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Abstract. Quantification of long-term wind-speed variability is a critical component in wind 
resource assessment, and effective wind-farm operations require proper assessment of this 
variability. Yet, wind-speed variations differ across averaging temporal scales because hourly 
mean wind speeds fluctuate more than yearly averages. In this study, we quantify the influence 
of averaging timescale to the resultant variability. We assess three spread metrics (standard 
deviation, coefficient of variation, and robust coefficient of variation) and two distribution 
measures (skewness and kurtosis) based on 38 years of wind speeds from the National 
Aeronautics and Space Administration’s MERRA-2 reanalysis data set over the contiguous 
United States. The spatial distributions of wind-speed variability differ with metrics and 
timescales: wind speeds of fine temporal resolution generate strong variabilities that dilute 
spatial contrasts; small sample size becomes a constraint in calculating interannual variabilities 
via annual means and leads to inaccurate results. Overall, we find that metrics based on monthly 
data portray the largest spatial differences of wind-speed variability. Although standard deviation 
yields consistent geographical projections, none of the wind-speed data of any time frame are 
perfectly Gaussian. Therefore, the robust coefficient of variation, a statistically robust and 
resistant approach, appears to be the ideal metric for quantifying wind-speed variabilities based 
on monthly mean data.  

1.  Introduction 
Part of the long-term investment decisions in the wind energy industry rest on the accurate assessment 
of wind-speed variations at a location. Moreover, skillful long-term wind-resource predictions allow the 
investors to ensure that they have adequately sized the minimum debt obligations to coincide with 
expected minimum productions—and therefore, revenue. Hence, quantifying the uncertainty in winds 
is critical for the wind resource assessment process.  

Wind speed varies across timescales: gusts alter wind speeds in seconds and climate oscillations 
change wind patterns year to year. To efficiently quantify the variation of a specific wind-speed 
distribution, a spread statistic is used to summarize the information into one number. Of all the spread 
metrics, standard deviation (σ) is the most commonly used tool in the industry to assess wind-speed 
variability, especially interannual variability (IAV) [1]. Although the industry uses the Weibull 
distribution to quantify wind-speed distributions, its two parameters are not spread metrics by definition; 
hence, σ becomes the default tool to assess IAV. However, σ is subjected to assumptions of the nature 
of the data, including the distribution shape, and it is influenced by outliers; so, σ is not statistically 
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robust or resistant [2]. The metric uses sample mean, which represents the center of a sample when the 
data follow a Gaussian distribution. When the data are not Gaussian distributed, characterizing the data 
using the mean and the σ is not completely valid. As a result, using σ alone to quantify variability without 
addressing the characteristics of the data can lead to misleading results and interpretations. For example, 
distribution parameters such as skewness and kurtosis can determine the degree of deviation of a certain 
distribution from the perfect Gaussian distribution. Thus, when the data sample is skewed with a sharp 
peak and deviates from Gaussian, σ alone does not offer the most accurate perspective in determining 
wind-speed variability.  

The goal of the study is to improve the wind-resource assessment process by assessing the 
inadequacy of the Gaussian assumption in calculating wind-speed variabilities of various averaging 
timescales. Herein, we evaluate and compare wind-speed statistics of timescales from hourly means to 
yearly averages. We expect that wind speeds of various temporal resolutions possess distinct shapes, 
spreads, and distribution attributes. We also challenge the validity of the Gaussian assumption, 
particularly in annual mean wind speeds, because the calculation of IAV requires annual mean wind 
speeds. Overall, we demonstrate that perfect Gaussian distributions of wind speeds are rare regardless 
of the choice of timescales; hence, quantifying variabilities with a robust and resistant metric is ideal.  

