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Abstract.
The objective of this paper is to incorporate sparse sensor data to improve flow-field

estimates in a wind farm, which can then be used to perform better online wind farm
optimization and control. A sparse-sensing algorithm is used to determine the optimal locations
of sensors to improve the overall estimation precision of the flow field within the wind farm.
This algorithm takes advantage of the dominant atmospheric structures in a wind farm to
reconstruct the flow field from point measurements in the field. These measurements, in their
optimal locations, have the ability to improve the observability of a wind farm and thus provide
faster, more accurate, state estimation.

1. Introduction
Many studies have been done showing that operating all turbines at their own locally optimal
operating point leads to suboptimal global performance [1]. Implementing a coordinated wind
farm control strategy has the potential to improve the performance of a wind farm [2, 3, 4].
Operating a wind farm with coordinated control of turbines will rely on accurate and timely
measurements. Traditionally, sensors are statically placed in locations that are convenient for
installation and maintenance rather than targeting locations for optimal measurements, which
may change as the wind direction changes. These sensors can be very expensive to install and
maintain, limiting the number to be installed, and oftentimes cannot be moved once they are
placed/built. In addition, sensors on the back of turbines are often noisy and unreliable. To
improve the observability of the wind farm, additional sensors, such as met towers, lidars, etc.,
should be added in optimal locations to improve controller performance and state estimation
[5, 6].

This paper focuses on a sparse data-driven sensor placement algorithm to determine the
optimal locations of sensors in a wind farm to improve the observability of a wind farm and thus
provide better state estimation and improve the performance of a controller deployed in a wind
farm. This approach is based on the work done in [7, 8], where a data-driven approach was used
to reconstruct a variety of high-dimensional systems including images and flow fields. This paper
applies this algorithm to the wind farm problem and integrates the measurements into a dynamic
reduced-order model of a wind farm. Section 2 details the sparse-sensor placement algorithm
that leverages data-driven strategies including proper orthogonal decomposition and dynamic
mode decomposition [9, 10, 11, 12]. This algorithm is implemented and compares a reduced-
order model (described in Section 3.1) with a high-fidelity computational fluid dynamics (CFD)
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model (described in Section 3.2). The reduced-order model has been combined with the optimal
sensor measurements using a Kalman filter. The results are shown in Section 4. Section 5
summarizes the findings and proposes future work.

2. Sparse-Sensor Placement
This section focuses on the algorithm used to determine the sparse-sensor locations in a wind
farm. This algorithm is data-driven and takes advantage of the dominant structures and the
low-dimensional patterns in a wind farm.

2.1. Proper Orthogonal Decomposition
Proper orthogonal decomposition (POD) provides a low-order approximation of the flow that
is capable of capturing dominant structures in the flow. Specifically, POD can be used to
extract dominant spatial features from both simulation and experimental data that can be used
to uncover structures in the flow [13, 14]. In the wind farm example, this can be done by
projecting the wind velocity field onto a set of orthogonal basis functions. POD modes have
been used in many previous studies to analyze wind farms [15, 16, 17, 18].

Consider a system modeled by the continuous-time nonlinear dynamics

ẋ(t) = f(x(t)), (1)

where x ∈ Rnx is the state vector. The POD modes of this system can be computed from the
snapshots of the nonlinear system. A data matrix of the snapshots is formed by

X0 = [x(t0), x(t1), ..., x(tns)] (2)

where ns is the number of snapshots. The POD modes are then computed by taking the
singular-value decomposition of the data matrix

X0 = UΣV T . (3)

The POD modes are contained in the columns of U , the relative energy of each mode is contained
in the singular values in Σ, and the associated dynamics are in V . The modes provide the spatial
component of the flow and are ordered such that the first POD mode is the spatial mode that
contains the most energy, representing the dominant structure in the flow.

2.2. Optimal Sparse-Sensor Locations
After the dominant structures have been identified using POD, they will be used to identify
sensor locations in a wind farm that minimize the flow-field estimation error [7]. This approach
exploits the interactions between turbines to identify sparse measurements in a wind farm.

