) =

 (1− m

100
)× (qm − xi), xi < qm

m

100
× (xi − qm), xi ≥ qm

(1)
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where xi represents the ith hour observation, m represents
a quantile percentage from 1 to 99, and qm represents the
predicted quantile. For a given m percentage, the quantile qm
represents the value of a random variable whose accumulated
probability density (i.e., CDF) is m percentage. The quantiles
of different distributions types are represented by a standard
deviation σ. In this paper, the optimal standard deviation σ is
determined by minimizing the sum of the pinball loss function
L(·), by considering the appropriate constraints. A genetic
algorithm is used to solve this optimization problem. A genetic
algorithm is a widely used heuristic method for solving both
constrained and unconstrained optimization problems [11]. In
this study, the maximum number of iterations is set to 100, and
the iteration stops if the improvement is less than 0.001. At
each deterministic forecasting time point, an optimal standard
deviation that minimizes the pinball loss of this single point
is found accordingly. The optimization problem is formulated
as follows:

min
σ

99∑
m=1

L(qm(σ), xi)

subject to (2)
σl ≤ σ ≤ σu

where σl and σu represent the lower and upper bounds of
the unknown standard deviation, respectively. In this paper,
the lower and upper bounds of the standard deviations are set
to be 0 m/s and 10 m/s, respectively [12]. The distribution
with the minimum pinball loss is selected as the predictive
distribution shape. The optimal σ’s estimated using the training
data are used to construct a surrogate model to be used in the
forecasting stage.

D. Surrogate model

To generate probabilistic forecasts, an optimal standard
deviation value is needed at every forecasting time point. To
obtain this optimal standard deviation value, a surrogate model
is developed to represent the optimal standard deviation as
a function of deterministic forecasting value based on the
training data, which is expressed by:

σ̂ = f(xp) (3)

where xp is a point forecast, and f(·) is a surrogate model of
the optimal standard deviation of the predictive distribution.
A support vector regression method is used in this paper to
construct the surrogate model. This surrogate model is used to
estimate the standard deviation of the predictive distribution in
the forecasting stage, thereby generating the final probabilistic
forecasts.

III. CASE STUDIES AND RESULTS

A. Data Summary

The proposed pinball loss-based probabilistic forecasting
approach is applied to 7 locations for wind speed forecasts.
The wind speed data are collected near hub height with a
1-hour resolution [13]. The duration of the collected data is

summarized in Table I. For all locations, the first 2/3 of data
are used as training data. The last 1/12 of the training data
is used to build a surrogate model between optimal standard
deviation and deterministic forecasts. The effectiveness of the
forecasts is evaluated by the remaining 1/3 of data. Although
the proposed method is capable of generating forecasts at
multiple forecasting timescales, only 1-hour-ahead forecasts
are generated in this study.

TABLE I: Data duration at selected sites

Site Data duration
Boulder NWTC 2009-01-02 to 2012-12-31
Bovina50 2010-10-10 to 2012-10-08
Bovina100 2010-03-03 to 2012-03-01
CapeMay 2007-09-26 to 2009-09-24
CedarCreek H06 2009-01-02 to 2012-12-31
Goodnoe Hills 2007-01-01 to 2009-12-31
Megler 2010-11-03 to 2012-11-01

B. Pinball loss optimization results

Pinball loss values with different predctive distributions are
listed in Table II. The sum of pinball loss is averaged over all
quantiles from 1% to 99% and normalized by the maximum
wind speed at each site. A lower loss score indicates a better
probabilistic forecast. The Laplace distribution with MMFF
has the smallest pinball loss value at all locations except
CedarCreek H06. The lower pinball loss in CedarCreek H06
using the Laplace distribution with persistence method is
mainly because the persistence deterministic forecasts perform
better than the MMFF forecasts. A quantile regression method,
persistence-Laplace (PS Laplace) method with pinball loss
optimization, and an MMFF-Laplace method without pinball
loss optimization are used as baselines in case studies. The
MMFF-Laplace forecasts have improved the pinball loss by up
to 35% compared to the three benchmark models. Therefore,
the Laplace distribution is finally chosen to generate proba-
bilistic wind speed forecasts. Note also that the methods of
MMFF-Gaussian, MMFF-Gamma, and MMFF-Laplace per-
form similarly, which indicates that the optimization can help
achieve a better accuracy with different predictive distribution
types. For the baseline method of MMFF-Laplace without
pinball loss optimization, a random standard deviation value is
selected from the range between the minimum and maximum
values of the optimal σ. We repeat this process 30 times to
obtain an average sum of pinball loss without optimization.
The training time of the MMFF-laplace method ranges from
1 to 2 hours, and the forecasting time ranges from 2 to 5
miniutes.

C. Deterministic forecasting results

Standard metrics of root mean squared error (RMSE), mean
absolute error (MAE), and their corresponding normalized
indices, i.e., NMAE and NRMSE, are adopted to evaluate
the deterministic forecasting performance. For these metrics,
a smaller value indicates better performance. Deterministic
forecasting errors using MMFF at the selected locations are
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TABLE II: Normalized optimal sum of pinball loss

Site Boulder NWTC Megler CedarCreek H06 Goodnoe Hills Bovina50 Bovina100 CapeMay
QR 2.22 1.76 2.03 1.96 2.56 2.44 1.95
MMFF Gaussian 1.74 1.26 1.44 1.35 1.86 1.69 1.27
MMFF Gamma 1.74 1.26 1.43 1.35 1.87 1.69 1.27
MMFF Laplace 1.72 1.25 1.43 1.35 1.85 1.68 1.26
MMFF noncentral t 1.74 1.81 2.20 2.21 2.68 3.41 2.56
MMFF Laplace (without opt) 2.94 2.93 2.40 2.39 3.53 3.08 2.45
PS Laplace 1.81 1.29 1.34 1.38 1.92 1.69 1.32

Note: The smallest normalized optimal sum of pinball loss at each location is in boldface.

summarized in Table III. It is shown that the one-hour-ahead
NMAE and NRMSE are in the range of 3%-5% and 4%-
7%, respectively. An example of the forecasts at the Megler
site from 2012-02-01 to 2012-02-04 are shown in Fig. 3. The
persistence method is used as a baseline, and the forecasting
errors are also summarized in Table III. Overall, the accuracies
of the MMFF deterministic forecasts are better than those of
persistence forecasts, except CedarCreek H06.