2.  Methods 

2.1.  Data set  
We use the hourly horizontal wind components in the National Aeronautics and Space Administration’s 
Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) reanalysis 
data set [3] from 1980 to 2017. Using the wind speeds at 10 m, 50 m, 850 hPa, and 500 hPa, we calculate 
the wind speeds at 80 m above the surface, a presumed turbine hub height, via the power law and the 
derived shear components. Herein, we compute the mean hub-height wind speeds at various time 
resolutions: hourly, daily, weekly, monthly, seasonal (winter: December, January, and February; spring: 
March, April, and May; summer: June, July, and August; fall: September, October, and November), and 
annual. Our samples include 333,120 hours, 13,880 days, 1,982 weeks, 456 months, 152 weeks, and 38 
years of wind speed at each model grid point. In this study, we focus on the wind resources in the 
contiguous United States (CONUS). Note that spatial averaging and temporal smoothing are applied to 
the MERRA-2 data set, and hence, the modeled wind speeds are only close approximations of the actual 
wind resource. Even though the industry typically uses 10-minute data, the highest temporal resolution 
of the MERRA-2 data set is hourly data.  

2.2.  Metrics 
We compute several metrics to represent the spread as well as the characteristics of the wind-speed 
distribution at each MERRA-2 grid point. The statistical measures include a simple spread metric, σ, 
and two normalized spread metrics that are divided by an average metric, coefficient of variation (CoV) 
in equation (1), and robust coefficient of variation (RCoV) in equation (2):  

Coefficient of variation (CoV) = 
σ

mean (1) 

Robust coefficient of variation (RCoV) = 
median|x-median(x)|

median
(2) 

Like σ, large values of CoV and RCoV represent strong variations in the data. Of the three spread 
metrics evaluated, only RCoV is statistically robust and resistant [2]. Additionally, RCoV is the ideal 
metric to assess and connect the long-term variabilities of wind speeds and actual wind energy 
productions [4]. Moreover, to contrast variabilities geographically, we use spatially normalized metrics:   

Spatially normalized RCoVi = 
RCoVi

CONUS median RCoV
	 . (3) 
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We calculate and normalize the variabilities for each grid cell i. We derive the spatially normalized σ 
and CoV in the same fashion.  

The two distribution parameters chosen are skewness, (equation (4), which indicates symmetry, and 
kurtosis, equation (5), which represents tailedness:  

Skewness = 
1
n∑ (xi-x*)3n

i=1

( 1
n∑ (xi-x*)2n

i=1 )
3
2

(4) 

Kurtosis = 
1
n∑ (xi-x*)4n

i=1

( 1
n∑ (xi-x*)2n

i=1 )
2 	-	3 (5) 

A perfect Gaussian distribution has zero skewness and zero kurtosis. Positive skewness indicates the 
distribution tends toward low values, and positive kurtosis signifies the distribution tends to cluster near 
the center [2].  

3.  Results 
An ideal location possesses strong wind energy content and little variability. Based on the hourly mean 
wind speeds, the region with the best wind resources in the CONUS resides in central United States 
(figure 1). On average, the Plains, Upper Midwest, and eastern parts of some mountain states record 
some of the highest hourly mean hub-height wind speeds in the country between 1980 and 2017 (figure 
1).  

The absolute values of RCoV do not offer fair and easy geographical comparisons among averaging 
timescales. Accounting for the variability in fine temporal resolution, RCoVs of hourly wind speeds in 
the central United States are moderate compared to the other regions of the CONUS (figure 2a). 
However, expanding the averaging time frames from hourly to yearly mean data reduces the absolute 
values of RCoV: the variations decrease with fewer data points (figure 2). For example, the RCoVs of 
monthly mean wind speeds (figure 2a) are larger than the RCoVs of annual mean wind speeds (figure 
2f) by nearly an order of magnitude. Furthermore, RCoV demonstrates weak spatial contrasts. For 
instance, wind speeds in Wyoming fluctuate more relative to other states in hourly means (figure 2a), 
but not in daily or annual means (figure 2b and 2f). Because one of our goals is to find metrics that 
highlight geographical variations—and because the variations within one map in each panel of figure 2 
are small relative to inter-timescale comparisons—the rest of the paper focuses on the results from 
spatially normalized metrics using the CONUS median within that map.  
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Figure 1. Hourly mean wind speed at 80 m above surface of 
the CONUS over 38 years, overlaying with specific locations 
that are mentioned in the paper, including states of California 
(CA), Iowa (IA), Maine (ME), Nebraska (NE), Oregon (OR), 
Washington (WA), and Wyoming (WY). The white boxes 
with solid and dotted lines in central United States identify 
the Great Plains and the Upper Midwest, respectively. The 
yellow, black, and blue boxes bounded by dashed lines, 
respectively, mark the Appalachian Mountains along the East 
Coast, Rocky Mountains, and Sierra Nevada in California. 