The objective of this paper is to minimize the error between the actual and estimated state
by optimally placing sensors within the flow. It is assumed that the measurements are perfect,
i.e., there are no sensor models. Cost of the sensor system is not considered but will be a topic
of future research. In addition, this work considers the full flow field; however, future work will
also weight portions of the flow that impact wind farm controls the most such as favoring the
estimate of far wake dynamics over the near wake dynamics.

In the wind farm control/estimation problem, the state is considered to be the wind velocity
throughout the wind farm. The objective function is then

min
γ∈Rr

‖x− x̂(γ)‖2, (4)
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where γ = [γ1, γ2, ..., γr] is the index of the sensor location corresponding to the state, r indicates
the number of sensors and the order of the model used to determine x̂, x̂ is the estimated state,
and x is the actual state. The estimated state, x̂, is computed using a reduced-order model
described in Section 3.1, and the actual state, x, is computed from a high-fidelity CFD model
described in Section 3.2.

The measurements, y, calculated via

y = Cx, (5)

where C = [eγ1 , eγ2 , ..., eγr ]
T and eγi ∈ Rnx is a unit vector at the index γi for the location

of each sensor. The measurements are then used to estimate the state of the system, x̂, and can
be incorporated into the system by using filtering approaches (described in Section 3.3).

To solve this optimization problem, POD modes are used to construct the subspace that
contains the dominant modes of the system such that the full state, x, can be approximated by

x̂ = Urz, (6)

where z is the reduced-order state of x projected onto the subspace Ur, where r indicates the
number of modes and is equal to the number of sensors. Extensions of this approach show that
it is possible to have more measurements than states. However, for this work, we are assuming
that the number of reduced-order states is equal to the number of sensors. The measurement
equation can be written such that:

y = Cx ≈ (CUr)z := Hz. (7)

Using these point measurements in the flow, the reduced-order state can be computed as

z = (CUr)
−1y (8)

and an estimate of the full state can be computed using (6). The optimal sensor locations target
the best reconstruction of x̂ given the subspace, Ur. To solve this problem, H is optimally
conditioned such that x̂ is not sensitive to inversion errors in H [8]. Specifically, the spectral
content of H is optimized using the trace of H:

γ∗ = argmin
γ

‖H−1‖2, (9)

where γ∗ are the indices of the optimal sensor locations. Direct optimization (9) is intractable
for large systems as this becomes a combinatorial search. Instead, the optimization problem is
solved using an approximate greedy solution using a QR factorization with column pivoting [8].
In particular, a QR decomposition is performed on the subspace UT

r using column pivoting. A
column permutation matrix, P , is computed such that

UT
r P

T = QR (10)

(11)

where Q is a unitary matrix, R is an upper-triangular matrix, and P is chosen so that the
diagonal elements of R are nonincreasing and is often used for matrices that are rank deficient.
This permutation matrix, P , then becomes the measurement matrix C = P , where C has
entries [eγ1 , eγ2 , ..., eγr ]

T as stated earlier, which indicates the locations of the point
measurements. The QR factorization with column pivoting provides r point measurements
that best sample the modes in UT

r .
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3. Modeling
To demonstrate the algorithm presented in the previous section, a reduced-order model is used to
estimate the states and a high-fidelity CFD code to simulate the actual states. The measurements
of the actual state are integrated into the reduced-order model through a Kalman filter.

3.1. Reduced-Order Model
Dynamic mode decomposition (DMD) is used to construct a reduced-order model that extracts
the dominant spatial and temporal information about the flow using POD modes [9, 10, 19].
This method attempts to fit a discrete-time linear system to a set of snapshots from simulation
or experiments. Consider a system modeled by the following discrete-time nonlinear dynamics:

xk+1 = g(xk), (12)

where x ∈ Rnx is the state vector, now given in discrete time format as sampled from (1).
A collection of snapshot measurements {xk}ns

k=0 ∈ Rnx is obtained for the system either by
simulation or experiments and ns is the number of snapshots. Assume there is a matrix A that
relates the snapshots in time by:

xk+1 = Axk. (13)

For the wind farm example, it is assumed that the turbines are operating normally within Region
2 as defined in [20, 21]. The snapshots of the system are defined as

X0 = [x0, x1, ..., xns−1] ∈ Rnx×(ns−1)

X1 = [x1, x2, ..., xns ] ∈ Rnx×(ns−1),

where xk are the snapshots of the full state and ns is the number of snapshots. The full-order
A matrix can be computed via:

A = X1X
†
0, (14)

where † indicates the pseudoinverse. This is intractable for high-dimensional systems where
nx is large (≥ 105). The objective of DMD is to approximate the dynamics of the system by
projecting the snapshots onto a low-dimensional subspace. A low-dimensional matrix, F , can
be approximated using an orthogonal projection, such as POD. The optimal reduced-order state
matrix, F , for this choice is

F := UT
r AUr = UT

r X1(U
T
r X0)

† = UT
r X1VrΣ

−1
r , (15)

where r is the dimension of the reduced-order model (and number of sensors) and the
corresponding low-rank approximation for the full-order state matrix is

A ≈ UrFUT
r = UrU

T
r X1X

†
0. (16)

Computing the error, ‖X1−AX0‖2F , directly is computationally intractable for high-dimensional
systems. Using the properties of the Frobenius norm, the error of the system can be computed
as:

‖X1 −AX0‖2F
‖X1‖2F

=
‖QTX1 − FQTX0‖2F +

(‖X1‖2F − ‖QTX1‖2F
)

‖X1‖2F
≤ ε, (17)

where ε is a user-specified error threshold that defines the order of the model. As mentioned
previously, the order of the model determines the number of sensors. A higher-order model to
estimate x̂ translates to a smaller error when comparing the estimated state with the actual
state.
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The reduced-order model can be written as:

zk = Fzk−1 (18)

yk = Hzk, (19)

where x̂ can be approximated by (6) and compared with the actual state generated by the
high-fidelity model described in the next section. DMD has been connected to the Koopman
operator that can be used to describe nonlinear systems [22, 23]. Future work will generate a
reduced-order model for a wind farm using Koopman modes.

3.2. High-Fidelity Model: Simulator fOr Wind Farm Applications
The Simulator fOr Wind Farm Applications (SOWFA) is a high-fidelity large-eddy simulation
tool that is used for wind farm studies [24] and will be used to compute the actual state, x, in
this paper. SOWFA uses an actuator line or disk model to study turbines in the atmospheric
boundary layer. SOWFA solves the three-dimensional unsteady spatially filtered incompressible
Navier-Stokes equations and transport of potential temperature, which takes into account the
thermal buoyancy and Earth rotation (Coriolis) effects in the atmosphere. Finally, SOWFA
calculates the unsteady flow field and is used to compute power output at each turbine. This
is a computationally expensive tool, e.g., a 10-minute two-turbine simulation can take two days
to run on NREL’s supercomputer using an actuator line representation of the turbine. For
this research, point measurements in the SOWFA “field” are time-averaged and used with the
reduced-order model to predict the instantaneous flow field. Further details can be found in
[25, 26].

3.3. Kalman Filter
A Kalman filter is used to integrate the the optimal measurements of the actual state from
SOWFA with the reduced-order model. A similar approach combining DMD and a Kalman
filter was used in [16] and is standard practice in the controls/system literature. The Kalman
filter is able to provide a computationally efficient algorithm for estimating the state based
on measured outputs [27, 28]. Consider the reduced-order model of the system, defined in
Section 3.1, with added noise:

zk+1 = Fzk + wk (20)

yk = Hzk + vk, (21)

where wk ∈ Rr is the process noise, vk ∈ Rr is the measurement noise, zk ∈ Rr, and yk ∈ Rr

are the reduced-order states and outputs, respectively.
The standard Kalman filter can be implemented using the approach outlined in [28]. The

Kalman filter uses measurements, yk from Section 2 to update the estimate of the state at a
particular time step. To implement the Kalman filter, the properties of the process noise wk and
the measurement noise vk should be known or estimated. Typically, the covariance matrices,
Qk and Rk, of the process noise and the measurement noise, respectively, can be determined by
Qk = E(wkw

T
k ) and Rk = E(vkv

T
k ). This indicates that the process noise and measurement noise

are independent. In the wind farm application, this information about the noise is not known.
Hence, Qk and Rk are tuned to estimate the noise. Especially for wind farm simulations, Rk is
expected to be small since exact measurements can be taken from the simulations. Qk is tuned
such that all the modes of the reduced-order model are weighted equally. Another approach to
defining Qk could be to weigh the modes differently, e.g., assign different weights to different
modes. The standard Kalman filter is initialized by:

ẑ+0 = E(z0)

P+
0 = E[(z0 − ẑ+0 )(z0 − ẑ+0 )

T ],
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where ẑ+0 = UT
r x0 is the initial state estimate and P+

0 is the initial covariance on the state error.
For the wind farm example, the initial covariance, P+

0 , is set to be Ir. The remainder of the
Kalman filter is evaluated as

Covariance: P−k = FP+
k−1F

T +Qk−1
Kalman Gain: Kk = P−k HT (HP−k HT +Rk)

−1

State Estimate: ẑ−k = F ẑ+k−1
Measurement Update: ẑ+k = ẑ−k +Kk(yk −Hẑ−k )

Covariance Update: P+
k = (I −KkH)P−k

where the superscript “−” indicates the settings of the filter before the measurement update and
“+” indicates after the measurement update. Measurements from the flow are integrated into
the reduced-order model and the reduced-order state can be projected back to the full-order
state using (6). This estimated state is compared with the actual state obtained using SOWFA.

4. Results

Figure 1. This figure shows the results of training the reduced-order model to the high-fidelity
model, SOWFA. (Left) show the percent difference between the actual state and the estimated
state. The resulting reduced-order model is shown in the middle and the results from SOWFA
are shown on the right.

To demonstrate the sparse-sensor placement framework introduced in the previous sections,
we use a 38-turbine wind farm, with each turbine reprsented by a vertical balck line, as shown
in Figure 1 (right). The turbines are simulated as NREL 5-MW turbines [29] encountering a
mean wind speed of U∞ = 8m/s and a turbulence intensity of approximately 6% in a neutral
boundary layer. The smallest spacing between turbines is approximately 3.0 rotor diameters.
The computational domain is 5 km in the x direction, 5 km in the y-direction, and 1 km in the
z-direction. The grid spacing is 10m with 500 points in the x-direction, 500 points in the y-
direction, and 100 points in the z-direction. The hub-height flow field was recorded every 2 s,
and the flow was sampled at 250 points in the x-direction and 250 points in the y-direction
resulting in 62,500 total points. The results presented in this section were simulated using the
reduced-order model and SOWFA. For this study, 38 turbines were run for 2000 s using 500
cores. The simulation took 2 days using an actuator disk representation of each turbine.

4.1. Number of Sensors
First, the reduced-order model was computed using 150 snapshots of data for DMD. The number
of sensors was determined to achieve the user-specified threshold, ε, quantifying the difference
between the actual state and the estimated state. The actual state was the SOWFA training
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data and the estimated state was the output generated by the reduced-order model. Because
this is a high-dimensional system, a MapReduce technique is used to obtain the singular-value
decomposition of a tall-skinny matrix [30]. In this case, the user-specified threshold was set to
a total difference of 30% using (17) between the actual state and the estimated state. This user
threshold was arbitrarily chosen and smaller values could be chosen in the future. Choosing
a higher user-specified threshold results in a fewer number of sensors needed to estimate the
flow within that tolerance. The threshold chosen in this paper demonstrates the performance
achieved with fewer sensors and a higher overall user-specified threshold. It is important to
note that wind farm control will require the velocities at the turbines to be accurate; not the
entire flow field. A significant portion of the error comes from trying to identify all the points
in the flow; points not near turbines. Figure 1 (left) shows the error between the estimated and
actual states decreasing as additional modes are added, i.e., as the dimension of the model is
increased. This figure indicates that 64 modes are sufficient for achieving this threshold, shown
by the red line. The resulting reduced-order model is shown in Figure 1 (middle). As mentioned
in previous sections, the order of the model determines the number of sensors used to estimate
the state. Extensions of this algorithm have shown that more sensors can be added but has not
been addressed in this work [7]. Since 64 sensors is a significant number of sensors, it is likely
that much fewer would be actually implemented in the field. Sensor models can be incorporated
for sensors that take multiple measurements, i.e., lidar.