D. Probabilistic forecasting results

With estimated scale parameters through pinball loss min-
imization and surrogate modeling, predictive wind speed dis-
tributions are determined, and the quantiles q1, q2, ..., q99 can
be calculated. To better visualize probabilistic forecasts, the
99 quantiles are converted into nine predictive intervals Iβ
(β=10, ..., 90) in a 10% increment. Fig. 3(a) shows an example
of probabilistic wind speed forecasts at the Megler site from
2012-02-01 to 2012-02-04. The width of the predictive interval
varies with the level of wind speed fluctuation. When the wind
speed fluctuates significantly, the predictive interval tends to be
wider, i.e., the uncertainty in wind speed forecasts is relatively
higher. Fig. 3(b) shows probabilistic forecasts generated from
the baseline quantile regression method at the same site and
time period. The predictive intervals of the proposed MMFF-
Laplace with pinball loss optimization method are narrower
than those of the quantile regression method. Thus, there is
less uncertainty in the proposed probabilistic forecasts.

1) Reliability: Reliability (RE) stands for the correctness of
a probabilistic forecast that matches the observation frequen-
cies [14]:

RE =

[
ξ(1−α)

N
− (1− α)

]
× 100% (4)

where N is the number of test samples, and ξ(1−α) is the
number of times that the actual test samples lie wthin the
αth prediction interval. With measured emperical coverage,
a reliability diagram can be plotted to describe the quantile
forecast series with different nominal proportions. A reliability
plot shows whether a given method tends to systematically
underestimate or overestimate the uncertainty. In this study,
the nominal coverage rates range from 10% to 90% with
a 10% increment. Fig. 4 shows the reliability curves of the
probabilistic forecasts at the CapeMay, Megler, and Bovina50
sites. A forecast presents better reliability when the curve is
closer to the diagonal. Overall the quantile regression has
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Fig. 3: MMFF-Laplace and quantile regression forecasts at the
Megler site

better reliability performance because the confidence band
of the quantile regression is much wider than that of the
proposed MMFF-Laplace method. A wider confidence band
indicates that the results take more errors into consideration;
however, note that the reliability over the 90th confidence
intervals is similar between the proposed method and the
baseline quantile regression method, which is generally more
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TABLE III: Deterministic forecasting results using MMFF and PS

Method Site Boulder NWTC Megler CedarCreek H06 Goodnoe Hills Bovina50 Bovina100 CapeMay

MMFF NMAE(%) 4.71 3.36 3.86 3.72 5.00 4.56 3.39
NRMSE(%) 6.87 4.65 5.43 5.09 6.64 6.28 4.74

PS NMAE(%) 4.97 3.51 3.69 3.85 5.27 4.68 3.59
NRMSE(%) 7.23 4.87 5.08 5.27 7.04 6.46 4.98

important in probabilistic forecast applications in power sys-
tem operations. Also, overall the MMFF-Laplace with pinball
loss optimization has much better reliability than that of
the MMFF-Laplace without pinball loss optimization, which
indicates the effectiveness of the pinball loss optimization.

2) Sharpness: Sharpness indicates the capacity of a fore-
casting system to forecast extreme probabilities [15]. This
criterion evaluates the predictions independently of the obser-
vations, which gives an indication of the level of usefulness
of the predictions. For example, a system that provides only
uniformly distributed predictions is less useful for decision-
making under uncertainty. Predictions with perfect sharpness
are discrete predictions with a probability of one (i.e., deter-
ministic predictions). The sharpness is measured by the aver-
age size of the predictive intervals. The sharpness of the pro-
posed pinball loss-based MMFF-Laplace forecasts; quantile
regression; pinball loss-based MMFF with other distribution
types, and MMFF-Laplace without pinball loss optimization
at the CapeMay, Megler, and Bovina50 site are compared
in Fig. 5. The sharpness of pinball loss based forecasts are
better than that of the baseline QR method. Also, the expected
intervals size increases with increasing nominal coverage rate.
Also, the MMFF-Laplace with pinball loss optimization has
much better sharpness than that of the MMFF-Laplace without
pinball loss optimization. The interval size of the pinball
loss-based MMFF-Laplace forecasts ranges from 2% to 18%,
which indicates low sharpness.

IV. CONCLUSION

In this paper, an optimal pinball loss based probabilistic
wind forecasting method was developed, in conjunction with
a multi-model deterministic forecasting framework. Different
shapes of predictive distributions are tested and compared,
including Gaussian, Gamma, Laplace, and noncentral t dis-
tributions. The optimal shape parameter of the predictive
distribution is determined by minimizing the sum of pinball
loss using training data. This optimal shape parameter is used
in the forecasting stage through surrogate modeling. We found
that the laplace distribution presents the best pinball loss.
Results showed that the proposed probabilistic forecasting
method could reduce the pinball loss by up to 35% compared
to the baseline methods. The relationship between the accuracy
of deterministic and probabilistic forecasts will be explored in
future work.
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Fig. 4: Reliability of probabilistic forecasts on selected sites
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Fig. 5: Sharpness of probabilistic forecasts on selected sites
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