 
 

 
Figure 2. Spatial distribution of RCoV calculated using (a) hourly, (b) daily, (c) weekly, (d) 
monthly, (e) seasonal, and (f) annual-mean wind speeds of the CONUS over 38 years.  
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The distributions of spatially normalized RCoV display geographical distinctions in intramap and 
intermap comparisons (figure 3), in contrast to the results of RCoV in figure 2. The spatial pattern in 
each panel of figure 3 remains the same as those in figure 2, and the normalization provides fair 
comparisons between timescales. For instance, the high wind-speed variabilities in the Rocky 
Mountains become obvious in the weekly (figure 3c), monthly (figure 3d), and seasonal data (figure 3e) 
data. In particular, the wind-speed variabilities in Wyoming are generally above the national average in 
each averaging time frame (figure 3), which are different from the results in figure 2. Moreover, the 
wind speeds in the central part of the United States remain moderately variable across timescales. In 
general, the spatially normalized RCoV and CoV demonstrate analogous spatial results across averaging 
time frames (figure 3 and 4), and the results from monthly means and seasonal means illuminate the 
largest geographical differences, both on land and offshore.  

 
Figure 3. As in figure 2, but for each timescale, the RCoV values are spatially normalized 
with the CONUS median of RCoV for that map.  

 
Figure 4. As in figure 5, but for spatially normalized CoV.  
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Similarly, the geographical discrepancies from the spatially normalized σ also emerge only with 
timeframes longer than a week (figure 5). This trend is the most noticeable along the Rocky Mountains 
and the western states (figure 5). The pattern in each panel of figure 5 is similar to those in figure 3 
and 4, and the largest differences among the panels are located in southern California using seasonal 
and annual averages (figure 3e and 3f, figure 4e and 4f, figure 5e and 5f).  

 
Figure 5. As in figure 5, but for spatially normalized σ.  

Moreover, among the three spatially normalized spread metrics, normalized σ demonstrates the 
highest consistency in depicting geographical variabilities among grid points across timescales. For each 
MERRA-2 grid point in the CONUS, we calculate the range of the results over different timescales, 
which is the difference between the maximum and minimum (figure 6). In other words, we compute the 
largest changes in the values among all the panels in each of the figure 3, 4, and 5. The relatively low 
and uniform ranges of the normalized σ values indicate that the relative variabilities within the CONUS 
are consistent among different timeframes (figure 6c). For instance, Maine generally possesses low 
variabilities compared to other regions (figure 5), and the close-to-zero ranges in the state in figure 6a 
show that the variabilities in Maine are low, from hourly to yearly mean wind speeds.  

In contrast, the normalized spread metrics, especially the RCoV, display temporal inconsistencies in 
wind-speed variability quantification (figure 6a and 6b). For example, in southern coastal California and 
the Appalachians, the normalized CoVs and RCoVs increase with longer averaging time periods (figure 
3 and 4). Although the ranges of the two normalized spread measures are large in those locations (figure 
6a and 6b), the ranges of the three spread metrics generally demonstrate good agreements (figure 6). 
The ranges of all spatially normalized metrics are near zero in the central United States (figure 6), where 
the wind resources are consistent and abundant (figure 1).  
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Figure 6. Spatial distribution of range of (a) spatially normalized RCoV, (b) spatially normalized 
CoV, and (c) spatially normalized σ over the six chosen timescales. Each panel illustrates the 
range at each grid point of six temporal resolutions in figure 3, 4, and 5, respectively.  