4.2. Sensor Locations
Next, the optimal locations of the selected number of sensors were determined using the
algorithm discussed in Section 2.2, where x represents the velocities, y represents the
measurements in the flow, and z is the velocities projected onto a subspace. Figure 2 (left)
shows the error in the model using random vs. optimal sensor locations. This shows that this
algorithm always produces a smaller error in estimating the flow over randomly placed sensors. In
addition, the benefit of optimally placed sensors decreases as you add more sensors. The optimal
sensor locations for two different model orders (20 and 100 sensors) are shown in Figure 2 (middle
and right). There are a few important takeaways from this analysis. First, the sensor locations
are clustered within downstream turbine wakes; especially downstream turbines operating in
the wake of more than one turbine. Downstream turbine wakes have higher turbulence and
induce higher uncertainties and may hinder the estimate of the flow field. Another observation
is that many of the measurements are located near each other. One potential reasoning for these
nearby measurements is to help characterize the fluctuations/turbulence in the flow to better
estimate the flow field. This indicates that a single sensor may be able to measure each of those
nearby points. For example, a lidar can measure multiple points at a time. In addition, a met
tower could be placed nearby, and the distance between the measurement points and the met
tower would indicate the reliability of those measurements. Distinct weights could be used in
the Kalman filter to incorporate that additional uncertainty. Lastly, it is interesting to note that
in the 20 sensor case (Figure 2 (middle)), the sensor is placed far downstream and deep within
the wind farm. This part of the wind farm has an area of high uncertainty and is critical for
estimating the flow field.

4.3. Model Performance
Finally, the model performance is assessed with 64 sensors in a wind farm to estimate the flow
field. We compare 64 randomly placed sensors sampled from a uniform distribution and 64
optimally placed sensors calculated using the method described in Section 2. The results are
shown in Figure 3. The leftmost column shows a snapshot of the actual state generated from
SOWFA. This snapshot is from a test data set that has not been used to generate the reduced-
order model. This data set contains 100 snapshots at 2 s time intervals. The reduced-order
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Figure 2. The left plot shows the mean square error between the actual state and the estimated
state as a function of the number of modes/sensors in the system. Optimal locations for 20
sensors (middle) and 100 sensors (right). The sensor locations are indicated in white and are
plotted on top of the SOWFA simulation, i.e., the actual state.

Figure 3. Analysis of SOWFA compared with the reduced-order model (ROM) at time step t =
200 s. The reduced-order model is simulated using no sensors (top row), optimal measurements
using 64 senors (middle row), and random measurement locations using 64 sensors (bottom row).
The errors between SOWFA and the reduced-order model are shown in the far-right column.
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model was run for 100 time steps to evaluate its performance relative to SOWFA using different
measurement inputs. The top plot shows the SOWFA results with no sensors. The second plot
on the left shows the locations of the 64 optimally placed sensors. The third plot on the left
shows the locations of 64 random sensors.

Next, the middle column shows the output of the reduced-order model with the measurements
from the sensors integrated using a Kalman filter. The error between the reduced-order model
and SOWFA is given on the far-right column. The results of the reduced-order model with
no sensors show a poor performance in capturing the test data set. Random sensors provide
additional information to the reduced-order model, and the reduced-order model performs 80%
better overall in capturing the state than the no sensor case. With the optimal sensor locations,
the reduced-order model does approximately 8% better in estimating the flow field in comparison
with the random sensor locations.

5. Conclusions
This paper presented a sparse-sensor placement algorithm for a wind farm to optimally
reconstruct the flow field within a user-specified threshold. The model order and corresponding
number of sensors was determined based on this user-specified threshold of the error between
the actual state and the estimated state. The optimal sensor locations were then determined
using a data-driven sparse-sensor placement algorithm. It was shown that using these sensor
locations leads to better a estimation of the flow field than randomly selected sensor locations.

Future work will include integrating noisy measurements from turbines. This will allow
fewer additional sensors to be deployed overall. The objective function will be constructed
to handle multiple or different objectives, such as estimating power throughout a wind farm
using sparse sensing and performing a wind resource assessment. In addition, we will also
incorporate more wind directions with a realistic wind rose, which would change the turbines
that are downstream and determine their importance based on the probability within the wind
rose. Finally, measurement points may be able to be aggregated and captured with one physical
sensor. Physical sensor models of these various sensors, such as met towers, lidars, sodars,
etc., will be introduced to account for various amounts of noise/uncertainty in different sensing
devices.
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