Opportunistic Hybrid Communications Systems for Distributed PV Coordination

Bri-Mathias Hodge National Renewable Energy Laboratory

NREL/PR-5D00-71282

Motivation

Future Needs

- Monitoring and control of distributed PV generation
- Distributed PV state estimation/forecasting
- Distribution system state
 estimation
- Ancillary services

•

 Active distribution switching and islanding

Current Status

Lack of sensors in

Limited communication

distribution grids

infrastructure in

distribution grids

resolution PV

DSO/TSO

data

No access to high-

generation data for

No access to high

resolution grid state

٠

٠

٠

٠

Project Innovation and Objective

Innovation: To highly use the diverse communication infrastructure existed in the power system, we aim to develop the hybrid communication system at the least cost to coordinate distributed PV generation.

Objective: Communicate the state of the grid from the inverter to the system operator by full-scale, operational implementation of the opportunistic hybrid communication system:

- Hybrid: various communications pathways, e.g. LoWPAN, PLC, WiFi, WiMAX etc.
- Opportunistic: route messages through each of these systems based on recent data about latency and availability to ensure reliable message passing.

The Smart Grid Communication

Potential Use Cases and Applications

- Three design metrics: Latency, Throughput, and Packet Loss Rate for different hybrid communication architecture designs;
- Monitoring Functions: Distributed state estimation algorithms for distributed PV systems and distribution power systems;
- Control Functions: Distributed PV dispatch commands from DSO or TSO;
- Ancillary Services from utility point of view.

Reference Test Case A (RTC-A)

- Taxonomy feeder R2-25.00-1 from DOE's Modern Grid Initiative representing moderate urban environment
- System of 1080 nodes on a distribution feeder

Data Concentrator Placement

9917.5,0.0

Power & Energy Society

IEEE

NS-3 Hybrid Communication Simulation Performance [1]

Optimal Performance and Parameters

Variables: Date rate and Packet size

TABLE IV: Optimal Parameter Results for Nine Hybrid Designs

Hybrid Type	Data Rate (Kbps)	Packet Size (Bytes)	Latency (ms)	Throughput (Kbps)	Packet Loss Rate (%))
LoWPAN-Ethernet	56	631	5.144	56.003	0
LoWPAN-WiFi	55.98	251	5.622	55.981	0.033
LoWPAN-WiMAX	55.85	795	11.75	55.849	0
BPLC-Ethernet	55.804	699	7.098	55.819	0
BPLC-WiFi	55.043	588	11.436	54.875	0.622
BPLC-WiMAX	55.551	70	7.102	55.559	0
NPLC-Ethernet	55.987	643	26.922	56.011	0.021
NPLC-WiFi	55.862	635	33.256	55.676	0.497
NPLC-WiMAX	56	756	41	56.032	0

Distributed State Estimation Techniques

- Improve PV generation efficiency by using dynamic estimation of distributed PV states
- Enable monitoring and control of distribution PV generation using distribution state

11

Distributed PV System State Estimation

Distributed State Estimation for Power Distribution System
 Spectral clustering based automatic regionalization [3].
 Distributed Ladder Iterative State Estimation (DiLISE) [4].

Performance of DiLISE for Different Test Cases

In Progress...

- Integration of NS-3 simulation testbed with communication and power hardware-in-the-loop (HIL) testbed.
- Integration of distributed state estimation algorithms for power distribution system and distributed PV systems.

Reference

[1] Zhang et al., "Hybrid Communication Architectures for Distributed Smart Grid Applications", 1st revision submitted to MDPI Energies.
 [2] Alam et al., "Multi-Rate and Event-DRIven Kalman Kriging Filter for Distributed PV System State Estimation," 1st revision submitted to IEEE Trans. Smart Grid.

[3] Wang et al., "Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems", IEEE GlobalSIP 2016.
 [4] Wang et al., "Distributed Ladder Iterative State Estimation and Automatic Regionalization for Distribution Systems", 1st revision submitted to IEEE Trans. Smart Grid.

Thank You!! Bri.Mathias.Hodge@nrel.gov