In contrast to the spatially normalized spread metrics, distribution parameters, such as skewness and 
kurtosis, drastically change with averaging timeframes. Specifically, for the hourly, daily, and weekly 
mean wind-speed data, the skewness values in most of the CONUS tend to be positively skewed, or 
leaning toward lower wind speeds (figure 7a, 7b, and 7c). The spatial pattern is distinct, especially in 
the western states. For longer timescales, other parts of the CONUS become more negatively skewed 
(figure 7d, 7e, and 7f). For example, the seasonal-mean wind-speed distributions in the states east of the 
Rocky Mountains are largely negatively skewed (figure 7e).  

 
Figure 7. Spatial distribution of skewness of (a) hourly, (b) daily, (c) weekly, (d) monthly, 
(e) seasonal, and (f) annual-mean wind speed of the CONUS over 38 years.  

The changes in kurtosis across averaging times are relatively gradual compared to skewness. The values 
of kurtosis in most of the CONUS transition from positive in hourly mean data to negative in yearly mean 
data (figure 8). Although extreme values emerge—for instance, the strongly positive kurtosis values of 
daily mean wind speeds in the Sierra Nevada (figure 8b)—kurtosis values in coarser timescales generally 
become more neutral in the CONUS (figure 8d, 8e, and 8f). Moreover, the maximum positive kurtosis 
values are over 7, whereas the minimum of all kurtosis values in the CONUS across all timescales is -1.35.  

The consistent variances of the spatially normalized RCoV across timescales offer fair spatial 
comparison in wind-speed variability. The interquartile range (IQR) represents the span of a box in 
figure 9. The IQR of the absolute RCoV in the CONUS decreases with coarser temporal resolution, and 
the IQR becomes notably small in the yearly mean data (figure 9a). Hence, the spatial differences in 
absolute RCoV of wind speeds appear trivial in the seasonal-mean and annual-mean data (figure 2e and 
2f). Meanwhile, for spatially normalized RCoV, the IQR generally increases with longer timeframes, 
and more outliers also emerge (figure 9b). Accordingly, the geographical pattern of normalized RCoV 
is distinct in each timescale (figure 3).  

Variances in the distribution metrics also differ with time frames, as in figure 7 and 8. A large portion 
of the monthly, seasonal, and annual mean wind speeds in the CONUS yields skewness of near-zero 
(figure 9c), whereas most data of the finer temporal resolutions tend to be positively skewed, echoing 
figure 7a, 7b and 7c. Of the three coarser averaging timescales, the monthly mean skewness results in 
the lowest IQR (figure 9c). For kurtosis, only weekly mean wind speeds concentrate around zero, among 
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the data of all timeframes in the CONUS (figure 9d). All temporal distributions have outliers of positive 
kurtosis values (figure 9d), especially the daily means (figure 8b). 

 

 
Figure 8. As in figure 7, but for kurtosis.  

  

 
Figure 9. Box plots of (a) RCoV, (b) spatially normalized RCoV, (c) skewness, and (d) 
kurtosis of all the CONUS grid points across timescales, corresponding to figure 2, 3, 7, and 
8, respectively. The numbers on the top of each panel indicate the IQR of the CONUS data 
in each time resolution, which also illustrate the span of the boxes. The grey horizontal lines 
in (c) and (d) represent skewness and kurtosis of zero.  
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4.  Discussion 
We illustrate the impact of time resolution of wind speeds in variability calculation and distribution 
characterization. We calculate and compare the spatial projections of three spread metrics (σ, CoV, and 
RCoV) and two distribution parameters (skewness and kurtosis) using the MERRA-2 wind speeds at 80 
m above the surface. We contrast the statistics using the mean wind speeds of every hour, day, week, 
month, season, and year from 1980 to 2017.  

Using monthly or seasonal mean wind speeds can accurately contrast variabilities spatially, whereas 
data of too fine or too coarse temporal resolutions lead to geographically indistinct results. On one hand, 
hourly data contain highly fluctuating winds from wind gusts and mesoscale weather events. Hence, the 
spread metrics tend to yield large values of variability (figure 2a and 9a) and result in ambiguous spatial 
distinctions (figure 3a, 4a, and 5a). For example, using hourly data, spatially normalized σ indicates 
comparatively high variabilities in most of the central United States (figure 5a), and geographically 
normalized CoV and RCoV display high variabilities in all the states west of the Rocky Mountains 
(figure 3a and 4a). Hence, in general, the spread of hourly mean wind speeds does not spatially 
differentiate the variabilities among regions with precision (figure 9a). On the other hand, IAV is a 
commonly used measure in the industry and requires annual mean data. However, variability 
quantification using annual mean wind speeds cannot sufficiently distinguish the relative long-term 
variabilities between states because of the small sample size of yearly data and the weak geographical 
discrepancies in IAV (figure 3f, 4f, and 5f). Moreover, annual mean wind speeds erode irregular signals 
of finer temporal timescales that can deviate distribution characteristics (figure 7f and 8f), leading to 
inaccurate representation of the spread of yearly data. Overall, we recommend using monthly or seasonal 
mean wind speeds to adequately differentiate regions in relative wind-speed variabilities (figure 3, 4, 
and 5). Note that geographically indistinct patterns from nonspatially normalized spread metrics are still 
meaningful for existing commercial wind farms because variabilities at all timescales affect wind power 
productions and profitability.  

Depending on which spread metric is used, contradicting results in variability can emerge. For 
instance, in the monthly data, the results of spatially normalized CoV and RCoV identify those two 
states with the lowest variabilities in the CONUS (figure 3d and 4d), whereas using normalized σ 
indicates moderately high variabilities in Iowa and Nebraska (figure 5d). Nevertheless, in mountainous 
regions, such as the Rocky Mountains and Appalachians, the spread metrics exhibit agreements in 
indicating the mountains with high wind-speed variabilities, regardless of the averaging timescales 
(figure 3, 4, and 5).  

Furthermore, results of the distribution metrics—skewness and kurtosis—differ greatly between 
timescales. Although the kurtosis values of wind speeds demonstrate nearly perfect Gaussian 
distributions in most of the CONUS (figure 8 and 9d), the skewness values suggest otherwise (figure 7 
and 9c). Of all the time resolutions, monthly mean wind speeds generally yield skewness and kurtosis 
closest to zero (figure 9c and 9d), yet the patterns are not uniform across the CONUS (figure 7d and 8d). 
Moreover, readers should be mindful of the rapidly changing spatial patterns of skewness across 
timescales (figure 7). Hence, except for monthly data, the Gaussian assumption is principally inadequate 
in most of the CONUS for all the averaging time frames of wind-speed data.  

Considering that wind-speed distributions are not perfectly Gaussian, using RCoV to quantify long-
term variability is advantageous given its statistical robustness and resistance. Even though the spatially 
normalized σ yields consistent relative variabilities in the CONUS across timescales (figure 6a), readers 
also need to account for the nonzero skewness and kurtosis values (figure 7, 8, and 9). In longer time 
frames of seasonal and annual means, the Gaussian assumption can be reasonable with large sample 
sizes (figure 9c and 9d); for fine time resolutions—namely, the hourly, daily, and weekly data—most 
results of skewness and kurtosis in the CONUS deviate from zero (figure 9c and 9d). Hence, representing 
wind-speed variabilities via nonrobust and nonresistant metrics, such as σ and CoV, becomes 
inadequate, whereas RCoV works for any type of wind-speed distribution. In particular, the geographical 
distinctions of monthly averages using the spatially normalized RCoV are clear (figure 3d and 9b). 
Moreover, the results of geographically normalized RCoV in figure 3d also resemble those illustrated 
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in past research [5,6]. Therefore, we recommend using RCoV to evaluate long-term variabilities with 
monthly mean wind speeds.  
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